1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
|
/* DWARF 2 Expression Evaluator.
Copyright (C) 2001-2024 Free Software Foundation, Inc.
Contributed by Daniel Berlin (dan@dberlin.org)
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "block.h"
#include "event-top.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "dwarf2.h"
#include "dwarf2/expr.h"
#include "dwarf2/loc.h"
#include "dwarf2/read.h"
#include "frame.h"
#include "gdbsupport/underlying.h"
#include "gdbarch.h"
#include "objfiles.h"
/* This holds gdbarch-specific types used by the DWARF expression
evaluator. See comments in execute_stack_op. */
struct dwarf_gdbarch_types
{
struct type *dw_types[3] {};
};
/* Cookie for gdbarch data. */
static const registry<gdbarch>::key<dwarf_gdbarch_types> dwarf_arch_cookie;
/* Ensure that a FRAME is defined, throw an exception otherwise. */
static void
ensure_have_frame (const frame_info_ptr &frame, const char *op_name)
{
if (frame == nullptr)
throw_error (GENERIC_ERROR,
_("%s evaluation requires a frame."), op_name);
}
/* Ensure that a PER_CU is defined and throw an exception otherwise. */
static void
ensure_have_per_cu (dwarf2_per_cu_data *per_cu, const char* op_name)
{
if (per_cu == nullptr)
throw_error (GENERIC_ERROR,
_("%s evaluation requires a compilation unit."), op_name);
}
/* Return the number of bytes overlapping a contiguous chunk of N_BITS
bits whose first bit is located at bit offset START. */
static size_t
bits_to_bytes (ULONGEST start, ULONGEST n_bits)
{
return (start % HOST_CHAR_BIT + n_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
}
/* See expr.h. */
CORE_ADDR
read_addr_from_reg (const frame_info_ptr &frame, int reg)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
return address_from_register (regnum, frame);
}
struct piece_closure
{
/* Reference count. */
int refc = 0;
/* The objfile from which this closure's expression came. */
dwarf2_per_objfile *per_objfile = nullptr;
/* The CU from which this closure's expression came. */
dwarf2_per_cu_data *per_cu = nullptr;
/* The pieces describing this variable. */
std::vector<dwarf_expr_piece> pieces;
/* Frame ID of frame to which a register value is relative, used
only by DWARF_VALUE_REGISTER. */
struct frame_id frame_id;
};
/* Allocate a closure for a value formed from separately-described
PIECES. */
static piece_closure *
allocate_piece_closure (dwarf2_per_cu_data *per_cu,
dwarf2_per_objfile *per_objfile,
std::vector<dwarf_expr_piece> &&pieces,
const frame_info_ptr &frame)
{
piece_closure *c = new piece_closure;
c->refc = 1;
/* We must capture this here due to sharing of DWARF state. */
c->per_objfile = per_objfile;
c->per_cu = per_cu;
c->pieces = std::move (pieces);
if (frame == nullptr)
c->frame_id = null_frame_id;
else
c->frame_id = get_frame_id (frame);
for (dwarf_expr_piece &piece : c->pieces)
if (piece.location == DWARF_VALUE_STACK)
piece.v.value->incref ();
return c;
}
/* Read or write a pieced value V. If FROM != NULL, operate in "write
mode": copy FROM into the pieces comprising V. If FROM == NULL,
operate in "read mode": fetch the contents of the (lazy) value V by
composing it from its pieces. If CHECK_OPTIMIZED is true, then no
reading or writing is done; instead the return value of this
function is true if any piece is optimized out. When
CHECK_OPTIMIZED is true, FROM must be nullptr. */
static bool
rw_pieced_value (value *v, value *from, bool check_optimized)
{
int i;
LONGEST offset = 0, max_offset;
gdb_byte *v_contents;
const gdb_byte *from_contents;
piece_closure *c
= (piece_closure *) v->computed_closure ();
gdb::byte_vector buffer;
bool bits_big_endian = type_byte_order (v->type ()) == BFD_ENDIAN_BIG;
gdb_assert (!check_optimized || from == nullptr);
if (from != nullptr)
{
from_contents = from->contents ().data ();
v_contents = nullptr;
}
else
{
if (check_optimized)
v_contents = nullptr;
else
v_contents = v->contents_raw ().data ();
from_contents = nullptr;
}
ULONGEST bits_to_skip = 8 * v->offset ();
if (v->bitsize ())
{
bits_to_skip += (8 * v->parent ()->offset ()
+ v->bitpos ());
if (from != nullptr
&& (type_byte_order (from->type ())
== BFD_ENDIAN_BIG))
{
/* Use the least significant bits of FROM. */
max_offset = 8 * from->type ()->length ();
offset = max_offset - v->bitsize ();
}
else
max_offset = v->bitsize ();
}
else
max_offset = 8 * v->type ()->length ();
/* Advance to the first non-skipped piece. */
for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
bits_to_skip -= c->pieces[i].size;
for (; i < c->pieces.size () && offset < max_offset; i++)
{
dwarf_expr_piece *p = &c->pieces[i];
size_t this_size_bits, this_size;
this_size_bits = p->size - bits_to_skip;
if (this_size_bits > max_offset - offset)
this_size_bits = max_offset - offset;
switch (p->location)
{
case DWARF_VALUE_REGISTER:
{
frame_info_ptr next_frame
= get_next_frame_sentinel_okay (frame_find_by_id (c->frame_id));
gdbarch *arch = frame_unwind_arch (next_frame);
int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
int optim, unavail;
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
&& p->offset + p->size < reg_bits)
{
/* Big-endian, and we want less than full size. */
bits_to_skip += reg_bits - (p->offset + p->size);
}
else
bits_to_skip += p->offset;
this_size = bits_to_bytes (bits_to_skip, this_size_bits);
buffer.resize (this_size);
if (from == nullptr)
{
/* Read mode. */
if (!get_frame_register_bytes (next_frame, gdb_regnum,
bits_to_skip / 8, buffer,
&optim, &unavail))
{
if (optim)
{
if (check_optimized)
return true;
v->mark_bits_optimized_out (offset,
this_size_bits);
}
if (unavail && !check_optimized)
v->mark_bits_unavailable (offset,
this_size_bits);
break;
}
if (!check_optimized)
copy_bitwise (v_contents, offset,
buffer.data (), bits_to_skip % 8,
this_size_bits, bits_big_endian);
}
else
{
/* Write mode. */
if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
{
/* Data is copied non-byte-aligned into the register.
