1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
/* Target-dependent code for the S12Z, for the GDB.
Copyright (C) 2018-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Much of this file is shamelessly copied from or1k-tdep.c and others. */
#include "arch-utils.h"
#include "dwarf2/frame.h"
#include "gdbsupport/errors.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "cli/cli-cmds.h"
#include "inferior.h"
#include "opcode/s12z.h"
#include "trad-frame.h"
#include "remote.h"
#include "opcodes/s12z-opc.h"
#include "gdbarch.h"
#include "disasm.h"
/* Two of the registers included in S12Z_N_REGISTERS are
the CCH and CCL "registers" which are just views into
the CCW register. */
#define N_PHYSICAL_REGISTERS (S12Z_N_REGISTERS - 2)
/* A permutation of all the physical registers. Indexing this array
with an integer from gdb's internal representation will return the
register enum. */
static const int reg_perm[N_PHYSICAL_REGISTERS] =
{
REG_D0,
REG_D1,
REG_D2,
REG_D3,
REG_D4,
REG_D5,
REG_D6,
REG_D7,
REG_X,
REG_Y,
REG_S,
REG_P,
REG_CCW
};
/* The inverse of the above permutation. Indexing this
array with a register enum (e.g. REG_D2) will return the register
number in gdb's internal representation. */
static const int inv_reg_perm[N_PHYSICAL_REGISTERS] =
{
2, 3, 4, 5, /* d2, d3, d4, d5 */
0, 1, /* d0, d1 */
6, 7, /* d6, d7 */
8, 9, 10, 11, 12 /* x, y, s, p, ccw */
};
/* Return the name of the register REGNUM. */
static const char *
s12z_register_name (struct gdbarch *gdbarch, int regnum)
{
/* Registers is declared in opcodes/s12z.h. */
return registers[reg_perm[regnum]].name;
}
static CORE_ADDR
s12z_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR start_pc = 0;
if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
{
CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
if (prologue_end != 0)
return prologue_end;
}
warning (_("%s Failed to find end of prologue PC = %08x"),
__FUNCTION__, (unsigned int) pc);
return pc;
}
static struct type *
s12z_register_type (struct gdbarch *gdbarch, int reg_nr)
{
switch (registers[reg_perm[reg_nr]].bytes)
{
case 1:
return builtin_type (gdbarch)->builtin_uint8;
case 2:
return builtin_type (gdbarch)->builtin_uint16;
case 3:
return builtin_type (gdbarch)->builtin_uint24;
case 4:
return builtin_type (gdbarch)->builtin_uint32;
default:
return builtin_type (gdbarch)->builtin_uint32;
}
return builtin_type (gdbarch)->builtin_int0;
}
static int
s12z_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
switch (num)
{
case 15: return REG_S;
case 7: return REG_X;
case 8: return REG_Y;
case 42: return REG_D0;
case 43: return REG_D1;
case 44: return REG_D2;
case 45: return REG_D3;
case 46: return REG_D4;
case 47: return REG_D5;
case 48: return REG_D6;
case 49: return REG_D7;
}
return -1;
}
/* Support functions for frame handling. */
/* A struct (based on mem_read_abstraction_base) to read memory
through the disassemble_info API. */
struct mem_read_abstraction
{
struct mem_read_abstraction_base base; /* The parent struct. */
bfd_vma memaddr; /* Where to read from. */
struct disassemble_info* info; /* The disassembler to use for reading. */
};
/* Advance the reader by one byte. */
static void
advance (struct mem_read_abstraction_base *b)
{
struct mem_read_abstraction *mra = (struct mem_read_abstraction *) b;
mra->memaddr++;
}
/* Return the current position of the reader. */
static bfd_vma
posn (struct mem_read_abstraction_base *b)
{
struct mem_read_abstraction *mra = (struct mem_read_abstraction *) b;
return mra->memaddr;
}
/* Read the N bytes at OFFSET using B. The bytes read are stored in BYTES.
