1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
|
/* YACC parser for Fortran expressions, for GDB.
Copyright (C) 1986-2014 Free Software Foundation, Inc.
Contributed by Motorola. Adapted from the C parser by Farooq Butt
(fmbutt@engage.sps.mot.com).
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This was blantantly ripped off the C expression parser, please
be aware of that as you look at its basic structure -FMB */
/* Parse a F77 expression from text in a string,
and return the result as a struct expression pointer.
That structure contains arithmetic operations in reverse polish,
with constants represented by operations that are followed by special data.
See expression.h for the details of the format.
What is important here is that it can be built up sequentially
during the process of parsing; the lower levels of the tree always
come first in the result.
Note that malloc's and realloc's in this file are transformed to
xmalloc and xrealloc respectively by the same sed command in the
makefile that remaps any other malloc/realloc inserted by the parser
generator. Doing this with #defines and trying to control the interaction
with include files (<malloc.h> and <stdlib.h> for example) just became
too messy, particularly when such includes can be inserted at random
times by the parser generator. */
%{
#include "defs.h"
#include <string.h>
#include "expression.h"
#include "value.h"
#include "parser-defs.h"
#include "language.h"
#include "f-lang.h"
#include "bfd.h" /* Required by objfiles.h. */
#include "symfile.h" /* Required by objfiles.h. */
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
#include "block.h"
#include <ctype.h>
#define parse_type builtin_type (parse_gdbarch)
#define parse_f_type builtin_f_type (parse_gdbarch)
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
as well as gratuitiously global symbol names, so we can have multiple
yacc generated parsers in gdb. Note that these are only the variables
produced by yacc. If other parser generators (bison, byacc, etc) produce
additional global names that conflict at link time, then those parser
generators need to be fixed instead of adding those names to this list. */
#define yymaxdepth f_maxdepth
#define yyparse f_parse
#define yylex f_lex
#define yyerror f_error
#define yylval f_lval
#define yychar f_char
#define yydebug f_debug
#define yypact f_pact
#define yyr1 f_r1
#define yyr2 f_r2
#define yydef f_def
#define yychk f_chk
#define yypgo f_pgo
#define yyact f_act
#define yyexca f_exca
#define yyerrflag f_errflag
#define yynerrs f_nerrs
#define yyps f_ps
#define yypv f_pv
#define yys f_s
#define yy_yys f_yys
#define yystate f_state
#define yytmp f_tmp
#define yyv f_v
#define yy_yyv f_yyv
#define yyval f_val
#define yylloc f_lloc
#define yyreds f_reds /* With YYDEBUG defined */
#define yytoks f_toks /* With YYDEBUG defined */
#define yyname f_name /* With YYDEBUG defined */
#define yyrule f_rule /* With YYDEBUG defined */
#define yylhs f_yylhs
#define yylen f_yylen
#define yydefred f_yydefred
#define yydgoto f_yydgoto
#define yysindex f_yysindex
#define yyrindex f_yyrindex
#define yygindex f_yygindex
#define yytable f_yytable
#define yycheck f_yycheck
#define yyss f_yyss
#define yysslim f_yysslim
#define yyssp f_yyssp
#define yystacksize f_yystacksize
#define yyvs f_yyvs
#define yyvsp f_yyvsp
#ifndef YYDEBUG
#define YYDEBUG 1 /* Default to yydebug support */
#endif
#define YYFPRINTF parser_fprintf
int yyparse (void);
static int yylex (void);
void yyerror (char *);
static void growbuf_by_size (int);
static int match_string_literal (void);
%}
/* Although the yacc "value" of an expression is not used,
since the result is stored in the structure being created,
other node types do have values. */
%union
{
LONGEST lval;
struct {
LONGEST val;
struct type *type;
} typed_val;
DOUBLEST dval;
struct symbol *sym;
struct type *tval;
struct stoken sval;
struct ttype tsym;
struct symtoken ssym;
int voidval;
struct block *bval;
enum exp_opcode opcode;
struct internalvar *ivar;
struct type **tvec;
int *ivec;
}
%{
/* YYSTYPE gets defined by %union */
static int parse_number (const char *, int, int, YYSTYPE *);
%}
%type <voidval> exp type_exp start variable
%type <tval> type typebase
%type <tvec> nonempty_typelist
/* %type <bval> block */
/* Fancy type parsing. */
%type <voidval> func_mod direct_abs_decl abs_decl
%type <tval> ptype
%token <typed_val> INT
%token <dval> FLOAT
/* Both NAME and TYPENAME tokens represent symbols in the input,
and both convey their data as strings.