Need some bits from original register value. */
get_frame_register_bytes (next_frame, gdb_regnum,
bits_to_skip / 8, buffer, &optim,
&unavail);
if (optim)
throw_error (OPTIMIZED_OUT_ERROR,
_("Can't do read-modify-write to "
"update bitfield; containing word "
"has been optimized out"));
if (unavail)
throw_error (NOT_AVAILABLE_ERROR,
_("Can't do read-modify-write to "
"update bitfield; containing word "
"is unavailable"));
}
copy_bitwise (buffer.data (), bits_to_skip % 8,
from_contents, offset,
this_size_bits, bits_big_endian);
put_frame_register_bytes (next_frame, gdb_regnum,
bits_to_skip / 8, buffer);
}
}
break;
case DWARF_VALUE_MEMORY:
{
if (check_optimized)
break;
bits_to_skip += p->offset;
CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
&& offset % 8 == 0)
{
/* Everything is byte-aligned; no buffer needed. */
if (from != nullptr)
write_memory_with_notification (start_addr,
(from_contents
+ offset / 8),
this_size_bits / 8);
else
read_value_memory (v, offset,
p->v.mem.in_stack_memory,
p->v.mem.addr + bits_to_skip / 8,
v_contents + offset / 8,
this_size_bits / 8);
break;
}
this_size = bits_to_bytes (bits_to_skip, this_size_bits);
buffer.resize (this_size);
if (from == nullptr)
{
/* Read mode. */
read_value_memory (v, offset,
p->v.mem.in_stack_memory,
p->v.mem.addr + bits_to_skip / 8,
buffer.data (), this_size);
copy_bitwise (v_contents, offset,
buffer.data (), bits_to_skip % 8,
this_size_bits, bits_big_endian);
}
else
{
/* Write mode. */
if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
{
if (this_size <= 8)
{
/* Perform a single read for small sizes. */
read_memory (start_addr, buffer.data (),
this_size);
}
else
{
/* Only the first and last bytes can possibly have
any bits reused. */
read_memory (start_addr, buffer.data (), 1);
read_memory (start_addr + this_size - 1,
&buffer[this_size - 1], 1);
}
}
copy_bitwise (buffer.data (), bits_to_skip % 8,
from_contents, offset,
this_size_bits, bits_big_endian);
write_memory_with_notification (start_addr,
buffer.data (),
this_size);
}
}
break;
case DWARF_VALUE_STACK:
{
if (check_optimized)
break;
if (from != nullptr)
{
v->mark_bits_optimized_out (offset, this_size_bits);
break;
}
gdbarch *objfile_gdbarch = c->per_objfile->objfile->arch ();
ULONGEST stack_value_size_bits
= 8 * p->v.value->type ()->length ();
/* Use zeroes if piece reaches beyond stack value. */
if (p->offset + p->size > stack_value_size_bits)
break;
/* Piece is anchored at least significant bit end. */
if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
bits_to_skip += stack_value_size_bits - p->offset - p->size;
else
bits_to_skip += p->offset;
copy_bitwise (v_contents, offset,
p->v.value->contents_all ().data (),
bits_to_skip,
this_size_bits, bits_big_endian);
}
break;
case DWARF_VALUE_LITERAL:
{
if (check_optimized)
break;
if (from != nullptr)
{
v->mark_bits_optimized_out (offset, this_size_bits);
break;
}
ULONGEST literal_size_bits = 8 * p->v.literal.length;
size_t n = this_size_bits;
/* Cut off at the end of the implicit value. */
bits_to_skip += p->offset;
if (bits_to_skip >= literal_size_bits)
break;
if (n > literal_size_bits - bits_to_skip)
n = literal_size_bits - bits_to_skip;
copy_bitwise (v_contents, offset,
p->v.literal.data, bits_to_skip,
n, bits_big_endian);
}
break;
case DWARF_VALUE_IMPLICIT_POINTER:
if (from != nullptr)
{
v->mark_bits_optimized_out (offset, this_size_bits);
break;
}
/* These bits show up as zeros -- but do not cause the value to
be considered optimized-out. */
break;
case DWARF_VALUE_OPTIMIZED_OUT:
if (check_optimized)
return true;
v->mark_bits_optimized_out (offset, this_size_bits);
break;
default:
internal_error (_("invalid location type"));
}
offset += this_size_bits;
bits_to_skip = 0;
}
if (offset < max_offset)
{
if (check_optimized)
return true;
v->mark_bits_optimized_out (offset, max_offset - offset);
}
return false;
}
static void
read_pieced_value (value *v)
{
rw_pieced_value (v, nullptr, false);
}
static void
write_pieced_value (value *to, value *from)
{
rw_pieced_value (to, from, false);
}
static bool
is_optimized_out_pieced_value (value *v)
{
return rw_pieced_value (v, nullptr, true);
}
/* An implementation of an lval_funcs method to see whether a value is
a synthetic pointer. */
static bool
check_pieced_synthetic_pointer (const value *value, LONGEST bit_offset,
int bit_length)
{
piece_closure *c = (piece_closure *) value->computed_closure ();
int i;
bit_offset += 8 * value->offset ();
if (value->bitsize ())
bit_offset += value->bitpos ();
for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
{
dwarf_expr_piece *p = &c->pieces[i];
size_t this_size_bits = p->size;
if (bit_offset > 0)
{
if (bit_offset >= this_size_bits)
{
bit_offset -= this_size_bits;
continue;
}
bit_length -= this_size_bits - bit_offset;
bit_offset = 0;
}
else
bit_length -= this_size_bits;
if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
return false;
}
return bit_length == 0;
}
/* An implementation of an lval_funcs method to indirect through a
pointer. This handles the synthetic pointer case when needed. */
static value *
indirect_pieced_value (value *value)
{
piece_closure *c
= (piece_closure *) value->computed_closure ();
int i;
dwarf_expr_piece *piece = NULL;
struct type *type = check_typedef (value->type ());
if (type->code () != TYPE_CODE_PTR)
return NULL;
int bit_length = 8 * type->length ();
LONGEST bit_offset = 8 * value->offset ();
if (value->bitsize ())
bit_offset += value->bitpos ();
for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
{
dwarf_expr_piece *p = &c->pieces[i];
size_t this_size_bits = p->size;
if (bit_offset > 0)
{
if (bit_offset >= this_size_bits)
{
bit_offset -= this_size_bits;
continue;
}
bit_length -= this_size_bits - bit_offset;
bit_offset = 0;
}
else
bit_length -= this_size_bits;
if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
return NULL;
if (bit_length != 0)
error (_("Invalid use of DW_OP_implicit_pointer"));
piece = p;
break;
}
gdb_assert (piece != NULL && c->per_cu != nullptr);
frame_info_ptr frame = get_selected_frame (_("No frame selected."));
/* This is an offset requested by GDB, such as value subscripts.
