1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
|
/* Common native Linux code for the AArch64 scalable extensions: SVE and SME.
Copyright (C) 2018-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include <sys/utsname.h>
#include <sys/uio.h>
#include "elf/external.h"
#include "elf/common.h"
#include "aarch64-scalable-linux-ptrace.h"
#include "arch/aarch64.h"
#include "gdbsupport/common-regcache.h"
#include "gdbsupport/byte-vector.h"
#include <endian.h>
#include "arch/aarch64-scalable-linux.h"
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_has_sve_state (int tid)
{
struct user_sve_header header;
if (!read_sve_header (tid, header))
return false;
if ((header.flags & SVE_PT_REGS_SVE) == 0)
return false;
if (sizeof (header) == header.size)
return false;
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_has_ssve_state (int tid)
{
struct user_sve_header header;
if (!read_ssve_header (tid, header))
return false;
if ((header.flags & SVE_PT_REGS_SVE) == 0)
return false;
if (sizeof (header) == header.size)
return false;
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_has_za_state (int tid)
{
struct user_za_header header;
if (!read_za_header (tid, header))
return false;
if (sizeof (header) == header.size)
return false;
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
read_sve_header (int tid, struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
{
/* SVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
write_sve_header (int tid, const struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = (void *) &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
{
/* SVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
read_ssve_header (int tid, struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SSVE, &iovec) < 0)
{
/* SSVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
write_ssve_header (int tid, const struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = (void *) &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_SSVE, &iovec) < 0)
{
/* SSVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
read_za_header (int tid, struct user_za_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
{
/* ZA is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
write_za_header (int tid, const struct user_za_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = (void *) &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
{
/* ZA is not supported. */
return false;
}
return true;
}
/* Given VL, the streaming vector length for SME, return true if it is valid
and false otherwise. */
static bool
aarch64_sme_vl_valid (size_t vl)
{
return (vl == 16 || vl == 32 || vl == 64 || vl == 128 || vl == 256);
}
/* Given VL, the vector length for SVE, return true if it is valid and false
otherwise. SVE_state is true when the check is for the SVE register set.
Otherwise the check is for the SSVE register set. */
static bool
aarch64_sve_vl_valid (const bool sve_state, size_t vl)
{
if (sve_state)
return sve_vl_valid (vl);
/* We have an active SSVE state, where the valid vector length values are
more restrictive. */
return aarch64_sme_vl_valid (vl);
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
uint64_t
aarch64_sve_get_vq (int tid)
{
struct iovec iovec;
struct user_sve_header header;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
/* Figure out which register set to use for the request. The vector length
for SVE can be different from the vector length for SSVE. */
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_GETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
{
/* SVE is not supported. */
return 0;
}
/* Ptrace gives the vector length in bytes. Convert it to VQ, the number of
128bit chunks in a Z register. We use VQ because 128 bits is the minimum
a Z register can increase in size. */
uint64_t vq = sve_vq_from_vl (header.vl);
if (!aarch64_sve_vl_valid (has_sve_state, header.vl))
{
warning (_("Invalid SVE state from kernel; SVE disabled."));
return 0;
}
return vq;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_sve_set_vq (int tid, uint64_t vq)
{
struct iovec iovec;
struct user_sve_header header;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
/* Figure out which register set to use for the request. The vector length
for SVE can be different from the vector length for SSVE. */
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_GETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
{
/* SVE/SSVE is not supported. */
return false;
}
header.vl = sve_vl_from_vq (vq);
if (ptrace (PTRACE_SETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
{
/* Vector length change failed. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_sve_set_vq (int tid, struct reg_buffer_common *reg_buf)
{
uint64_t reg_vg = 0;
/* The VG register may not be valid if we've not collected any value yet.
