| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 
 | # Tests of overloaded operators resolution.
# Copyright 1998-2016 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
# written by Elena Zannoni (ezannoni@cygnus.com)
#
# source file "userdef.cc"
#
if { [skip_stl_tests] } { continue }
# On SPU this test fails because the executable exceeds local storage size.
if { [istarget "spu*-*-*"] } {
        return 0
}
standard_testfile .cc
if {[prepare_for_testing $testfile.exp $testfile $srcfile {debug c++}]} {
    return -1
}
if ![runto_main] then {
    perror "couldn't run to breakpoint"
    continue
}
gdb_test "break marker1" \
    "Breakpoint .*${srcfile}.*" 
gdb_test "cont" \
    "Break.* marker1(\\(\\)|) \\(\\) at .*:$decimal.*" \
    "continue to marker1"
gdb_test "up" " in main .*" "up from marker1"
gdb_test "print one + two" "\\\$\[0-9\]* = {x = 6, y = 8}"
# If GDB fails to restore the selected frame properly after the
# inferior function call above (see GDB PR 1155 for an explanation of
# why this might happen), all the subsequent tests will fail.  We
# should detect report that failure, but let the marker call finish so
# that the rest of the tests can run undisturbed.
gdb_test_multiple "frame" "re-selected 'main' frame after inferior call" {
    -re "#0  marker1.*$gdb_prompt $" {
        setup_kfail "gdb/1155" s390-*-linux-gnu
        fail "re-selected 'main' frame after inferior call"
        gdb_test "finish" ".*main.*at .*userdef.cc:.*// marker1-returns-here.*" \
                "finish call to marker1"
    }
    -re "#1  ($hex in )?main.*$gdb_prompt $" {
        pass "re-selected 'main' frame after inferior call"
    }
}
        
gdb_test "print one - two" "\\\$\[0-9\]* = {x = -2, y = -2}"
gdb_test "print one * two" "\\\$\[0-9\]* = {x = 8, y = 15}"
gdb_test "print one / two" "\\\$\[0-9\]* = {x = 0, y = 0}"
gdb_test "print one % two" "\\\$\[0-9\]* = {x = 2, y = 3}"
gdb_test "print one && two" "\\\$\[0-9\]* = 1\[\r\n\]"
gdb_test "print one || two" "\\\$\[0-9\]* = 1\[\r\n\]"
gdb_test "print one & two" "\\\$\[0-9\]* = {x = 0, y = 1}"
gdb_test "print one | two" "\\\$\[0-9\]* = {x = 6, y = 7}"
gdb_test "print one ^ two" "\\\$\[0-9\]* = {x = 6, y = 6}"
gdb_test "print one < two" "\\\$\[0-9\]* = 1\[\r\n\]"
gdb_test "print one <= two" "\\\$\[0-9\]* = 1\[\r\n\]"
gdb_test "print one > two" "\\\$\[0-9\]* = 0\[\r\n\]"
gdb_test "print one >= two" "\\\$\[0-9\]* = 0\[\r\n\]"
gdb_test "print one == two" "\\\$\[0-9\]* = 0\[\r\n\]"
gdb_test "print one.operator== (two)" "\\\$\[0-9\]* = 0\[\r\n\]"
gdb_test "print one != two" "\\\$\[0-9\]* = 1\[\r\n\]"
# Can't really check the output of this one without knowing
# target integer width.  Make sure we don't try to call
# the iostreams operator instead, though.
gdb_test "print one << 31" "\\\$\[0-9\]* = {x = -?\[0-9\]*, y = -?\[0-9\]*}"
# Should be fine even on < 32-bit targets.
gdb_test "print one >> 31" "\\\$\[0-9\]* = {x = 0, y = 0}"
gdb_test "print !one" "\\\$\[0-9\]* = 0\[\r\n\]"
# Assumes 2's complement.  So does everything...
gdb_test "print +one" "\\\$\[0-9\]* = {x = 2, y = 3}"
gdb_test "print ~one" "\\\$\[0-9\]* = {x = -3, y = -4}"
gdb_test "print -one" "\\\$\[0-9\]* = {x = -2, y = -3}"
gdb_test "print one++" "\\\$\[0-9\]* = {x = 2, y = 4}"
gdb_test "print ++one" "\\\$\[0-9\]* = {x = 3, y = 4}"
gdb_test "print one--" "\\\$\[0-9\]* = {x = 3, y = 3}"
gdb_test "print --one" "\\\$\[0-9\]* = {x = 2, y = 3}"
gdb_test "print one += 7" "\\\$\[0-9\]* = {x = 9, y = 10}"
gdb_test "print two = one" "\\\$\[0-9\]* = {x = 9, y = 10}"
# Check that GDB tolerates whitespace in operator names.
gdb_test "break A2::operator+" ".*Breakpoint $decimal at.*"
gdb_test "break A2::operator +" ".*Breakpoint $decimal at.*"
# Check that GDB handles operator* correctly.
gdb_test "print c" "\\\$\[0-9\]* = {m = {z = .*}}"
gdb_test "print *c" "\\\$\[0-9\]* = \\(Member &\\) @$hex: {z = .*}"
gdb_test "print &*c" "\\\$\[0-9\]* = \\(Member \\*\\) $hex"
gdb_test "ptype &*c" "type = (struct|class) Member {(\[\r\n \]+public:)?\[\r\n \]+int z;\[\r\n\].*} \\*"
gdb_test "print operator== (mem1, mem2)" " = false"
gdb_test "print operator== (mem1, mem1)" " = true"
gdb_exit
return 0
 |