However, due to how synthetic pointers are implemented, this is
always presented to us as a pointer type. This means we have to
sign-extend it manually as appropriate. Use raw
extract_signed_integer directly rather than value_as_address and
sign extend afterwards on architectures that would need it
(mostly everywhere except MIPS, which has signed addresses) as
the later would go through gdbarch_pointer_to_address and thus
return a CORE_ADDR with high bits set on architectures that
encode address spaces and other things in CORE_ADDR. */
bfd_endian byte_order = gdbarch_byte_order (get_frame_arch (frame));
LONGEST byte_offset
= extract_signed_integer (value->contents (), byte_order);
byte_offset += piece->v.ptr.offset;
return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
byte_offset, c->per_cu,
c->per_objfile, frame, type);
}
/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
references. */
static value *
coerce_pieced_ref (const value *value)
{
struct type *type = check_typedef (value->type ());
if (value->bits_synthetic_pointer (value->embedded_offset (),
TARGET_CHAR_BIT * type->length ()))
{
const piece_closure *closure
= (piece_closure *) value->computed_closure ();
frame_info_ptr frame
= get_selected_frame (_("No frame selected."));
/* gdb represents synthetic pointers as pieced values with a single
piece. */
gdb_assert (closure != NULL);
gdb_assert (closure->pieces.size () == 1);
return indirect_synthetic_pointer
(closure->pieces[0].v.ptr.die_sect_off,
closure->pieces[0].v.ptr.offset,
closure->per_cu, closure->per_objfile, frame, type);
}
else
{
/* Else: not a synthetic reference; do nothing. */
return NULL;
}
}
static void *
copy_pieced_value_closure (const value *v)
{
piece_closure *c = (piece_closure *) v->computed_closure ();
++c->refc;
return c;
}
static void
free_pieced_value_closure (value *v)
{
piece_closure *c = (piece_closure *) v->computed_closure ();
--c->refc;
if (c->refc == 0)
{
for (dwarf_expr_piece &p : c->pieces)
if (p.location == DWARF_VALUE_STACK)
p.v.value->decref ();
delete c;
}
}
/* Functions for accessing a variable described by DW_OP_piece. */
static const struct lval_funcs pieced_value_funcs = {
read_pieced_value,
write_pieced_value,
is_optimized_out_pieced_value,
indirect_pieced_value,
coerce_pieced_ref,
check_pieced_synthetic_pointer,
copy_pieced_value_closure,
free_pieced_value_closure
};
/* Given context CTX, section offset SECT_OFF, and compilation unit
data PER_CU, execute the "variable value" operation on the DIE
found at SECT_OFF. */
static value *
sect_variable_value (sect_offset sect_off,
dwarf2_per_cu_data *per_cu,
dwarf2_per_objfile *per_objfile)
{
const char *var_name = nullptr;
struct type *die_type
= dwarf2_fetch_die_type_sect_off (sect_off, per_cu, per_objfile,
&var_name);
if (die_type == NULL)
error (_("Bad DW_OP_GNU_variable_value DIE."));
/* Note: Things still work when the following test is removed. This
test and error is here to conform to the proposed specification. */
if (die_type->code () != TYPE_CODE_INT
&& die_type->code () != TYPE_CODE_ENUM
&& die_type->code () != TYPE_CODE_RANGE
&& die_type->code () != TYPE_CODE_PTR)
error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
if (var_name != nullptr)
{
value *result = compute_var_value (var_name);
if (result != nullptr)
return result;
}
struct type *type = lookup_pointer_type (die_type);
frame_info_ptr frame = get_selected_frame (_("No frame selected."));
return indirect_synthetic_pointer (sect_off, 0, per_cu, per_objfile, frame,
type, true);
}
/* Return the type used for DWARF operations where the type is
unspecified in the DWARF spec. Only certain sizes are
supported. */
struct type *
dwarf_expr_context::address_type () const
{
gdbarch *arch = this->m_per_objfile->objfile->arch ();
dwarf_gdbarch_types *types = dwarf_arch_cookie.get (arch);
if (types == nullptr)
types = dwarf_arch_cookie.emplace (arch);
int ndx;
if (this->m_addr_size == 2)
ndx = 0;
else if (this->m_addr_size == 4)
ndx = 1;
else if (this->m_addr_size == 8)
ndx = 2;
else
error (_("Unsupported address size in DWARF expressions: %d bits"),
8 * this->m_addr_size);
if (types->dw_types[ndx] == NULL)
{
type_allocator alloc (arch);
types->dw_types[ndx]
= init_integer_type (alloc, 8 * this->m_addr_size,
0, "<signed DWARF address type>");
}
return types->dw_types[ndx];
}
/* Create a new context for the expression evaluator. */
dwarf_expr_context::dwarf_expr_context (dwarf2_per_objfile *per_objfile,
int addr_size)
: m_addr_size (addr_size),
m_per_objfile (per_objfile)
{
}
/* Push VALUE onto the stack. */
void
dwarf_expr_context::push (struct value *value, bool in_stack_memory)
{
this->m_stack.emplace_back (value, in_stack_memory);
}
/* Push VALUE onto the stack. */
void
dwarf_expr_context::push_address (CORE_ADDR value, bool in_stack_memory)
{
push (value_from_ulongest (address_type (), value), in_stack_memory);
}
/* Pop the top item off of the stack. */
void
dwarf_expr_context::pop ()
{
if (this->m_stack.empty ())
error (_("dwarf expression stack underflow"));
this->m_stack.pop_back ();
}
/* Retrieve the N'th item on the stack. */
struct value *
dwarf_expr_context::fetch (int n)
{
if (this->m_stack.size () <= n)
error (_("Asked for position %d of stack, "
"stack only has %zu elements on it."),
n, this->m_stack.size ());
return this->m_stack[this->m_stack.size () - (1 + n)].value;
}
/* See expr.h. */
void
dwarf_expr_context::get_frame_base (const gdb_byte **start,
size_t * length)
{
ensure_have_frame (this->m_frame, "DW_OP_fbreg");
const block *bl = get_frame_block (this->m_frame, NULL);
if (bl == NULL)
error (_("frame address is not available."));
/* Use block_linkage_function, which returns a real (not inlined)
function, instead of get_frame_function, which may return an
inlined function. */
symbol *framefunc = bl->linkage_function ();
/* If we found a frame-relative symbol then it was certainly within
some function associated with a frame. If we can't find the frame,
something has gone wrong. */
gdb_assert (framefunc != NULL);
func_get_frame_base_dwarf_block (framefunc,
get_frame_address_in_block (this->m_frame),
start, length);
}
/* See expr.h. */
struct type *
dwarf_expr_context::get_base_type (cu_offset die_cu_off)
{
if (this->m_per_cu == nullptr)
return builtin_type (this->m_per_objfile->objfile->arch ())->builtin_int;
struct type *result = dwarf2_get_die_type (die_cu_off, this->m_per_cu,
this->m_per_objfile);
if (result == nullptr)
error (_("Could not find type for operation"));
return result;
}
/* See expr.h. */
void
dwarf_expr_context::dwarf_call (cu_offset die_cu_off)
{
ensure_have_per_cu (this->m_per_cu, "DW_OP_call");
frame_info_ptr frame = this->m_frame;
auto get_pc_from_frame = [frame] ()
{
ensure_have_frame (frame, "DW_OP_call");
return get_frame_address_in_block (frame);
};
dwarf2_locexpr_baton block
= dwarf2_fetch_die_loc_cu_off (die_cu_off, this->m_per_cu,
this->m_per_objfile, get_pc_from_frame);
/* DW_OP_call_ref is currently not supported. */
gdb_assert (block.per_cu == this->m_per_cu);
this->eval (block.data, block.size);
}
/* See expr.h. */
void
dwarf_expr_context::read_mem (gdb_byte *buf, CORE_ADDR addr,
size_t length)
{
if (length == 0)
return;
/* Prefer the passed-in memory, if it exists. */
if (this->m_addr_info != nullptr)
{
CORE_ADDR offset = addr - this->m_addr_info->addr;
if (offset < this->m_addr_info->valaddr.size ()
&& offset + length <= this->m_addr_info->valaddr.size ())
{
memcpy (buf, this->m_addr_info->valaddr.data (), length);
return;
}
}
read_memory (addr, buf, length);
}
/* See expr.h. */
void
dwarf_expr_context::push_dwarf_reg_entry_value (call_site_parameter_kind kind,
call_site_parameter_u kind_u,
int deref_size)
{
ensure_have_per_cu (this->m_per_cu, "DW_OP_entry_value");
ensure_have_frame (this->m_frame, "DW_OP_entry_value");
dwarf2_per_cu_data *caller_per_cu;
dwarf2_per_objfile *caller_per_objfile;
frame_info_ptr caller_frame = get_prev_frame (this->m_frame);
call_site_parameter *parameter
= dwarf_expr_reg_to_entry_parameter (this->m_frame, kind, kind_u,
&caller_per_cu,
&caller_per_objfile);
const gdb_byte *data_src
= deref_size == -1 ? parameter->value : parameter->data_value;
size_t size
= deref_size == -1 ? parameter->value_size : parameter->data_value_size;
/* DEREF_SIZE size is not verified here. */
if (data_src == nullptr)
throw_error (NO_ENTRY_VALUE_ERROR,
_("Cannot resolve DW_AT_call_data_value"));
/* We are about to evaluate an expression in the context of the caller
of the current frame. This evaluation context may be different from
the current (callee's) context), so temporarily set the caller's context.