This can happen, for example, if we're restoring the regcache after an
inferior function call, and the VG register comes after the Z
registers. */
if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID)
{
/* If vg is not available yet, fetch it from ptrace. The VG value from
ptrace is likely the correct one. */
uint64_t vq = aarch64_sve_get_vq (tid);
/* If something went wrong, just bail out. */
if (vq == 0)
return false;
reg_vg = sve_vg_from_vq (vq);
}
else
reg_buf->raw_collect (AARCH64_SVE_VG_REGNUM, ®_vg);
return aarch64_sve_set_vq (tid, sve_vq_from_vg (reg_vg));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
uint64_t
aarch64_za_get_svq (int tid)
{
struct user_za_header header;
if (!read_za_header (tid, header))
return 0;
uint64_t vq = sve_vq_from_vl (header.vl);
if (!aarch64_sve_vl_valid (false, header.vl))
{
warning (_("Invalid ZA state from kernel; ZA disabled."));
return 0;
}
return vq;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_za_set_svq (int tid, uint64_t vq)
{
struct iovec iovec;
/* Read the NT_ARM_ZA header. */
struct user_za_header header;
if (!read_za_header (tid, header))
{
/* ZA is not supported. */
return false;
}
/* If the size is the correct one already, don't update it. If we do
update the streaming vector length, we will invalidate the register
state for ZA, and we do not want that. */
if (header.vl == sve_vl_from_vq (vq))
return true;
/* The streaming vector length is about to get updated. Set the new value
in the NT_ARM_ZA header and adjust the size as well. */
header.vl = sve_vl_from_vq (vq);
header.size = sizeof (struct user_za_header);
/* Update the NT_ARM_ZA register set with the new streaming vector
length. */
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
{
/* Streaming vector length change failed. */
return false;
}
/* At this point we have successfully adjusted the streaming vector length
for the NT_ARM_ZA register set, and it should have no payload
(no ZA state). */
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_za_set_svq (int tid, const struct reg_buffer_common *reg_buf,
int svg_regnum)
{
uint64_t reg_svg = 0;
/* The svg register may not be valid if we've not collected any value yet.
This can happen, for example, if we're restoring the regcache after an
inferior function call, and the svg register comes after the Z
registers. */
if (reg_buf->get_register_status (svg_regnum) != REG_VALID)
{
/* If svg is not available yet, fetch it from ptrace. The svg value from
ptrace is likely the correct one. */
uint64_t svq = aarch64_za_get_svq (tid);
/* If something went wrong, just bail out. */
if (svq == 0)
return false;
reg_svg = sve_vg_from_vq (svq);
}
else
reg_buf->raw_collect (svg_regnum, ®_svg);
return aarch64_za_set_svq (tid, sve_vq_from_vg (reg_svg));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
gdb::byte_vector
aarch64_fetch_sve_regset (int tid)
{
uint64_t vq = aarch64_sve_get_vq (tid);
if (vq == 0)
perror_with_name (_("Unable to fetch SVE/SSVE vector length"));
/* A ptrace call with NT_ARM_SVE will return a header followed by either a
dump of all the SVE and FP registers, or an fpsimd structure (identical to
the one returned by NT_FPREGSET) if the kernel has not yet executed any
SVE code. Make sure we allocate enough space for a full SVE dump. */
gdb::byte_vector sve_state (SVE_PT_SIZE (vq, SVE_PT_REGS_SVE), 0);
struct iovec iovec;
iovec.iov_base = sve_state.data ();
iovec.iov_len = sve_state.size ();
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_GETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
perror_with_name (_("Unable to fetch SVE/SSVE registers"));
return sve_state;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_store_sve_regset (int tid, const gdb::byte_vector &sve_state)
{
struct iovec iovec;
/* We need to cast from (const void *) here. */
iovec.iov_base = (void *) sve_state.data ();
iovec.iov_len = sve_state.size ();
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_SETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
perror_with_name (_("Unable to store SVE/SSVE registers"));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
gdb::byte_vector
aarch64_fetch_za_regset (int tid)
{
struct user_za_header header;
if (!read_za_header (tid, header))
error (_("Failed to read NT_ARM_ZA header."));
if (!aarch64_sme_vl_valid (header.vl))
error (_("Found invalid vector length for NT_ARM_ZA."));
struct iovec iovec;
iovec.iov_len = header.size;
gdb::byte_vector za_state (header.size);
iovec.iov_base = za_state.data ();
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
perror_with_name (_("Failed to fetch NT_ARM_ZA register set."));
return za_state;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_store_za_regset (int tid, const gdb::byte_vector &za_state)
{
struct iovec iovec;
/* We need to cast from (const void *) here. */
