1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
/* Prologue value handling for GDB.
Copyright (C) 2003-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "prologue-value.h"
#include "regcache.h"
/* Constructors. */
pv_t
pv_unknown (void)
{
pv_t v = { pvk_unknown, 0, 0 };
return v;
}
pv_t
pv_constant (CORE_ADDR k)
{
pv_t v;
v.kind = pvk_constant;
v.reg = -1; /* for debugging */
v.k = k;
return v;
}
pv_t
pv_register (int reg, CORE_ADDR k)
{
pv_t v;
v.kind = pvk_register;
v.reg = reg;
v.k = k;
return v;
}
/* Arithmetic operations. */
/* If one of *A and *B is a constant, and the other isn't, swap the
values as necessary to ensure that *B is the constant. This can
reduce the number of cases we need to analyze in the functions
below. */
static void
constant_last (pv_t *a, pv_t *b)
{
if (a->kind == pvk_constant
&& b->kind != pvk_constant)
{
pv_t temp = *a;
*a = *b;
*b = temp;
}
}
pv_t
pv_add (pv_t a, pv_t b)
{
constant_last (&a, &b);
/* We can add a constant to a register. */
if (a.kind == pvk_register
&& b.kind == pvk_constant)
return pv_register (a.reg, a.k + b.k);
/* We can add a constant to another constant. */
else if (a.kind == pvk_constant
&& b.kind == pvk_constant)
return pv_constant (a.k + b.k);
/* Anything else we don't know how to add. We don't have a
representation for, say, the sum of two registers, or a multiple
of a register's value (adding a register to itself). */
else
return pv_unknown ();
}
pv_t
pv_add_constant (pv_t v, CORE_ADDR k)
{
/* Rather than thinking of all the cases we can and can't handle,
we'll just let pv_add take care of that for us. */
return pv_add (v, pv_constant (k));
}
pv_t
pv_subtract (pv_t a, pv_t b)
{
/* This isn't quite the same as negating B and adding it to A, since
we don't have a representation for the negation of anything but a
constant. For example, we can't negate { pvk_register, R1, 10 },
but we do know that { pvk_register, R1, 10 } minus { pvk_register,
R1, 5 } is { pvk_constant, <ignored>, 5 }.
This means, for example, that we could subtract two stack
addresses; they're both relative to the original SP. Since the
frame pointer is set based on the SP, its value will be the
original SP plus some constant (probably zero), so we can use its
value just fine, too. */
constant_last (&a, &b);
/* We can subtract two constants. */
if (a.kind == pvk_constant
&& b.kind == pvk_constant)
return pv_constant (a.k - b.k);
/* We can subtract a constant from a register. */
else if (a.kind == pvk_register
&& b.kind == pvk_constant)
return pv_register (a.reg, a.k - b.k);
/* We can subtract a register from itself, yielding a constant. */
else if (a.kind == pvk_register
&& b.kind == pvk_register
&& a.reg == b.reg)
return pv_constant (a.k - b.k);
/* We don't know how to subtract anything else. */
else
return pv_unknown ();
}
pv_t
pv_logical_and (pv_t a, pv_t b)
{
constant_last (&a, &b);
/* We can 'and' two constants. */
if (a.kind == pvk_constant
&& b.kind == pvk_constant)
return pv_constant (a.k & b.k);
/* We can 'and' anything with the constant zero. */
else if (b.kind == pvk_constant
&& b.k == 0)
return pv_constant (0);
/* We can 'and' anything with ~0. */
else if (b.kind == pvk_constant
&& b.k == ~ (CORE_ADDR) 0)
return a;
/* We can 'and' a register with itself. */
else if (a.kind == pvk_register
&& b.kind == pvk_register
&& a.reg == b.reg
&& a.k == b.k)
return a;
/* Otherwise, we don't know. */
else
return pv_unknown ();
}
/* Examining prologue values. */
int
pv_is_identical (pv_t a, pv_t b)
{
if (a.kind != b.kind)
return 0;
switch (a.kind)
{
case pvk_unknown:
return 1;
case pvk_constant:
return (a.k == b.k);