It is possible for the caller to be from a different objfile from the
callee if the call is made through a function pointer. */
scoped_restore save_frame = make_scoped_restore (&this->m_frame,
caller_frame);
scoped_restore save_per_cu = make_scoped_restore (&this->m_per_cu,
caller_per_cu);
scoped_restore save_addr_info = make_scoped_restore (&this->m_addr_info,
nullptr);
scoped_restore save_per_objfile = make_scoped_restore (&this->m_per_objfile,
caller_per_objfile);
scoped_restore save_addr_size = make_scoped_restore (&this->m_addr_size);
this->m_addr_size = this->m_per_cu->addr_size ();
this->eval (data_src, size);
}
/* See expr.h. */
value *
dwarf_expr_context::fetch_result (struct type *type, struct type *subobj_type,
LONGEST subobj_offset, bool as_lval)
{
value *retval = nullptr;
gdbarch *arch = this->m_per_objfile->objfile->arch ();
if (type == nullptr)
type = address_type ();
if (subobj_type == nullptr)
subobj_type = type;
/* Ensure that, if TYPE or SUBOBJ_TYPE are typedefs, their length is filled
in instead of being zero. */
check_typedef (type);
check_typedef (subobj_type);
if (this->m_pieces.size () > 0)
{
ULONGEST bit_size = 0;
for (dwarf_expr_piece &piece : this->m_pieces)
bit_size += piece.size;
/* Complain if the expression is larger than the size of the
outer type. */
if (bit_size > 8 * type->length ())
invalid_synthetic_pointer ();
piece_closure *c
= allocate_piece_closure (this->m_per_cu, this->m_per_objfile,
std::move (this->m_pieces), this->m_frame);
retval = value::allocate_computed (subobj_type,
&pieced_value_funcs, c);
retval->set_offset (subobj_offset);
}
else
{
/* If AS_LVAL is false, means that the implicit conversion
from a location description to value is expected. */
if (!as_lval)
this->m_location = DWARF_VALUE_STACK;
switch (this->m_location)
{
case DWARF_VALUE_REGISTER:
{
gdbarch *f_arch = get_frame_arch (this->m_frame);
int dwarf_regnum
= longest_to_int (value_as_long (this->fetch (0)));
int gdb_regnum = dwarf_reg_to_regnum_or_error (f_arch,
dwarf_regnum);
if (subobj_offset != 0)
error (_("cannot use offset on synthetic pointer to register"));
gdb_assert (this->m_frame != NULL);
retval = value_from_register (subobj_type, gdb_regnum,
this->m_frame);
if (retval->optimized_out ())
{
/* This means the register has undefined value / was
not saved. As we're computing the location of some
variable etc. in the program, not a value for
inspecting a register ($pc, $sp, etc.), return a
generic optimized out value instead, so that we show
<optimized out> instead of <not saved>. */
value *tmp = value::allocate (subobj_type);
retval->contents_copy (tmp, 0, 0,
subobj_type->length ());
retval = tmp;
}
}
break;
case DWARF_VALUE_MEMORY:
{
struct type *ptr_type;
CORE_ADDR address = this->fetch_address (0);
bool in_stack_memory = this->fetch_in_stack_memory (0);
/* DW_OP_deref_size (and possibly other operations too) may
create a pointer instead of an address. Ideally, the
pointer to address conversion would be performed as part
of those operations, but the type of the object to
which the address refers is not known at the time of
the operation. Therefore, we do the conversion here
since the type is readily available. */
switch (subobj_type->code ())
{
case TYPE_CODE_FUNC:
case TYPE_CODE_METHOD:
ptr_type = builtin_type (arch)->builtin_func_ptr;
break;
default:
ptr_type = builtin_type (arch)->builtin_data_ptr;
break;
}
address = value_as_address (value_from_pointer (ptr_type, address));
retval = value_at_lazy (subobj_type, address + subobj_offset,
m_frame);
if (in_stack_memory)
retval->set_stack (true);
}
break;
case DWARF_VALUE_STACK:
{
value *val = this->fetch (0);
size_t n = val->type ()->length ();
size_t len = subobj_type->length ();
size_t max = type->length ();
if (subobj_offset + len > max)
invalid_synthetic_pointer ();
retval = value::allocate (subobj_type);
/* The given offset is relative to the actual object. */
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
subobj_offset += n - max;
copy (val->contents_all ().slice (subobj_offset, len),
retval->contents_raw ());
}
break;
case DWARF_VALUE_LITERAL:
{
size_t n = subobj_type->length ();
if (subobj_offset + n > this->m_len)
invalid_synthetic_pointer ();
retval = value::allocate (subobj_type);
bfd_byte *contents = retval->contents_raw ().data ();
memcpy (contents, this->m_data + subobj_offset, n);
}
break;
case DWARF_VALUE_OPTIMIZED_OUT:
retval = value::allocate_optimized_out (subobj_type);
break;
/* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
operation by execute_stack_op. */
case DWARF_VALUE_IMPLICIT_POINTER:
/* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
it can only be encountered when making a piece. */
default:
internal_error (_("invalid location type"));
}
}
retval->set_initialized (this->m_initialized);
return retval;
}
/* See expr.h. */
value *
dwarf_expr_context::evaluate (const gdb_byte *addr, size_t len, bool as_lval,
dwarf2_per_cu_data *per_cu, const frame_info_ptr &frame,
const struct property_addr_info *addr_info,
struct type *type, struct type *subobj_type,
LONGEST subobj_offset)
{
this->m_per_cu = per_cu;
this->m_frame = frame;
this->m_addr_info = addr_info;
eval (addr, len);
return fetch_result (type, subobj_type, subobj_offset, as_lval);
}
/* Require that TYPE be an integral type; throw an exception if not. */
static void
dwarf_require_integral (struct type *type)
{
if (type->code () != TYPE_CODE_INT
&& type->code () != TYPE_CODE_CHAR
&& type->code () != TYPE_CODE_BOOL)
error (_("integral type expected in DWARF expression"));
}
/* Return the unsigned form of TYPE. TYPE is necessarily an integral
type. */
static struct type *
get_unsigned_type (struct gdbarch *gdbarch, struct type *type)
{
switch (type->length ())
{
case 1:
return builtin_type (gdbarch)->builtin_uint8;
case 2:
return builtin_type (gdbarch)->builtin_uint16;
case 4:
return builtin_type (gdbarch)->builtin_uint32;
case 8:
return builtin_type (gdbarch)->builtin_uint64;
default:
error (_("no unsigned variant found for type, while evaluating "
"DWARF expression"));
}
}
/* Return the signed form of TYPE. TYPE is necessarily an integral
type. */
static struct type *
get_signed_type (struct gdbarch *gdbarch, struct type *type)
{
switch (type->length ())
{
case 1:
return builtin_type (gdbarch)->builtin_int8;
case 2:
return builtin_type (gdbarch)->builtin_int16;
case 4:
return builtin_type (gdbarch)->builtin_int32;
case 8:
return builtin_type (gdbarch)->builtin_int64;
default:
error (_("no signed variant found for type, while evaluating "
"DWARF expression"));
}
}
/* Retrieve the N'th item on the stack, converted to an address. */
CORE_ADDR
dwarf_expr_context::fetch_address (int n)
{
gdbarch *arch = this->m_per_objfile->objfile->arch ();
value *result_val = fetch (n);
bfd_endian byte_order = gdbarch_byte_order (arch);
ULONGEST result;