It is the caller's responsibility to ensure that this is of at least N
in size. */
static int
abstract_read_memory (struct mem_read_abstraction_base *b,
int offset,
size_t n, bfd_byte *bytes)
{
struct mem_read_abstraction *mra = (struct mem_read_abstraction *) b;
int status =
(*mra->info->read_memory_func) (mra->memaddr + offset,
bytes, n, mra->info);
if (status != 0)
{
(*mra->info->memory_error_func) (status, mra->memaddr, mra->info);
return -1;
}
return 0;
}
/* Return the stack adjustment caused by a push or pull instruction. */
static int
push_pull_get_stack_adjustment (int n_operands,
struct operand *const *operands)
{
int stack_adjustment = 0;
gdb_assert (n_operands > 0);
if (operands[0]->cl == OPND_CL_REGISTER_ALL)
stack_adjustment = 26; /* All the regs are involved. */
else if (operands[0]->cl == OPND_CL_REGISTER_ALL16)
stack_adjustment = 4 * 2; /* All four 16 bit regs are involved. */
else
for (int i = 0; i < n_operands; ++i)
{
if (operands[i]->cl != OPND_CL_REGISTER)
continue; /* I don't think this can ever happen. */
const struct register_operand *op
= (const struct register_operand *) operands[i];
switch (op->reg)
{
case REG_X:
case REG_Y:
stack_adjustment += 3;
break;
case REG_D7:
case REG_D6:
stack_adjustment += 4;
break;
case REG_D2:
case REG_D3:
case REG_D4:
case REG_D5:
stack_adjustment += 2;
break;
case REG_D0:
case REG_D1:
case REG_CCL:
case REG_CCH:
stack_adjustment += 1;
break;
default:
gdb_assert_not_reached ("Invalid register in push/pull operation.");
break;
}
}
return stack_adjustment;
}
/* Initialize a prologue cache. */
static struct trad_frame_cache *
s12z_frame_cache (const frame_info_ptr &this_frame, void **prologue_cache)
{
struct trad_frame_cache *info;
CORE_ADDR this_sp;
CORE_ADDR this_sp_for_id;
CORE_ADDR start_addr;
CORE_ADDR end_addr;
/* Nothing to do if we already have this info. */
if (NULL != *prologue_cache)
return (struct trad_frame_cache *) *prologue_cache;
/* Get a new prologue cache and populate it with default values. */
info = trad_frame_cache_zalloc (this_frame);
*prologue_cache = info;
/* Find the start address of this function (which is a normal frame, even
if the next frame is the sentinel frame) and the end of its prologue. */
CORE_ADDR this_pc = get_frame_pc (this_frame);
struct gdbarch *gdbarch = get_frame_arch (this_frame);
find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
/* Get the stack pointer if we have one (if there's no process executing
yet we won't have a frame. */
this_sp = (NULL == this_frame) ? 0 :
get_frame_register_unsigned (this_frame, REG_S);
/* Return early if GDB couldn't find the function. */
if (start_addr == 0)
{
warning (_("Couldn't find function including address %s SP is %s"),
paddress (gdbarch, this_pc),
paddress (gdbarch, this_sp));
/* JPB: 28-Apr-11. This is a temporary patch, to get round GDB
crashing right at the beginning. Build the frame ID as best we
can. */
trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
return info;
}
/* The default frame base of this frame (for ID purposes only - frame
base is an overloaded term) is its stack pointer. For now we use the
value of the SP register in this frame. However if the PC is in the
prologue of this frame, before the SP has been set up, then the value
will actually be that of the prev frame, and we'll need to adjust it
later. */
trad_frame_set_this_base (info, this_sp);
this_sp_for_id = this_sp;
/* We should only examine code that is in the prologue. This is all code
up to (but not including) end_addr. We should only populate the cache
while the address is up to (but not including) the PC or end_addr,
whichever is first. */
end_addr = s12z_skip_prologue (gdbarch, start_addr);
/* All the following analysis only occurs if we are in the prologue and
have executed the code. Check we have a sane prologue size, and if
zero we are frameless and can give up here. */
if (end_addr < start_addr)
error (_("end addr %s is less than start addr %s"),
paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));
CORE_ADDR addr = start_addr; /* Where we have got to? */
int frame_size = 0;
int saved_frame_size = 0;
struct gdb_non_printing_memory_disassembler dis (gdbarch);