iovec.iov_base = (void *) za_state.data ();
iovec.iov_len = za_state.size ();
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
perror_with_name (_("Failed to write to the NT_ARM_ZA register set."));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_initialize_za_regset (int tid)
{
/* First fetch the NT_ARM_ZA header so we can fetch the streaming vector
length. */
struct user_za_header header;
if (!read_za_header (tid, header))
error (_("Failed to read NT_ARM_ZA header."));
/* The vector should be default-initialized to zero, and we should account
for the payload as well. */
std::vector<gdb_byte> za_new_state (ZA_PT_SIZE (sve_vq_from_vl (header.vl)));
/* Adjust the header size since we are adding the initialized ZA
payload. */
header.size = ZA_PT_SIZE (sve_vq_from_vl (header.vl));
/* Overlay the modified header onto the new ZA state. */
const gdb_byte *base = (gdb_byte *) &header;
memcpy (za_new_state.data (), base, sizeof (user_za_header));
/* Set the ptrace request up and update the NT_ARM_ZA register set. */
struct iovec iovec;
iovec.iov_len = za_new_state.size ();
iovec.iov_base = za_new_state.data ();
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
perror_with_name (_("Failed to initialize the NT_ARM_ZA register set."));
if (supports_zt_registers (tid))
{
/* If this target supports SME2, upon initializing ZA, we also need to
initialize the ZT registers with 0 values. Do so now. */
gdb::byte_vector zt_new_state (AARCH64_SME2_ZT0_SIZE, 0);
aarch64_store_zt_regset (tid, zt_new_state);
}
/* The NT_ARM_ZA register set should now contain a zero-initialized ZA
payload. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
gdb::byte_vector
aarch64_fetch_zt_regset (int tid)
{
/* Read NT_ARM_ZT. This register set is only available if
the ZA bit is non-zero. */
gdb::byte_vector zt_state (AARCH64_SME2_ZT0_SIZE);
struct iovec iovec;
iovec.iov_len = AARCH64_SME2_ZT0_SIZE;
iovec.iov_base = zt_state.data ();
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZT, &iovec) < 0)
perror_with_name (_("Failed to fetch NT_ARM_ZT register set."));
return zt_state;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_store_zt_regset (int tid, const gdb::byte_vector &zt_state)
{
gdb_assert (zt_state.size () == AARCH64_SME2_ZT0_SIZE
|| zt_state.size () == 0);
/* We need to be mindful of writing data to NT_ARM_ZT. If the ZA bit
is 0 and we write something to ZT, it will flip the ZA bit.
Right now this is taken care of by callers of this function. */
struct iovec iovec;
iovec.iov_len = zt_state.size ();
iovec.iov_base = (void *) zt_state.data ();
/* Write the contents of ZT_STATE to the NT_ARM_ZT register set. */
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZT, &iovec) < 0)
perror_with_name (_("Failed to write to the NT_ARM_ZT register set."));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
supports_zt_registers (int tid)
{
gdb_byte zt_state[AARCH64_SME2_ZT0_SIZE];
struct iovec iovec;
iovec.iov_len = AARCH64_SME2_ZT0_SIZE;
iovec.iov_base = (void *) zt_state;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZT, &iovec) < 0)
return false;
return true;
}
/* If we are running in BE mode, byteswap the contents
of SRC to DST for SIZE bytes. Other, just copy the contents
from SRC to DST. */
static void
aarch64_maybe_swab128 (gdb_byte *dst, const gdb_byte *src, size_t size)
{
gdb_assert (src != nullptr && dst != nullptr);
gdb_assert (size > 1);
#if (__BYTE_ORDER == __BIG_ENDIAN)
for (int i = 0; i < size - 1; i++)
dst[i] = src[size - i];
#else
memcpy (dst, src, size);
#endif
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_sve_regs_copy_to_reg_buf (int tid, struct reg_buffer_common *reg_buf)
{
gdb::byte_vector sve_state = aarch64_fetch_sve_regset (tid);
gdb_byte *base = sve_state.data ();
struct user_sve_header *header
= (struct user_sve_header *) sve_state.data ();
uint64_t vq = sve_vq_from_vl (header->vl);
uint64_t vg = sve_vg_from_vl (header->vl);
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| SVE_PT_SIZE (vq, header->flags) != header->size)
error (_("Invalid SVE header from kernel."));
/* Update VG. Note, the registers in the regcache will already be of the
correct length. */
reg_buf->raw_supply (AARCH64_SVE_VG_REGNUM, &vg);
if (HAS_SVE_STATE (*header))
{
/* The register dump contains a set of SVE registers. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i,
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i,
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM,
base + SVE_PT_SVE_FFR_OFFSET (vq));
reg_buf->raw_supply (AARCH64_FPSR_REGNUM,
base + SVE_PT_SVE_FPSR_OFFSET (vq));
reg_buf->raw_supply (AARCH64_FPCR_REGNUM,
base + SVE_PT_SVE_FPCR_OFFSET (vq));
}
else
{
/* WARNING: SIMD state is laid out in memory in target-endian format,
while SVE state is laid out in an endianness-independent format (LE).