dwarf_require_integral (result_val->type ());
result = extract_unsigned_integer (result_val->contents (), byte_order);
/* For most architectures, calling extract_unsigned_integer() alone
is sufficient for extracting an address. However, some
architectures (e.g. MIPS) use signed addresses and using
extract_unsigned_integer() will not produce a correct
result. Make sure we invoke gdbarch_integer_to_address()
for those architectures which require it. */
if (gdbarch_integer_to_address_p (arch))
{
gdb_byte *buf = (gdb_byte *) alloca (this->m_addr_size);
type *int_type = get_unsigned_type (arch,
result_val->type ());
store_unsigned_integer (buf, this->m_addr_size, byte_order, result);
return gdbarch_integer_to_address (arch, int_type, buf);
}
return (CORE_ADDR) result;
}
/* Retrieve the in_stack_memory flag of the N'th item on the stack. */
bool
dwarf_expr_context::fetch_in_stack_memory (int n)
{
if (this->m_stack.size () <= n)
error (_("Asked for position %d of stack, "
"stack only has %zu elements on it."),
n, this->m_stack.size ());
return this->m_stack[this->m_stack.size () - (1 + n)].in_stack_memory;
}
/* Return true if the expression stack is empty. */
bool
dwarf_expr_context::stack_empty_p () const
{
return m_stack.empty ();
}
/* Add a new piece to the dwarf_expr_context's piece list. */
void
dwarf_expr_context::add_piece (ULONGEST size, ULONGEST offset)
{
dwarf_expr_piece &p = this->m_pieces.emplace_back ();
p.location = this->m_location;
p.size = size;
p.offset = offset;
if (p.location == DWARF_VALUE_LITERAL)
{
p.v.literal.data = this->m_data;
p.v.literal.length = this->m_len;
}
else if (stack_empty_p ())
{
p.location = DWARF_VALUE_OPTIMIZED_OUT;
/* Also reset the context's location, for our callers. This is
a somewhat strange approach, but this lets us avoid setting
the location to DWARF_VALUE_MEMORY in all the individual
cases in the evaluator. */
this->m_location = DWARF_VALUE_OPTIMIZED_OUT;
}
else if (p.location == DWARF_VALUE_MEMORY)
{
p.v.mem.addr = fetch_address (0);
p.v.mem.in_stack_memory = fetch_in_stack_memory (0);
}
else if (p.location == DWARF_VALUE_IMPLICIT_POINTER)
{
p.v.ptr.die_sect_off = (sect_offset) this->m_len;
p.v.ptr.offset = value_as_long (fetch (0));
}
else if (p.location == DWARF_VALUE_REGISTER)
p.v.regno = value_as_long (fetch (0));
else
{
p.v.value = fetch (0);
}
}
/* Evaluate the expression at ADDR (LEN bytes long). */
void
dwarf_expr_context::eval (const gdb_byte *addr, size_t len)
{
int old_recursion_depth = this->m_recursion_depth;
execute_stack_op (addr, addr + len);
/* RECURSION_DEPTH becomes invalid if an exception was thrown here. */
gdb_assert (this->m_recursion_depth == old_recursion_depth);
}
/* Helper to read a uleb128 value or throw an error. */
const gdb_byte *
safe_read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
uint64_t *r)
{
buf = gdb_read_uleb128 (buf, buf_end, r);
if (buf == NULL)
error (_("DWARF expression error: ran off end of buffer reading uleb128 value"));
return buf;
}
/* Helper to read a sleb128 value or throw an error. */
const gdb_byte *
safe_read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
int64_t *r)
{
buf = gdb_read_sleb128 (buf, buf_end, r);
if (buf == NULL)
error (_("DWARF expression error: ran off end of buffer reading sleb128 value"));
return buf;
}
const gdb_byte *
safe_skip_leb128 (const gdb_byte *buf, const gdb_byte *buf_end)
{
buf = gdb_skip_leb128 (buf, buf_end);
if (buf == NULL)
error (_("DWARF expression error: ran off end of buffer reading leb128 value"));
return buf;
}
/* Check that the current operator is either at the end of an
expression, or that it is followed by a composition operator or by
DW_OP_GNU_uninit (which should terminate the expression). */
void
dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
const char *op_name)
{
if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece
&& *op_ptr != DW_OP_GNU_uninit)
error (_("DWARF-2 expression error: `%s' operations must be "
"used either alone or in conjunction with DW_OP_piece "
"or DW_OP_bit_piece."),
op_name);
}
/* Return true iff the types T1 and T2 are "the same". This only does
checks that might reasonably be needed to compare DWARF base
types. */
static int
base_types_equal_p (struct type *t1, struct type *t2)
{
if (t1->code () != t2->code ())
return 0;
if (t1->is_unsigned () != t2->is_unsigned ())
return 0;
return t1->length () == t2->length ();
}
/* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_reg* return the
DWARF register number. Otherwise return -1. */
int
dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end)
{
uint64_t dwarf_reg;
if (buf_end <= buf)
return -1;
if (*buf >= DW_OP_reg0 && *buf <= DW_OP_reg31)
{
if (buf_end - buf != 1)
return -1;
return *buf - DW_OP_reg0;
}
if (*buf == DW_OP_regval_type || *buf == DW_OP_GNU_regval_type)
{
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return -1;
buf = gdb_skip_leb128 (buf, buf_end);
if (buf == NULL)
return -1;
}
else if (*buf == DW_OP_regx)
{
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return -1;
}
else
return -1;
if (buf != buf_end || (int) dwarf_reg != dwarf_reg)
return -1;
return dwarf_reg;
}
/* If <BUF..BUF_END] contains DW_FORM_block* with just DW_OP_breg*(0) and
DW_OP_deref* return the DWARF register number. Otherwise return -1.
DEREF_SIZE_RETURN contains -1 for DW_OP_deref; otherwise it contains the
size from DW_OP_deref_size. */
int
dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf, const gdb_byte *buf_end,
CORE_ADDR *deref_size_return)
{
uint64_t dwarf_reg;
int64_t offset;
if (buf_end <= buf)
return -1;
if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
{
dwarf_reg = *buf - DW_OP_breg0;
buf++;
if (buf >= buf_end)
return -1;
}
else if (*buf == DW_OP_bregx)
{
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return -1;
if ((int) dwarf_reg != dwarf_reg)
return -1;
}
else
return -1;
buf = gdb_read_sleb128 (buf, buf_end, &offset);
if (buf == NULL)
return -1;
if (offset != 0)
return -1;
if (*buf == DW_OP_deref)
{
buf++;
*deref_size_return = -1;
}
else if (*buf == DW_OP_deref_size)
{
buf++;
if (buf >= buf_end)
return -1;
*deref_size_return = *buf++;
}
else
return -1;
if (buf != buf_end)
return -1;
return dwarf_reg;
}
/* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_fbreg(X) fill
in FB_OFFSET_RETURN with the X offset and return 1. Otherwise return 0. */
int
dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end,
CORE_ADDR *fb_offset_return)
{
int64_t fb_offset;
if (buf_end <= buf)
return 0;
if (*buf != DW_OP_fbreg)
return 0;
buf++;
buf = gdb_read_sleb128 (buf, buf_end, &fb_offset);
if (buf == NULL)
return 0;
*fb_offset_return = fb_offset;
if (buf != buf_end || fb_offset != (LONGEST) *fb_offset_return)
return 0;
return 1;
}
/* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_bregSP(X) fill
in SP_OFFSET_RETURN with the X offset and return 1. Otherwise return 0.
