1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* Main simulator entry points specific to Lattice Mico32.
Contributed by Jon Beniston <jon@beniston.com>
Copyright (C) 2009-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This must come before any other includes. */
#include "defs.h"
#include <stdlib.h>
#include "sim/callback.h"
#include "sim-main.h"
#include "sim-options.h"
#include "libiberty.h"
#include "bfd.h"
/* Cover function of sim_state_free to free the cpu buffers as well. */
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
/* Find memory range used by program. */
static unsigned long
find_base (bfd *prog_bfd)
{
int found;
unsigned long base = ~(0UL);
asection *s;
found = 0;
for (s = prog_bfd->sections; s; s = s->next)
{
if ((strcmp (bfd_section_name (s), ".boot") == 0)
|| (strcmp (bfd_section_name (s), ".text") == 0)
|| (strcmp (bfd_section_name (s), ".data") == 0)
|| (strcmp (bfd_section_name (s), ".bss") == 0))
{
if (!found)
{
base = bfd_section_vma (s);
found = 1;
}
else
base = bfd_section_vma (s) < base ? bfd_section_vma (s) : base;
}
}
return base & ~(0xffffUL);
}
static unsigned long
find_limit (SIM_DESC sd)
{
bfd_vma addr;
addr = trace_sym_value (sd, "_fstack");
if (addr == -1)
return 0;
return (addr + 65536) & ~(0xffffUL);
}
extern const SIM_MACH * const lm32_sim_machs[];
/* Create an instance of the simulator. */
SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *callback, struct bfd *abfd,
char * const *argv)
{
SIM_DESC sd = sim_state_alloc (kind, callback);
char c;
int i;
unsigned long base, limit;
/* Set default options before parsing user options. */
STATE_MACHS (sd) = lm32_sim_machs;
STATE_MODEL_NAME (sd) = "lm32";
current_alignment = STRICT_ALIGNMENT;
current_target_byte_order = BFD_ENDIAN_BIG;
/* The cpu data is kept in a separately allocated chunk of memory. */
if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct lm32_sim_cpu))
!= SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* The parser will print an error message for us, so we silently return. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
#if 0
/* Allocate a handler for I/O devices
if no memory for that range has been allocated by the user.
All are allocated in one chunk to keep things from being
unnecessarily complicated. */
if (sim_core_read_buffer (sd, NULL, read_map, &c, LM32_DEVICE_ADDR, 1) == 0)
sim_core_attach (sd, NULL, 0 /*level */ ,
access_read_write, 0 /*space ??? */ ,
LM32_DEVICE_ADDR, LM32_DEVICE_LEN /*nr_bytes */ ,
0 /*modulo */ ,
&lm32_devices, NULL /*buffer */ );
#endif
/* check for/establish the reference program image. */
if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Check to see if memory exists at programs start address. */
if (sim_core_read_buffer (sd, NULL, read_map, &c, STATE_START_ADDR (sd), 1)
== 0)
{
if (STATE_PROG_BFD (sd) != NULL)
{
/* It doesn't, so we should try to allocate enough memory to hold program. */
base = find_base (STATE_PROG_BFD (sd));
limit = find_limit (sd);
if (limit == 0)
{
sim_io_eprintf (sd,
"Failed to find symbol _fstack in program. You must specify memory regions with --memory-region.\n");
free_state (sd);
return 0;
}
/*sim_io_printf (sd, "Allocating memory at 0x%lx size 0x%lx\n", base, limit); */
sim_do_commandf (sd, "memory region 0x%lx,0x%lx", base, limit);
}
}
/* Establish any remaining configuration options. */
if (sim_config (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Open a copy of the cpu descriptor table. */
{
CGEN_CPU_DESC cd =
lm32_cgen_cpu_open_1 (STATE_ARCHITECTURE (sd)->printable_name,
CGEN_ENDIAN_BIG);
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
SIM_CPU *cpu = STATE_CPU (sd, i);
CPU_CPU_DESC (cpu) = cd;
CPU_DISASSEMBLER (cpu) = sim_cgen_disassemble_insn;
}
lm32_cgen_init_dis (cd);
}
return sd;
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char * const *argv,
char * const *env)
{
SIM_CPU *current_cpu = STATE_CPU (sd, 0);
host_callback *cb = STATE_CALLBACK (sd);
bfd_vma addr;
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
else
addr = 0;
sim_pc_set (current_cpu, addr);
/* Standalone mode (i.e. `run`) will take care of the argv for us in
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
with `gdb`), we need to handle it because the user can change the
argv on the fly via gdb's 'run'. */
if (STATE_PROG_ARGV (sd) != argv)
{
freeargv (STATE_PROG_ARGV (sd));
STATE_PROG_ARGV (sd) = dupargv (argv);
}
if (STATE_PROG_ENVP (sd) != env)
{
freeargv (STATE_PROG_ENVP (sd));
STATE_PROG_ENVP (sd) = dupargv (env);
}
cb->argv = STATE_PROG_ARGV (sd);
cb->envp = STATE_PROG_ENVP (sd);
return SIM_RC_OK;
}
|