So we have a couple cases to consider:
1 - If the target is big endian, then SIMD state is big endian,
requiring a byteswap.
2 - If the target is little endian, then SIMD state is little endian,
which matches the SVE format, so no byteswap is needed. */
/* There is no SVE state yet - the register dump contains a fpsimd
structure instead. These registers still exist in the hardware, but
the kernel has not yet initialised them, and so they will be null. */
gdb_byte *reg = (gdb_byte *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
struct user_fpsimd_state *fpsimd
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
/* Make sure we have a zeroed register buffer. We will need the zero
padding below. */
memset (reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
/* Copy across the V registers from fpsimd structure to the Z registers,
ensuring the non overlapping state is set to null. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
/* Handle big endian/little endian SIMD/SVE conversion. */
aarch64_maybe_swab128 (reg, (const gdb_byte *) &fpsimd->vregs[i],
V_REGISTER_SIZE);
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i, reg);
}
reg_buf->raw_supply (AARCH64_FPSR_REGNUM,
(const gdb_byte *) &fpsimd->fpsr);
reg_buf->raw_supply (AARCH64_FPCR_REGNUM,
(const gdb_byte *) &fpsimd->fpcr);
/* Clear the SVE only registers. */
memset (reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i, reg);
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM, reg);
}
/* At this point we have updated the register cache with the contents of
the NT_ARM_SVE register set. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_sve_regs_copy_from_reg_buf (int tid,
struct reg_buffer_common *reg_buf)
{
/* First store the vector length to the thread. This is done first to
ensure the ptrace buffers read from the kernel are the correct size. */
if (!aarch64_sve_set_vq (tid, reg_buf))
perror_with_name (_("Unable to set VG register"));
/* Obtain a dump of SVE registers from ptrace. */
gdb::byte_vector sve_state = aarch64_fetch_sve_regset (tid);
struct user_sve_header *header = (struct user_sve_header *) sve_state.data ();
uint64_t vq = sve_vq_from_vl (header->vl);
gdb::byte_vector new_state (SVE_PT_SIZE (32, SVE_PT_REGS_SVE), 0);
memcpy (new_state.data (), sve_state.data (), sve_state.size ());
header = (struct user_sve_header *) new_state.data ();
gdb_byte *base = new_state.data ();
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| SVE_PT_SIZE (vq, header->flags) != header->size)
error (_("Invalid SVE header from kernel."));
if (!HAS_SVE_STATE (*header))
{
/* There is no SVE state yet - the register dump contains a fpsimd
structure instead. Where possible we want to write the reg_buf data
back to the kernel using the fpsimd structure. However, if we cannot
then we'll need to reformat the fpsimd into a full SVE structure,
resulting in the initialization of SVE state written back to the
kernel, which is why we try to avoid it. */
/* Buffer (using the maximum size a Z register) used to look for zeroed
out sve state. */
gdb_byte reg[256];
memset (reg, 0, sizeof (reg));
/* Check in the reg_buf if any of the Z registers are set after the
first 128 bits, or if any of the other SVE registers are set. */
bool has_sve_state = false;
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
if (!reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i, reg,
V_REGISTER_SIZE))
{
has_sve_state = true;
break;
}
}
if (!has_sve_state)
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
{
if (!reg_buf->raw_compare (AARCH64_SVE_P0_REGNUM + i, reg, 0))
{
has_sve_state = true;
break;
}
}
if (!has_sve_state)
has_sve_state
= !reg_buf->raw_compare (AARCH64_SVE_FFR_REGNUM, reg, 0);
struct user_fpsimd_state *fpsimd
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
/* If no SVE state exists, then use the existing fpsimd structure to
write out state and return. */
if (!has_sve_state)
{
/* WARNING: SIMD state is laid out in memory in target-endian format,
while SVE state is laid out in an endianness-independent format
(LE).