The matched SP register number depends on GDBARCH. */
int
dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf,
const gdb_byte *buf_end, CORE_ADDR *sp_offset_return)
{
uint64_t dwarf_reg;
int64_t sp_offset;
if (buf_end <= buf)
return 0;
if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
{
dwarf_reg = *buf - DW_OP_breg0;
buf++;
}
else
{
if (*buf != DW_OP_bregx)
return 0;
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return 0;
}
if (dwarf_reg_to_regnum (gdbarch, dwarf_reg)
!= gdbarch_sp_regnum (gdbarch))
return 0;
buf = gdb_read_sleb128 (buf, buf_end, &sp_offset);
if (buf == NULL)
return 0;
*sp_offset_return = sp_offset;
if (buf != buf_end || sp_offset != (LONGEST) *sp_offset_return)
return 0;
return 1;
}
/* The engine for the expression evaluator. Using the context in this
object, evaluate the expression between OP_PTR and OP_END. */
void
dwarf_expr_context::execute_stack_op (const gdb_byte *op_ptr,
const gdb_byte *op_end)
{
gdbarch *arch = this->m_per_objfile->objfile->arch ();
bfd_endian byte_order = gdbarch_byte_order (arch);
/* Old-style "untyped" DWARF values need special treatment in a
couple of places, specifically DW_OP_mod and DW_OP_shr. We need
a special type for these values so we can distinguish them from
values that have an explicit type, because explicitly-typed
values do not need special treatment. This special type must be
different (in the `==' sense) from any base type coming from the
CU. */
type *address_type = this->address_type ();
this->m_location = DWARF_VALUE_MEMORY;
this->m_initialized = true; /* Default is initialized. */
if (this->m_recursion_depth > this->m_max_recursion_depth)
error (_("DWARF-2 expression error: Loop detected (%d)."),
this->m_recursion_depth);
this->m_recursion_depth++;
while (op_ptr < op_end)
{
dwarf_location_atom op = (dwarf_location_atom) *op_ptr++;
ULONGEST result;
/* Assume the value is not in stack memory.
Code that knows otherwise sets this to true.
Some arithmetic on stack addresses can probably be assumed to still
be a stack address, but we skip this complication for now.
This is just an optimization, so it's always ok to punt
and leave this as false. */
bool in_stack_memory = false;
uint64_t uoffset, reg;
int64_t offset;
value *result_val = NULL;
/* The DWARF expression might have a bug causing an infinite
loop. In that case, quitting is the only way out. */
QUIT;
switch (op)
{
case DW_OP_lit0:
case DW_OP_lit1:
case DW_OP_lit2:
case DW_OP_lit3:
case DW_OP_lit4:
case DW_OP_lit5:
case DW_OP_lit6:
case DW_OP_lit7:
case DW_OP_lit8:
case DW_OP_lit9:
case DW_OP_lit10:
case DW_OP_lit11:
case DW_OP_lit12:
case DW_OP_lit13:
case DW_OP_lit14:
case DW_OP_lit15:
case DW_OP_lit16:
case DW_OP_lit17:
case DW_OP_lit18:
case DW_OP_lit19:
case DW_OP_lit20:
case DW_OP_lit21:
case DW_OP_lit22:
case DW_OP_lit23:
case DW_OP_lit24:
case DW_OP_lit25:
case DW_OP_lit26:
case DW_OP_lit27:
case DW_OP_lit28:
case DW_OP_lit29:
case DW_OP_lit30:
case DW_OP_lit31:
result = op - DW_OP_lit0;
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_addr:
result = extract_unsigned_integer (op_ptr,
this->m_addr_size, byte_order);
op_ptr += this->m_addr_size;
/* Some versions of GCC emit DW_OP_addr before
DW_OP_GNU_push_tls_address. In this case the value is an
index, not an address. We don't support things like
branching between the address and the TLS op. */
if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
result += this->m_per_objfile->objfile->text_section_offset ();
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_addrx:
case DW_OP_GNU_addr_index:
ensure_have_per_cu (this->m_per_cu, "DW_OP_addrx");
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
result = (m_per_objfile->relocate
(dwarf2_read_addr_index (this->m_per_cu,
this->m_per_objfile,
uoffset)));
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_constx:
case DW_OP_GNU_const_index:
ensure_have_per_cu (this->m_per_cu, "DW_OP_constx");
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
result = (ULONGEST) dwarf2_read_addr_index (this->m_per_cu,
this->m_per_objfile,
uoffset);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_const1u:
result = extract_unsigned_integer (op_ptr, 1, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 1;
break;
case DW_OP_const1s:
result = extract_signed_integer (op_ptr, 1, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 1;
break;
case DW_OP_const2u:
result = extract_unsigned_integer (op_ptr, 2, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 2;
break;
case DW_OP_const2s:
result = extract_signed_integer (op_ptr, 2, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 2;
break;
case DW_OP_const4u:
result = extract_unsigned_integer (op_ptr, 4, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 4;
break;
case DW_OP_const4s:
result = extract_signed_integer (op_ptr, 4, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 4;
break;
case DW_OP_const8u:
result = extract_unsigned_integer (op_ptr, 8, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 8;
break;
case DW_OP_const8s:
result = extract_signed_integer (op_ptr, 8, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 8;
break;
case DW_OP_constu:
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
result = uoffset;
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_consts:
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
result = offset;
result_val = value_from_ulongest (address_type, result);
break;
/* The DW_OP_reg operations are required to occur alone in
location expressions. */
case DW_OP_reg0:
case DW_OP_reg1:
case DW_OP_reg2:
case DW_OP_reg3:
case DW_OP_reg4:
case DW_OP_reg5:
case DW_OP_reg6:
case DW_OP_reg7:
case DW_OP_reg8:
case DW_OP_reg9:
case DW_OP_reg10:
case DW_OP_reg11:
case DW_OP_reg12:
case DW_OP_reg13:
case DW_OP_reg14:
case DW_OP_reg15:
case DW_OP_reg16:
case DW_OP_reg17:
case DW_OP_reg18:
case DW_OP_reg19:
case DW_OP_reg20:
case DW_OP_reg21:
case DW_OP_reg22:
case DW_OP_reg23:
case DW_OP_reg24:
case DW_OP_reg25:
case DW_OP_reg26:
case DW_OP_reg27:
case DW_OP_reg28:
case DW_OP_reg29:
case DW_OP_reg30:
case DW_OP_reg31:
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_reg");
result = op - DW_OP_reg0;
result_val = value_from_ulongest (address_type, result);
this->m_location = DWARF_VALUE_REGISTER;
break;
case DW_OP_regx:
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
result = reg;
result_val = value_from_ulongest (address_type, result);
this->m_location = DWARF_VALUE_REGISTER;
break;
case DW_OP_implicit_value:
{
uint64_t len;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
if (op_ptr + len > op_end)
error (_("DW_OP_implicit_value: too few bytes available."));
this->m_len = len;
this->m_data = op_ptr;
this->m_location = DWARF_VALUE_LITERAL;
op_ptr += len;
dwarf_expr_require_composition (op_ptr, op_end,
"DW_OP_implicit_value");
}
goto no_push;
case DW_OP_stack_value:
this->m_location = DWARF_VALUE_STACK;
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
goto no_push;
case DW_OP_implicit_pointer:
case DW_OP_GNU_implicit_pointer:
{
int64_t len;
ensure_have_per_cu (this->m_per_cu, "DW_OP_implicit_pointer");
int ref_addr_size = this->m_per_cu->ref_addr_size ();
/* The referred-to DIE of sect_offset kind. */
this->m_len = extract_unsigned_integer (op_ptr, ref_addr_size,