But a TYPENAME is a string that happens to be defined as a typedef
or builtin type name (such as int or char)
and a NAME is any other symbol.
Contexts where this distinction is not important can use the
nonterminal "name", which matches either NAME or TYPENAME. */
%token <sval> STRING_LITERAL
%token <lval> BOOLEAN_LITERAL
%token <ssym> NAME
%token <tsym> TYPENAME
%type <sval> name
%type <ssym> name_not_typename
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
but which would parse as a valid number in the current input radix.
E.g. "c" when input_radix==16. Depending on the parse, it will be
turned into a name or into a number. */
%token <ssym> NAME_OR_INT
%token SIZEOF
%token ERROR
/* Special type cases, put in to allow the parser to distinguish different
legal basetypes. */
%token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
%token LOGICAL_S8_KEYWORD
%token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
%token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
%token BOOL_AND BOOL_OR BOOL_NOT
%token <lval> CHARACTER
%token <voidval> VARIABLE
%token <opcode> ASSIGN_MODIFY
%left ','
%left ABOVE_COMMA
%right '=' ASSIGN_MODIFY
%right '?'
%left BOOL_OR
%right BOOL_NOT
%left BOOL_AND
%left '|'
%left '^'
%left '&'
%left EQUAL NOTEQUAL
%left LESSTHAN GREATERTHAN LEQ GEQ
%left LSH RSH
%left '@'
%left '+' '-'
%left '*' '/'
%right STARSTAR
%right '%'
%right UNARY
%right '('
%%
start : exp
| type_exp
;
type_exp: type
{ write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type($1);
write_exp_elt_opcode(OP_TYPE); }
;
exp : '(' exp ')'
{ }
;
/* Expressions, not including the comma operator. */
exp : '*' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_IND); }
;
exp : '&' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_ADDR); }
;
exp : '-' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_NEG); }
;
exp : BOOL_NOT exp %prec UNARY
{ write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
;
exp : '~' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_COMPLEMENT); }
;
exp : SIZEOF exp %prec UNARY
{ write_exp_elt_opcode (UNOP_SIZEOF); }
;
/* No more explicit array operators, we treat everything in F77 as
a function call. The disambiguation as to whether we are
doing a subscript operation or a function call is done
later in eval.c. */
exp : exp '('
{ start_arglist (); }
arglist ')'
{ write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
write_exp_elt_longcst ((LONGEST) end_arglist ());
write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
;
arglist :
;
arglist : exp
{ arglist_len = 1; }
;
arglist : subrange
{ arglist_len = 1; }
;
arglist : arglist ',' exp %prec ABOVE_COMMA
{ arglist_len++; }
;
/* There are four sorts of subrange types in F90. */
subrange: exp ':' exp %prec ABOVE_COMMA
{ write_exp_elt_opcode (OP_F90_RANGE);
write_exp_elt_longcst (NONE_BOUND_DEFAULT);
write_exp_elt_opcode (OP_F90_RANGE); }
;
subrange: exp ':' %prec ABOVE_COMMA
{ write_exp_elt_opcode (OP_F90_RANGE);
write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
write_exp_elt_opcode (OP_F90_RANGE); }
;
subrange: ':' exp %prec ABOVE_COMMA
{ write_exp_elt_opcode (OP_F90_RANGE);
write_exp_elt_longcst (LOW_BOUND_DEFAULT);
write_exp_elt_opcode (OP_F90_RANGE); }
;
subrange: ':' %prec ABOVE_COMMA