So we have a couple cases to consider:
1 - If the target is big endian, then SIMD state is big endian,
requiring a byteswap.
2 - If the target is little endian, then SIMD state is little
endian, which matches the SVE format, so no byteswap is needed. */
/* The collects of the Z registers will overflow the size of a vreg.
There is enough space in the structure to allow for this, but we
cannot overflow into the next register as we might not be
collecting every register. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
if (REG_VALID
== reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
{
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i, reg);
/* Handle big endian/little endian SIMD/SVE conversion. */
aarch64_maybe_swab128 ((gdb_byte *) &fpsimd->vregs[i], reg,
V_REGISTER_SIZE);
}
}
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
reg_buf->raw_collect (AARCH64_FPSR_REGNUM,
(gdb_byte *) &fpsimd->fpsr);
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
reg_buf->raw_collect (AARCH64_FPCR_REGNUM,
(gdb_byte *) &fpsimd->fpcr);
/* At this point we have collected all the data from the register
cache and we are ready to update the FPSIMD register content
of the thread. */
/* Fall through so we can update the thread's contents with the
FPSIMD register cache values. */
}
else
{
/* Otherwise, reformat the fpsimd structure into a full SVE set, by
expanding the V registers (working backwards so we don't splat
registers before they are copied) and using zero for everything
else.
Note that enough space for a full SVE dump was originally allocated
for base. */
header->flags |= SVE_PT_REGS_SVE;
header->size = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);
memcpy (base + SVE_PT_SVE_FPSR_OFFSET (vq), &fpsimd->fpsr,
sizeof (uint32_t));
memcpy (base + SVE_PT_SVE_FPCR_OFFSET (vq), &fpsimd->fpcr,
sizeof (uint32_t));
for (int i = AARCH64_SVE_Z_REGS_NUM - 1; i >= 0 ; i--)
{
memcpy (base + SVE_PT_SVE_ZREG_OFFSET (vq, i), &fpsimd->vregs[i],
sizeof (__int128_t));
}
/* At this point we have converted the FPSIMD layout to an SVE
layout and copied the register data.
Fall through so we can update the thread's contents with the SVE
register cache values. */
}
}
else
{
/* We already have SVE state for this thread, so we just need to update
the values of the registers. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM
+ i))
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i,
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_P0_REGNUM
+ i))
reg_buf->raw_collect (AARCH64_SVE_P0_REGNUM + i,
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_FFR_REGNUM))
reg_buf->raw_collect (AARCH64_SVE_FFR_REGNUM,
base + SVE_PT_SVE_FFR_OFFSET (vq));
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
reg_buf->raw_collect (AARCH64_FPSR_REGNUM,
base + SVE_PT_SVE_FPSR_OFFSET (vq));
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
reg_buf->raw_collect (AARCH64_FPCR_REGNUM,
base + SVE_PT_SVE_FPCR_OFFSET (vq));
}
/* At this point we have collected all the data from the register cache and
we are ready to update the SVE/FPSIMD register contents of the thread.