byte_order);
op_ptr += ref_addr_size;
/* The byte offset into the data. */
op_ptr = safe_read_sleb128 (op_ptr, op_end, &len);
result = (ULONGEST) len;
result_val = value_from_ulongest (address_type, result);
this->m_location = DWARF_VALUE_IMPLICIT_POINTER;
dwarf_expr_require_composition (op_ptr, op_end,
"DW_OP_implicit_pointer");
}
break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
{
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
ensure_have_frame (this->m_frame, "DW_OP_breg");
result = read_addr_from_reg (this->m_frame, op - DW_OP_breg0);
result += offset;
result_val = value_from_ulongest (address_type, result);
}
break;
case DW_OP_bregx:
{
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
ensure_have_frame (this->m_frame, "DW_OP_bregx");
result = read_addr_from_reg (this->m_frame, reg);
result += offset;
result_val = value_from_ulongest (address_type, result);
}
break;
case DW_OP_fbreg:
{
const gdb_byte *datastart;
size_t datalen;
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
/* Rather than create a whole new context, we simply
backup the current stack locally and install a new empty stack,
then reset it afterwards, effectively erasing whatever the
recursive call put there. */
std::vector<dwarf_stack_value> saved_stack = std::move (this->m_stack);
this->m_stack.clear ();
/* FIXME: cagney/2003-03-26: This code should be using
get_frame_base_address(), and then implement a dwarf2
specific this_base method. */
this->get_frame_base (&datastart, &datalen);
eval (datastart, datalen);
if (this->m_location == DWARF_VALUE_MEMORY)
result = fetch_address (0);
else if (this->m_location == DWARF_VALUE_REGISTER)
result
= read_addr_from_reg (this->m_frame, value_as_long (fetch (0)));
else
error (_("Not implemented: computing frame "
"base using explicit value operator"));
result = result + offset;
result_val = value_from_ulongest (address_type, result);
in_stack_memory = true;
/* Restore the content of the original stack. */
this->m_stack = std::move (saved_stack);
this->m_location = DWARF_VALUE_MEMORY;
}
break;
case DW_OP_dup:
result_val = fetch (0);
in_stack_memory = fetch_in_stack_memory (0);
break;
case DW_OP_drop:
pop ();
goto no_push;
case DW_OP_pick:
offset = *op_ptr++;
result_val = fetch (offset);
in_stack_memory = fetch_in_stack_memory (offset);
break;
case DW_OP_swap:
{
if (this->m_stack.size () < 2)
error (_("Not enough elements for "
"DW_OP_swap. Need 2, have %zu."),
this->m_stack.size ());
dwarf_stack_value &t1 = this->m_stack[this->m_stack.size () - 1];
dwarf_stack_value &t2 = this->m_stack[this->m_stack.size () - 2];
std::swap (t1, t2);
goto no_push;
}
case DW_OP_over:
result_val = fetch (1);
in_stack_memory = fetch_in_stack_memory (1);
break;
case DW_OP_rot:
{
if (this->m_stack.size () < 3)
error (_("Not enough elements for "
"DW_OP_rot. Need 3, have %zu."),
this->m_stack.size ());
dwarf_stack_value temp = this->m_stack[this->m_stack.size () - 1];
this->m_stack[this->m_stack.size () - 1]
= this->m_stack[this->m_stack.size () - 2];
this->m_stack[this->m_stack.size () - 2]
= this->m_stack[this->m_stack.size () - 3];
this->m_stack[this->m_stack.size () - 3] = temp;
goto no_push;
}
case DW_OP_deref:
case DW_OP_deref_size:
case DW_OP_deref_type:
case DW_OP_GNU_deref_type:
{
int addr_size = (op == DW_OP_deref ? this->m_addr_size : *op_ptr++);
gdb_byte *buf = (gdb_byte *) alloca (addr_size);
CORE_ADDR addr = fetch_address (0);
struct type *type;
pop ();
if (op == DW_OP_deref_type || op == DW_OP_GNU_deref_type)
{
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
type = get_base_type (type_die_cu_off);
}
else
type = address_type;
this->read_mem (buf, addr, addr_size);
/* If the size of the object read from memory is different
from the type length, we need to zero-extend it. */
if (type->length () != addr_size)
{
ULONGEST datum =
extract_unsigned_integer (buf, addr_size, byte_order);
buf = (gdb_byte *) alloca (type->length ());
store_unsigned_integer (buf, type->length (),
byte_order, datum);
}
result_val = value_from_contents_and_address (type, buf, addr);
break;
}
case DW_OP_abs:
case DW_OP_neg:
case DW_OP_not:
case DW_OP_plus_uconst:
{
/* Unary operations. */
result_val = fetch (0);
pop ();
switch (op)
{
case DW_OP_abs:
if (value_less (result_val,
value::zero (result_val->type (), not_lval)))
result_val = value_neg (result_val);
break;
case DW_OP_neg:
result_val = value_neg (result_val);
break;
case DW_OP_not:
dwarf_require_integral (result_val->type ());
result_val = value_complement (result_val);
break;
case DW_OP_plus_uconst:
dwarf_require_integral (result_val->type ());
result = value_as_long (result_val);
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
result += reg;
result_val = value_from_ulongest (address_type, result);
break;
}
}
break;
case DW_OP_and:
case DW_OP_div:
case DW_OP_minus:
case DW_OP_mod:
case DW_OP_mul:
case DW_OP_or:
case DW_OP_plus:
case DW_OP_shl:
case DW_OP_shr:
case DW_OP_shra:
case DW_OP_xor:
case DW_OP_le:
case DW_OP_ge:
case DW_OP_eq:
case DW_OP_lt:
case DW_OP_gt:
case DW_OP_ne:
{
/* Binary operations. */
struct value *first, *second;
second = fetch (0);
pop ();
first = fetch (0);
pop ();
if (! base_types_equal_p (first->type (), second->type ()))
error (_("Incompatible types on DWARF stack"));
switch (op)
{
case DW_OP_and:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_BITWISE_AND);
break;
case DW_OP_div:
result_val = value_binop (first, second, BINOP_DIV);
break;
case DW_OP_minus:
result_val = value_binop (first, second, BINOP_SUB);
break;
case DW_OP_mod:
{
int cast_back = 0;
struct type *orig_type = first->type ();
/* We have to special-case "old-style" untyped values
-- these must have mod computed using unsigned
math. */
if (orig_type == address_type)
{
struct type *utype = get_unsigned_type (arch, orig_type);
cast_back = 1;
first = value_cast (utype, first);
second = value_cast (utype, second);
}
/* Note that value_binop doesn't handle float or
decimal float here. This seems unimportant. */
result_val = value_binop (first, second, BINOP_MOD);
if (cast_back)
result_val = value_cast (orig_type, result_val);
}
break;
case DW_OP_mul:
result_val = value_binop (first, second, BINOP_MUL);
break;
case DW_OP_or:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_BITWISE_IOR);
break;
case DW_OP_plus:
result_val = value_binop (first, second, BINOP_ADD);
break;
case DW_OP_shl:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_LSH);
break;
case DW_OP_shr:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
if (!first->type ()->is_unsigned ())
{
struct type *utype
= get_unsigned_type (arch, first->type ());
first = value_cast (utype, first);
}
result_val = value_binop (first, second, BINOP_RSH);
/* Make sure we wind up with the same type we started
with. */
if (result_val->type () != second->type ())
result_val = value_cast (second->type (), result_val);
break;
case DW_OP_shra:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
if (first->type ()->is_unsigned ())
{
struct type *stype
= get_signed_type (arch, first->type ());
first = value_cast (stype, first);
}
result_val = value_binop (first, second, BINOP_RSH);
/* Make sure we wind up with the same type we started
with. */
if (result_val->type () != second->type ())