case pvk_register:
return (a.reg == b.reg && a.k == b.k);
default:
gdb_assert_not_reached ("unexpected prologue value kind");
}
}
int
pv_is_constant (pv_t a)
{
return (a.kind == pvk_constant);
}
int
pv_is_register (pv_t a, int r)
{
return (a.kind == pvk_register
&& a.reg == r);
}
int
pv_is_register_k (pv_t a, int r, CORE_ADDR k)
{
return (a.kind == pvk_register
&& a.reg == r
&& a.k == k);
}
enum pv_boolean
pv_is_array_ref (pv_t addr, CORE_ADDR size,
pv_t array_addr, CORE_ADDR array_len,
CORE_ADDR elt_size,
int *i)
{
/* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
addr is *before* the start of the array, then this isn't going to
be negative... */
pv_t offset = pv_subtract (addr, array_addr);
if (offset.kind == pvk_constant)
{
/* This is a rather odd test. We want to know if the SIZE bytes
at ADDR don't overlap the array at all, so you'd expect it to
be an || expression: "if we're completely before || we're
completely after". But with unsigned arithmetic, things are
different: since it's a number circle, not a number line, the
right values for offset.k are actually one contiguous range. */
if (offset.k <= -size
&& offset.k >= array_len * elt_size)
return pv_definite_no;
else if (offset.k % elt_size != 0
|| size != elt_size)
return pv_maybe;
else
{
*i = offset.k / elt_size;
return pv_definite_yes;
}
}
else
return pv_maybe;
}
/* Areas. */
/* A particular value known to be stored in an area.
Entries form a ring, sorted by unsigned offset from the area's base
register's value. Since entries can straddle the wrap-around point,
unsigned offsets form a circle, not a number line, so the list
itself is structured the same way --- there is no inherent head.
The entry with the lowest offset simply follows the entry with the
highest offset. Entries may abut, but never overlap. The area's
'entry' pointer points to an arbitrary node in the ring. */
struct pv_area::area_entry
{
/* Links in the doubly-linked ring. */
struct area_entry *prev, *next;
/* Offset of this entry's address from the value of the base
register. */
CORE_ADDR offset;
/* The size of this entry. Note that an entry may wrap around from
the end of the address space to the beginning. */
CORE_ADDR size;
/* The value stored here. */
pv_t value;
};
/* See prologue-value.h. */
pv_area::pv_area (int base_reg, int addr_bit)
: m_base_reg (base_reg),
/* Remember that shift amounts equal to the type's width are
undefined. */
m_addr_mask (((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1),
m_entry (nullptr)
{
}
/* See prologue-value.h. */
void
pv_area::clear_entries ()
{
struct area_entry *e = m_entry;
if (e)
{
/* This needs to be a do-while loop, in order to actually
process the node being checked for in the terminating
condition. */
do
{
struct area_entry *next = e->next;
xfree (e);
e = next;
}
while (e != m_entry);
m_entry = 0;
}
}
pv_area::~pv_area ()
{
clear_entries ();
}
/* See prologue-value.h. */
bool
pv_area::store_would_trash (pv_t addr)
{
/* It may seem odd that pvk_constant appears here --- after all,
that's the case where we know the most about the address! But
pv_areas are always relative to a register, and we don't know the
value of the register, so we can't compare entry addresses to
constants. */
return (addr.kind == pvk_unknown
|| addr.kind == pvk_constant
|| (addr.kind == pvk_register && addr.reg != m_base_reg));
}
/* See prologue-value.h. */
struct pv_area::area_entry *
pv_area::find_entry (CORE_ADDR offset)
{
struct area_entry *e = m_entry;
if (! e)
return 0;
/* If the next entry would be better than the current one, then scan
forward. Since we use '<' in this loop, it always terminates.