sve_state should contain all the data in the correct format, ready to be
passed on to ptrace. */
aarch64_store_sve_regset (tid, new_state);
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_za_regs_copy_to_reg_buf (int tid, struct reg_buffer_common *reg_buf,
int za_regnum, int svg_regnum,
int svcr_regnum)
{
/* Fetch the current ZA state from the thread. */
gdb::byte_vector za_state = aarch64_fetch_za_regset (tid);
/* Sanity check. */
gdb_assert (!za_state.empty ());
gdb_byte *base = za_state.data ();
struct user_za_header *header = (struct user_za_header *) base;
/* If we have ZA state, read it. Otherwise, make the contents of ZA
in the register cache all zeroes. This is how we present the ZA
state when it is not initialized. */
uint64_t svcr_value = 0;
if (aarch64_has_za_state (tid))
{
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| ZA_PT_SIZE (sve_vq_from_vl (header->vl)) != header->size)
{
error (_("Found invalid streaming vector length in NT_ARM_ZA"
" register set"));
}
reg_buf->raw_supply (za_regnum, base + ZA_PT_ZA_OFFSET);
svcr_value |= SVCR_ZA_BIT;
}
else
{
size_t za_bytes = header->vl * header->vl;
reg_buf->raw_supply_part_zeroed (za_regnum, 0, za_bytes);
}
/* Handle the svg and svcr registers separately. We need to calculate
their values manually, as the Linux Kernel doesn't expose those
explicitly. */
svcr_value |= aarch64_has_ssve_state (tid)? SVCR_SM_BIT : 0;
uint64_t svg_value = sve_vg_from_vl (header->vl);
/* Update the contents of svg and svcr registers. */
reg_buf->raw_supply (svg_regnum, &svg_value);
reg_buf->raw_supply (svcr_regnum, &svcr_value);
/* The register buffer should now contain the updated copy of the NT_ARM_ZA
state. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_za_regs_copy_from_reg_buf (int tid,
struct reg_buffer_common *reg_buf,
int za_regnum, int svg_regnum,
int svcr_regnum)
{
/* REG_BUF contains the updated ZA state. We need to extract that state
and write it to the thread TID. */
/* First check if there is a change to the streaming vector length. Two
outcomes are possible here:
1 - The streaming vector length in the register cache differs from the
one currently on the thread state. This means that we will need to
update the NT_ARM_ZA register set to reflect the new streaming vector
length.
2 - The streaming vector length in the register cache is the same as in
the thread state. This means we do not need to update the NT_ARM_ZA
register set for a new streaming vector length, and we only need to
deal with changes to za, svg and svcr.
None of the two possibilities above imply that the ZA state actually
exists. They only determine what needs to be done with any ZA content
based on the state of the streaming vector length. */
/* First fetch the NT_ARM_ZA header so we can fetch the streaming vector
length. */
struct user_za_header header;
if (!read_za_header (tid, header))
error (_("Failed to read NT_ARM_ZA header."));
/* Fetch the current streaming vector length. */
uint64_t old_svg = sve_vg_from_vl (header.vl);
/* Fetch the (potentially) new streaming vector length. */
uint64_t new_svg;
reg_buf->raw_collect (svg_regnum, &new_svg);
/* Did the streaming vector length change? */
bool svg_changed = new_svg != old_svg;
/* First store the streaming vector length to the thread. This is done
first to ensure the ptrace buffers read from the kernel are the correct
size. If the streaming vector length is the same as the current one, it
won't be updated. */
if (!aarch64_za_set_svq (tid, reg_buf, svg_regnum))
error (_("Unable to set svg register"));
bool has_za_state = aarch64_has_za_state (tid);
size_t za_bytes = sve_vl_from_vg (old_svg) * sve_vl_from_vg (old_svg);
gdb::byte_vector za_zeroed (za_bytes, 0);
/* If the streaming vector length changed, zero out the contents of ZA in
the register cache. Otherwise, we will need to update the ZA contents
in the thread with the ZA contents from the register cache, and they will
differ in size. */
if (svg_changed)
reg_buf->raw_supply_part_zeroed (za_regnum, 0, za_bytes);