struct mem_read_abstraction mra;
mra.base.read = (int (*)(mem_read_abstraction_base*,
int, size_t, bfd_byte*)) abstract_read_memory;
mra.base.advance = advance ;
mra.base.posn = posn;
mra.info = dis.disasm_info ();
while (this_pc > addr)
{
enum optr optr = OP_INVALID;
short osize;
int n_operands = 0;
struct operand *operands[6];
mra.memaddr = addr;
int n_bytes =
decode_s12z (&optr, &osize, &n_operands, operands,
(mem_read_abstraction_base *) &mra);
switch (optr)
{
case OP_tbNE:
case OP_tbPL:
case OP_tbMI:
case OP_tbGT:
case OP_tbLE:
case OP_dbNE:
case OP_dbEQ:
case OP_dbPL:
case OP_dbMI:
case OP_dbGT:
case OP_dbLE:
/* Conditional Branches. If any of these are encountered, then
it is likely that a RTS will terminate it. So we need to save
the frame size so it can be restored. */
saved_frame_size = frame_size;
break;
case OP_rts:
/* Restore the frame size from a previously saved value. */
frame_size = saved_frame_size;
break;
case OP_push:
frame_size += push_pull_get_stack_adjustment (n_operands, operands);
break;
case OP_pull:
frame_size -= push_pull_get_stack_adjustment (n_operands, operands);
break;
case OP_lea:
if (operands[0]->cl == OPND_CL_REGISTER)
{
int reg = ((struct register_operand *) (operands[0]))->reg;
if ((reg == REG_S) && (operands[1]->cl == OPND_CL_MEMORY))
{
const struct memory_operand *mo
= (const struct memory_operand * ) operands[1];
if (mo->n_regs == 1 && !mo->indirect
&& mo->regs[0] == REG_S
&& mo->mutation == OPND_RM_NONE)
{
/* LEA S, (xxx, S) -- Decrement the stack. This is
almost certainly the start of a frame. */
int simm = (signed char) mo->base_offset;
frame_size -= simm;
}
}
}
break;
default:
break;
}
addr += n_bytes;
for (int o = 0; o < n_operands; ++o)
free (operands[o]);
}
/* If the PC has not actually got to this point, then the frame
base will be wrong, and we adjust it. */
if (this_pc < addr)
{
/* Only do if executing. */
if (0 != this_sp)
{
this_sp_for_id = this_sp - frame_size;
trad_frame_set_this_base (info, this_sp_for_id);
}
trad_frame_set_reg_value (info, REG_S, this_sp + 3);
trad_frame_set_reg_addr (info, REG_P, this_sp);
}
else
{
gdb_assert (this_sp == this_sp_for_id);
/* The stack pointer of the prev frame is frame_size greater
than the stack pointer of this frame plus one address
size (caused by the JSR or BSR). */
trad_frame_set_reg_value (info, REG_S,
this_sp + frame_size + 3);
trad_frame_set_reg_addr (info, REG_P, this_sp + frame_size);
}
/* Build the frame ID. */
trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
return info;
}
/* Implement the this_id function for the stub unwinder. */
static void
s12z_frame_this_id (const frame_info_ptr &this_frame,
void **prologue_cache, struct frame_id *this_id)
{
struct trad_frame_cache *info = s12z_frame_cache (this_frame,
prologue_cache);
trad_frame_get_id (info, this_id);
}
/* Implement the prev_register function for the stub unwinder. */
static struct value *
s12z_frame_prev_register (const frame_info_ptr &this_frame,
void **prologue_cache, int regnum)
{
struct trad_frame_cache *info = s12z_frame_cache (this_frame,
prologue_cache);
return trad_frame_get_register (info, this_frame, regnum);
}
/* Data structures for the normal prologue-analysis-based unwinder. */
static const struct frame_unwind s12z_frame_unwind = {
"s12z prologue",
NORMAL_FRAME,
default_frame_unwind_stop_reason,
s12z_frame_this_id,
s12z_frame_prev_register,
NULL,
default_frame_sniffer,
NULL,
};
constexpr gdb_byte s12z_break_insn[] = {0x00};
typedef BP_MANIPULATION (s12z_break_insn) s12z_breakpoint;
struct s12z_gdbarch_tdep : gdbarch_tdep_base
{
};
/* A vector of human readable characters representing the
bits in the CCW register. Unused bits are represented as '-'.
Lowest significant bit comes first. */
static const char ccw_bits[] =
{
'C', /* Carry */
'V', /* Two's Complement Overflow */
'Z', /* Zero */
'N', /* Negative */
'I', /* Interrupt */
'-',
'X', /* Non-Maskable Interrupt */
'S', /* STOP Disable */
'0', /* Interrupt priority level */
'0', /* ditto */
'0', /* ditto */
'-',
'-',
'-',
'-',
'U' /* User/Supervisor State. */
};
/* Print a human readable representation of the CCW register.