Note that, even setting aside the addr_mask stuff, we must not
simplify this, in high school algebra fashion, to
(e->next->offset < e->offset), because of the way < interacts
with wrap-around. We have to subtract offset from both sides to
make sure both things we're comparing are on the same side of the
discontinuity. */
while (((e->next->offset - offset) & m_addr_mask)
< ((e->offset - offset) & m_addr_mask))
e = e->next;
/* If the previous entry would be better than the current one, then
scan backwards. */
while (((e->prev->offset - offset) & m_addr_mask)
< ((e->offset - offset) & m_addr_mask))
e = e->prev;
/* In case there's some locality to the searches, set the area's
pointer to the entry we've found. */
m_entry = e;
return e;
}
/* See prologue-value.h. */
int
pv_area::overlaps (struct area_entry *entry, CORE_ADDR offset, CORE_ADDR size)
{
/* Think carefully about wrap-around before simplifying this. */
return (((entry->offset - offset) & m_addr_mask) < size
|| ((offset - entry->offset) & m_addr_mask) < entry->size);
}
/* See prologue-value.h. */
void
pv_area::store (pv_t addr, CORE_ADDR size, pv_t value)
{
/* Remove any (potentially) overlapping entries. */
if (store_would_trash (addr))
clear_entries ();
else
{
CORE_ADDR offset = addr.k;
struct area_entry *e = find_entry (offset);
/* Delete all entries that we would overlap. */
while (e && overlaps (e, offset, size))
{
struct area_entry *next = (e->next == e) ? 0 : e->next;
e->prev->next = e->next;
e->next->prev = e->prev;
xfree (e);
e = next;
}
/* Move the area's pointer to the next remaining entry. This
will also zero the pointer if we've deleted all the entries. */
m_entry = e;
}
/* Now, there are no entries overlapping us, and m_entry is
either zero or pointing at the closest entry after us. We can
just insert ourselves before that.
But if we're storing an unknown value, don't bother --- that's
the default. */
if (value.kind == pvk_unknown)
return;
else
{
CORE_ADDR offset = addr.k;
struct area_entry *e = XNEW (struct area_entry);
e->offset = offset;
e->size = size;
e->value = value;
if (m_entry)
{
e->prev = m_entry->prev;
e->next = m_entry;
e->prev->next = e->next->prev = e;
}
else
{
e->prev = e->next = e;
m_entry = e;
}
}
}
/* See prologue-value.h. */
pv_t
pv_area::fetch (pv_t addr, CORE_ADDR size)
{
/* If we have no entries, or we can't decide how ADDR relates to the
entries we do have, then the value is unknown. */
if (! m_entry
|| store_would_trash (addr))
return pv_unknown ();
else
{
CORE_ADDR offset = addr.k;
struct area_entry *e = find_entry (offset);
/* If this entry exactly matches what we're looking for, then
we're set. Otherwise, say it's unknown. */
if (e->offset == offset && e->size == size)
return e->value;
else
return pv_unknown ();
}
}
/* See prologue-value.h. */
bool
pv_area::find_reg (struct gdbarch *gdbarch, int reg, CORE_ADDR *offset_p)
{
struct area_entry *e = m_entry;
if (e)
do
{
if (e->value.kind == pvk_register
&& e->value.reg == reg
&& e->value.k == 0
&& e->size == register_size (gdbarch, reg))
{
if (offset_p)
*offset_p = e->offset;
return true;
}
e = e->next;
}
while (e != m_entry);
return false;
}
/* See prologue-value.h. */
void
pv_area::scan (void (*func) (void *closure,
pv_t addr,
CORE_ADDR size,
pv_t value),
void *closure)
{
struct area_entry *e = m_entry;
pv_t addr;
addr.kind = pvk_register;
addr.reg = m_base_reg;
if (e)
do
{
addr.k = e->offset;
func (closure, addr, e->size, e->value);
e = e->next;
}
while (e != m_entry);
}
|