| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 
 | # Copyright (C) 2014-2024 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
# Test that GDB in non-stop mode gives roughly equal priority to
# events of all threads.
standard_testfile
set executable ${testfile}
require {!target_info exists gdb,nosignals}
set options { "additional_flags=-DTIMEOUT=$timeout" debug pthreads }
if {[prepare_for_testing "failed to prepare" $testfile $srcfile $options] == -1} {
    return -1
}
gdb_test_no_output "set non-stop on"
if ![runto_main] {
    return -1
}
# We want "handle print", to make sure the target backend reports the
# signal to the run control core.
gdb_test "handle SIGUSR1 print nostop pass" ""
# Get current value of VAR from the inferior.  TEST is used as test
# message.
proc get_value {var test} {
    global expect_out
    global gdb_prompt
    global decimal
    set value -1
    gdb_test_multiple "print $var" "$test" {
	-re ".*= ($decimal).*\r\n$gdb_prompt $" {
	    set value $expect_out(1,string)
	    pass "$test"
        }
    }
    return ${value}
}
set NUM_THREADS [get_value "num_threads" "get num_threads"]
# Account for the main thread.
incr NUM_THREADS
# Probe for displaced stepping support.  We're stopped at the main
# breakpoint.  If displaced stepping is supported, we should see
# related debug output.
set displaced_stepping_enabled 0
set msg "check displaced-stepping"
gdb_test_no_output "set debug displaced 1"
gdb_test_multiple "next" $msg {
    -re "prepared successfully .*$gdb_prompt $" {
	set displaced_stepping_enabled 1
    }
    -re ".*$gdb_prompt $" {
    }
}
gdb_test_no_output "set debug displaced 0"
# Run threads to their start positions.  This prepares for a new test
# sequence.
proc restart {} {
    global gdb_prompt
    global NUM_THREADS
    delete_breakpoints
    gdb_test "print got_sig = 0" " = 0"
    gdb_breakpoint [gdb_get_line_number "set thread breakpoint here"]
    gdb_breakpoint [gdb_get_line_number "set kill breakpoint here"]
    set test "continue -a&"
    gdb_test_multiple $test $test {
	-re "Continuing.\r\n$gdb_prompt " {
	    pass $test
	}
    }
    for {set i 1} { $i <= $NUM_THREADS } { incr i } {
	set test "thread $i restarted"
	gdb_test_multiple "" $test {
	    -re "breakpoint here" {
		# The prompt was already matched in the "continue &"
		# test above.  We're now consuming asynchronous output
		# that comes after the prompt.
		pass $test
	    }
	}
    }
    delete_breakpoints
}
# Run command and wait for the prompt, without end anchor.
proc gdb_test_no_anchor {cmd} {
    global gdb_prompt
    gdb_test_multiple $cmd $cmd {
	-re "$gdb_prompt " {
	    pass $cmd
	}
    }
}
# Enable/disable debugging.
proc enable_debug {enable} {
    # Comment out to debug problems with the test.
    return
    gdb_test_no_anchor "set debug infrun $enable"
    gdb_test_no_anchor "set debug displaced $enable"
}
# The test proper.  SIGNAL_THREAD is the thread that has been elected
# to receive the SIGUSR1 signal.
proc test {signal_thread} {
    global gdb_prompt
    global NUM_THREADS
    global timeout
    global displaced_stepping_enabled
    with_test_prefix "signal_thread=$signal_thread" {
	restart
	# Set all threads stepping the infinite loop line in parallel.
	for {set i 2} { $i <= $NUM_THREADS } { incr i } {
	    gdb_test "thread $i" \
		"child_function.*set thread breakpoint here.*" \
		"switch to thread $i to step it"
	    if {$i == $signal_thread} {
		gdb_test "print signal_thread = self" " = .*"
	    }
	    gdb_test "step&" "" "set $i thread stepping"
	}
	gdb_test "thread 1" "Switching to .*" \
	    "switch to the main thread to queue signal"
	# Let the main thread queue the signal.
	gdb_breakpoint "loop_broke"
	enable_debug 1
	# On software single-step targets that don't support displaced
	# stepping, threads keep hitting each others' single-step
	# breakpoints, and then GDB needs to pause all threads to step
	# past those.  The end result is that progress in the main
	# thread will be slower and it may take a bit longer for the
	# signal to be queued; bump the timeout.
	if {!$displaced_stepping_enabled && ![can_hardware_single_step]} {
	    # The more threads we have, the longer it takes.
	    set factor $NUM_THREADS
	} else {
	    set factor 1
	}
	with_timeout_factor $factor {
	    gdb_test "print timeout = $timeout" " = $timeout" \
		"set timeout in the inferior"
	    set saw_continuing 0
	    set test "continue &"
	    gdb_test_multiple $test $test {
		-re "Continuing.\r\n" {
		    set saw_continuing 1
		    exp_continue
		}
		-re "$gdb_prompt " {
		    gdb_assert $saw_continuing $test
		}
		-re "infrun:" {
		    exp_continue
		}
	    }
	    set gotit 0
	    # Wait for all threads to finish their steps, and for the main
	    # thread to hit the breakpoint.
	    for {set i 1} { $i <= $NUM_THREADS } { incr i } {
		set test "thread $i broke out of loop"
		set gotit 0
		gdb_test_multiple "" $test {
		    -re "loop_broke" {
			# The prompt was already matched in the "continue
			# &" test above.  We're now consuming asynchronous
			# output that comes after the prompt.
			set gotit 1
			pass $test
		    }
		    -re "infrun:" {
			exp_continue
		    }
		}
		if {!$gotit} {
		    break
		}
	    }
	}
	enable_debug 0
	# It's helpful to have this in the log if the test ever
	# happens to fail.
	gdb_test "info threads"
	return $gotit
    }
}
# The kernel/debug API may always walk its thread list looking for the
# first with an event, resulting in giving priority to e.g. the thread
# with lowest kernel thread ID.  So test once with the signal pending
# in each thread, except the main thread.
for {set i 2} { $i <= $NUM_THREADS } { incr i } {
    if {![test $i]} {
	# Avoid cascading timeouts, and bail out.
	return
    }
}
 |