result_val = value_cast (second->type (), result_val);
break;
case DW_OP_xor:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_BITWISE_XOR);
break;
case DW_OP_le:
/* A <= B is !(B < A). */
result = ! value_less (second, first);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_ge:
/* A >= B is !(A < B). */
result = ! value_less (first, second);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_eq:
result = value_equal (first, second);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_lt:
result = value_less (first, second);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_gt:
/* A > B is B < A. */
result = value_less (second, first);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_ne:
result = ! value_equal (first, second);
result_val = value_from_ulongest (address_type, result);
break;
default:
internal_error (_("Can't be reached."));
}
}
break;
case DW_OP_call_frame_cfa:
ensure_have_frame (this->m_frame, "DW_OP_call_frame_cfa");
result = dwarf2_frame_cfa (this->m_frame);
result_val = value_from_ulongest (address_type, result);
in_stack_memory = true;
break;
case DW_OP_GNU_push_tls_address:
case DW_OP_form_tls_address:
/* Variable is at a constant offset in the thread-local
storage block into the objfile for the current thread and
the dynamic linker module containing this expression. Here
we return returns the offset from that base. The top of the
stack has the offset from the beginning of the thread
control block at which the variable is located. Nothing
should follow this operator, so the top of stack would be
returned. */
result = value_as_long (fetch (0));
pop ();
result = target_translate_tls_address (this->m_per_objfile->objfile,
result);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_skip:
offset = extract_signed_integer (op_ptr, 2, byte_order);
op_ptr += 2;
op_ptr += offset;
goto no_push;
case DW_OP_bra:
{
struct value *val;
offset = extract_signed_integer (op_ptr, 2, byte_order);
op_ptr += 2;
val = fetch (0);
dwarf_require_integral (val->type ());
if (value_as_long (val) != 0)
op_ptr += offset;
pop ();
}
goto no_push;
case DW_OP_nop:
goto no_push;
case DW_OP_piece:
{
uint64_t size;
/* Record the piece. */
op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
add_piece (8 * size, 0);
/* Pop off the address/regnum, and reset the location
type. */
if (this->m_location != DWARF_VALUE_LITERAL
&& this->m_location != DWARF_VALUE_OPTIMIZED_OUT)
pop ();
this->m_location = DWARF_VALUE_MEMORY;
}
goto no_push;
case DW_OP_bit_piece:
{
uint64_t size, uleb_offset;
/* Record the piece. */
op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uleb_offset);
add_piece (size, uleb_offset);
/* Pop off the address/regnum, and reset the location
type. */
if (this->m_location != DWARF_VALUE_LITERAL
&& this->m_location != DWARF_VALUE_OPTIMIZED_OUT)
pop ();
this->m_location = DWARF_VALUE_MEMORY;
}
goto no_push;
case DW_OP_GNU_uninit:
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_GNU_uninit");
this->m_initialized = false;
goto no_push;
case DW_OP_call2:
{
cu_offset cu_off
= (cu_offset) extract_unsigned_integer (op_ptr, 2, byte_order);
op_ptr += 2;
this->dwarf_call (cu_off);
}
goto no_push;
case DW_OP_call4:
{
cu_offset cu_off
= (cu_offset) extract_unsigned_integer (op_ptr, 4, byte_order);
op_ptr += 4;
this->dwarf_call (cu_off);
}
goto no_push;
case DW_OP_GNU_variable_value:
{
ensure_have_per_cu (this->m_per_cu, "DW_OP_GNU_variable_value");
int ref_addr_size = this->m_per_cu->ref_addr_size ();
sect_offset sect_off
= (sect_offset) extract_unsigned_integer (op_ptr,
ref_addr_size,
byte_order);
op_ptr += ref_addr_size;
result_val = sect_variable_value (sect_off, this->m_per_cu,
this->m_per_objfile);
result_val = value_cast (address_type, result_val);
}
break;
case DW_OP_entry_value:
case DW_OP_GNU_entry_value:
{
uint64_t len;
CORE_ADDR deref_size;
union call_site_parameter_u kind_u;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
if (op_ptr + len > op_end)
error (_("DW_OP_entry_value: too few bytes available."));
kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (op_ptr, op_ptr + len);
if (kind_u.dwarf_reg != -1)
{
op_ptr += len;
this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_DWARF_REG,
kind_u,
-1 /* deref_size */);
goto no_push;
}
kind_u.dwarf_reg = dwarf_block_to_dwarf_reg_deref (op_ptr,
op_ptr + len,
&deref_size);
if (kind_u.dwarf_reg != -1)
{
if (deref_size == -1)
deref_size = this->m_addr_size;
op_ptr += len;
this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_DWARF_REG,
kind_u, deref_size);
goto no_push;
}
error (_("DWARF-2 expression error: DW_OP_entry_value is "
"supported only for single DW_OP_reg* "
"or for DW_OP_breg*(0)+DW_OP_deref*"));
}
case DW_OP_GNU_parameter_ref:
{
union call_site_parameter_u kind_u;
kind_u.param_cu_off
= (cu_offset) extract_unsigned_integer (op_ptr, 4, byte_order);
op_ptr += 4;
this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_PARAM_OFFSET,
kind_u,
-1 /* deref_size */);
}
goto no_push;
case DW_OP_const_type:
case DW_OP_GNU_const_type:
{
int n;
const gdb_byte *data;
struct type *type;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
n = *op_ptr++;
data = op_ptr;
op_ptr += n;
type = get_base_type (type_die_cu_off);
if (type->length () != n)
error (_("DW_OP_const_type has different sizes for type and data"));
result_val = value_from_contents (type, data);
}
break;
case DW_OP_regval_type:
case DW_OP_GNU_regval_type:
{
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
ensure_have_frame (this->m_frame, "DW_OP_regval_type");
struct type *type = get_base_type (type_die_cu_off);
int regnum
= dwarf_reg_to_regnum_or_error (get_frame_arch (this->m_frame),
reg);
result_val = value_from_register (type, regnum, this->m_frame);
}
break;
case DW_OP_convert:
case DW_OP_GNU_convert:
case DW_OP_reinterpret:
case DW_OP_GNU_reinterpret:
{
struct type *type;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
if (to_underlying (type_die_cu_off) == 0)
type = address_type;
else
type = get_base_type (type_die_cu_off);
result_val = fetch (0);
pop ();
if (op == DW_OP_convert || op == DW_OP_GNU_convert)
result_val = value_cast (type, result_val);
else if (type == result_val->type ())
{
/* Nothing. */
}
else if (type->length ()
!= result_val->type ()->length ())
error (_("DW_OP_reinterpret has wrong size"));
else
result_val
= value_from_contents (type,
result_val->contents_all ().data ());
}
break;
case DW_OP_push_object_address:
/* Return the address of the object we are currently observing. */
if (this->m_addr_info == nullptr
|| (this->m_addr_info->valaddr.data () == nullptr
&& this->m_addr_info->addr == 0))
error (_("Location address is not set."));
result_val
= value_from_ulongest (address_type, this->m_addr_info->addr);
break;
default:
error (_("Unhandled dwarf expression opcode 0x%x"), op);
}
/* Most things push a result value. */
gdb_assert (result_val != NULL);
push (result_val, in_stack_memory);
no_push:
;
}
/* To simplify our main caller, if the result is an implicit
pointer, then make a pieced value. This is ok because we can't
have implicit pointers in contexts where pieces are invalid. */
if (this->m_location == DWARF_VALUE_IMPLICIT_POINTER)
add_piece (8 * this->m_addr_size, 0);
this->m_recursion_depth--;
gdb_assert (this->m_recursion_depth >= 0);
}
|