/* When we update svg, we don't automatically initialize the ZA buffer. If
we have no ZA state and the ZA register contents in the register cache are
zero, just return and leave the ZA register cache contents as zero. */
if (!has_za_state && reg_buf->raw_compare (za_regnum, za_zeroed.data (), 0))
{
/* No ZA state in the thread or in the register cache. This was likely
just an adjustment of the streaming vector length. Let this fall
through and update svcr and svg in the register cache. */
}
else
{
/* If there is no ZA state but the register cache contains ZA data, we
need to initialize the ZA data through ptrace. First we initialize
all the bytes of ZA to zero. */
if (!has_za_state
&& !reg_buf->raw_compare (za_regnum, za_zeroed.data (), 0))
aarch64_initialize_za_regset (tid);
/* From this point onwards, it is assumed we have a ZA payload in
the NT_ARM_ZA register set for this thread, and we need to update
such state based on the contents of the register cache. */
/* Fetch the current ZA state from the thread. */
gdb::byte_vector za_state = aarch64_fetch_za_regset (tid);
gdb_byte *base = za_state.data ();
struct user_za_header *za_header = (struct user_za_header *) base;
uint64_t svq = sve_vq_from_vl (za_header->vl);
/* Sanity check the data in the header. */
if (!sve_vl_valid (za_header->vl)
|| ZA_PT_SIZE (svq) != za_header->size)
error (_("Invalid vector length or payload size when reading ZA."));
/* Overwrite the ZA state contained in the thread with the ZA state from
the register cache. */
if (REG_VALID == reg_buf->get_register_status (za_regnum))
reg_buf->raw_collect (za_regnum, base + ZA_PT_ZA_OFFSET);
/* Write back the ZA state to the thread's NT_ARM_ZA register set. */
aarch64_store_za_regset (tid, za_state);
}
/* Update svcr and svg accordingly. */
uint64_t svcr_value = 0;
svcr_value |= aarch64_has_ssve_state (tid)? SVCR_SM_BIT : 0;
svcr_value |= aarch64_has_za_state (tid)? SVCR_ZA_BIT : 0;
reg_buf->raw_supply (svcr_regnum, &svcr_value);
/* At this point we have written the data contained in the register cache to
the thread's NT_ARM_ZA register set. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_zt_regs_copy_to_reg_buf (int tid, struct reg_buffer_common *reg_buf,
int zt_regnum)
{
/* If we have ZA state, read the ZT state. Otherwise, make the contents of
ZT in the register cache all zeroes. This is how we present the ZT
state when it is not initialized (ZA not active). */
if (aarch64_has_za_state (tid))
{
/* Fetch the current ZT state from the thread. */
gdb::byte_vector zt_state = aarch64_fetch_zt_regset (tid);
/* Sanity check. */
gdb_assert (!zt_state.empty ());
/* Copy the ZT data to the register buffer. */
reg_buf->raw_supply (zt_regnum, zt_state.data ());
}
else
{
/* Zero out ZT. */
reg_buf->raw_supply_part_zeroed (zt_regnum, 0, AARCH64_SME2_ZT0_SIZE);
}
/* The register buffer should now contain the updated copy of the NT_ARM_ZT
state. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_zt_regs_copy_from_reg_buf (int tid,
struct reg_buffer_common *reg_buf,
int zt_regnum)
{
/* Do we have a valid ZA state? */
bool valid_za = aarch64_has_za_state (tid);
/* Is the register buffer contents for ZT all zeroes? */
gdb::byte_vector zt_bytes (AARCH64_SME2_ZT0_SIZE, 0);
bool zt_is_all_zeroes
= reg_buf->raw_compare (zt_regnum, zt_bytes.data (), 0);
/* If ZA state is valid or if we have non-zero data for ZT in the register
buffer, we will invoke ptrace to write the ZT state. Otherwise we don't
have to do anything here. */
if (valid_za || !zt_is_all_zeroes)
{
if (!valid_za)
{
/* ZA state is not valid. That means we need to initialize the ZA
state prior to writing the ZT state. */
aarch64_initialize_za_regset (tid);
}
/* Extract the ZT data from the register buffer. */
reg_buf->raw_collect (zt_regnum, zt_bytes.data ());
/* Write the ZT data to thread TID. */
aarch64_store_zt_regset (tid, zt_bytes);
}
/* At this point we have (potentially) written the data contained in the
register cache to the thread's NT_ARM_ZT register set. */
}
|