For example: "u----000SX-Inzvc" corresponds to the value
0xD0. */
static void
s12z_print_ccw_info (struct gdbarch *gdbarch,
struct ui_file *file,
const frame_info_ptr &frame,
int reg)
{
value *v = value_of_register (reg, get_next_frame_sentinel_okay (frame));
const char *name = gdbarch_register_name (gdbarch, reg);
uint32_t ccw = value_as_long (v);
gdb_puts (name, file);
size_t len = strlen (name);
const int stop_1 = 15;
const int stop_2 = 17;
for (int i = 0; i < stop_1 - len; ++i)
gdb_putc (' ', file);
gdb_printf (file, "0x%04x", ccw);
for (int i = 0; i < stop_2 - len; ++i)
gdb_putc (' ', file);
for (int b = 15; b >= 0; --b)
{
if (ccw & (0x1u << b))
{
if (ccw_bits[b] == 0)
gdb_putc ('1', file);
else
gdb_putc (ccw_bits[b], file);
}
else
gdb_putc (tolower (ccw_bits[b]), file);
}
gdb_putc ('\n', file);
}
static void
s12z_print_registers_info (struct gdbarch *gdbarch,
struct ui_file *file,
const frame_info_ptr &frame,
int regnum, int print_all)
{
const int numregs = (gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch));
if (regnum == -1)
{
for (int reg = 0; reg < numregs; reg++)
{
if (REG_CCW == reg_perm[reg])
{
s12z_print_ccw_info (gdbarch, file, frame, reg);
continue;
}
default_print_registers_info (gdbarch, file, frame, reg, print_all);
}
}
else if (REG_CCW == reg_perm[regnum])
s12z_print_ccw_info (gdbarch, file, frame, regnum);
else
default_print_registers_info (gdbarch, file, frame, regnum, print_all);
}
static void
s12z_extract_return_value (struct type *type, struct regcache *regcache,
void *valbuf)
{
int reg = -1;
switch (type->length ())
{
case 0: /* Nothing to do */
return;
case 1:
reg = REG_D0;
break;
case 2:
reg = REG_D2;
break;
case 3:
reg = REG_X;
break;
case 4:
reg = REG_D6;
break;
default:
error (_("bad size for return value"));
return;
}
regcache->cooked_read (inv_reg_perm[reg], (gdb_byte *) valbuf);
}
static enum return_value_convention
s12z_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if (type->code () == TYPE_CODE_STRUCT
|| type->code () == TYPE_CODE_UNION
|| type->code () == TYPE_CODE_ARRAY
|| type->length () > 4)
return RETURN_VALUE_STRUCT_CONVENTION;
if (readbuf)
s12z_extract_return_value (type, regcache, readbuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
static void
show_bdccsr_command (const char *args, int from_tty)
{
struct string_file output;
target_rcmd ("bdccsr", &output);
gdb_printf ("The current BDCCSR value is %s\n", output.string().c_str());
}
static struct gdbarch *
s12z_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
gdbarch *gdbarch
= gdbarch_alloc (&info, gdbarch_tdep_up (new s12z_gdbarch_tdep));
add_cmd ("bdccsr", class_support, show_bdccsr_command,
_("Show the current value of the microcontroller's BDCCSR."),
&maintenanceinfolist);
/* Target data types. */
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 16);
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 24);
set_gdbarch_addr_bit (gdbarch, 24);
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_ps_regnum (gdbarch, REG_CCW);
set_gdbarch_pc_regnum (gdbarch, REG_P);
set_gdbarch_sp_regnum (gdbarch, REG_S);
set_gdbarch_print_registers_info (gdbarch, s12z_print_registers_info);
set_gdbarch_breakpoint_kind_from_pc (gdbarch,
s12z_breakpoint::kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch,
s12z_breakpoint::bp_from_kind);
set_gdbarch_num_regs (gdbarch, N_PHYSICAL_REGISTERS);
set_gdbarch_register_name (gdbarch, s12z_register_name);
set_gdbarch_skip_prologue (gdbarch, s12z_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s12z_dwarf_reg_to_regnum);
set_gdbarch_register_type (gdbarch, s12z_register_type);
frame_unwind_append_unwinder (gdbarch, &s12z_frame_unwind);
/* Currently, the only known producer for this architecture, produces buggy
dwarf CFI. So don't append a dwarf unwinder until the situation is
better understood. */
set_gdbarch_return_value (gdbarch, s12z_return_value);
return gdbarch;
}
void _initialize_s12z_tdep ();
void
_initialize_s12z_tdep ()
{
gdbarch_register (bfd_arch_s12z, s12z_gdbarch_init, NULL);
}
|