{ write_exp_elt_opcode (OP_F90_RANGE);
write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
write_exp_elt_opcode (OP_F90_RANGE); }
;
complexnum: exp ',' exp
{ }
;
exp : '(' complexnum ')'
{ write_exp_elt_opcode(OP_COMPLEX);
write_exp_elt_type (parse_f_type->builtin_complex_s16);
write_exp_elt_opcode(OP_COMPLEX); }
;
exp : '(' type ')' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_CAST);
write_exp_elt_type ($2);
write_exp_elt_opcode (UNOP_CAST); }
;
exp : exp '%' name
{ write_exp_elt_opcode (STRUCTOP_STRUCT);
write_exp_string ($3);
write_exp_elt_opcode (STRUCTOP_STRUCT); }
;
/* Binary operators in order of decreasing precedence. */
exp : exp '@' exp
{ write_exp_elt_opcode (BINOP_REPEAT); }
;
exp : exp STARSTAR exp
{ write_exp_elt_opcode (BINOP_EXP); }
;
exp : exp '*' exp
{ write_exp_elt_opcode (BINOP_MUL); }
;
exp : exp '/' exp
{ write_exp_elt_opcode (BINOP_DIV); }
;
exp : exp '+' exp
{ write_exp_elt_opcode (BINOP_ADD); }
;
exp : exp '-' exp
{ write_exp_elt_opcode (BINOP_SUB); }
;
exp : exp LSH exp
{ write_exp_elt_opcode (BINOP_LSH); }
;
exp : exp RSH exp
{ write_exp_elt_opcode (BINOP_RSH); }
;
exp : exp EQUAL exp
{ write_exp_elt_opcode (BINOP_EQUAL); }
;
exp : exp NOTEQUAL exp
{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
;
exp : exp LEQ exp
{ write_exp_elt_opcode (BINOP_LEQ); }
;
exp : exp GEQ exp
{ write_exp_elt_opcode (BINOP_GEQ); }
;
exp : exp LESSTHAN exp
{ write_exp_elt_opcode (BINOP_LESS); }
;
exp : exp GREATERTHAN exp
{ write_exp_elt_opcode (BINOP_GTR); }
;
exp : exp '&' exp
{ write_exp_elt_opcode (BINOP_BITWISE_AND); }
;
exp : exp '^' exp
{ write_exp_elt_opcode (BINOP_BITWISE_XOR); }
;
exp : exp '|' exp
{ write_exp_elt_opcode (BINOP_BITWISE_IOR); }
;
exp : exp BOOL_AND exp
{ write_exp_elt_opcode (BINOP_LOGICAL_AND); }
;
exp : exp BOOL_OR exp
{ write_exp_elt_opcode (BINOP_LOGICAL_OR); }
;
exp : exp '=' exp
{ write_exp_elt_opcode (BINOP_ASSIGN); }
;
exp : exp ASSIGN_MODIFY exp
{ write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
write_exp_elt_opcode ($2);
write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
;
exp : INT
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type ($1.type);
write_exp_elt_longcst ((LONGEST)($1.val));
write_exp_elt_opcode (OP_LONG); }
;
exp : NAME_OR_INT
{ YYSTYPE val;
parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (val.typed_val.type);
write_exp_elt_longcst ((LONGEST)val.typed_val.val);
write_exp_elt_opcode (OP_LONG); }
;
exp : FLOAT
{ write_exp_elt_opcode (OP_DOUBLE);
write_exp_elt_type (parse_f_type->builtin_real_s8);
write_exp_elt_dblcst ($1);
write_exp_elt_opcode (OP_DOUBLE); }
;
exp : variable
;
exp : VARIABLE
;
exp : SIZEOF '(' type ')' %prec UNARY
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (parse_f_type->builtin_integer);
CHECK_TYPEDEF ($3);
write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
write_exp_elt_opcode (OP_LONG); }
;
exp : BOOLEAN_LITERAL
{ write_exp_elt_opcode (OP_BOOL);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_BOOL);
}
;
exp : STRING_LITERAL
{
write_exp_elt_opcode (OP_STRING);
write_exp_string ($1);
write_exp_elt_opcode (OP_STRING);
}
;
variable: name_not_typename
{ struct symbol *sym = $1.sym;
if (sym)
{
if (symbol_read_needs_frame (sym))
{
if (innermost_block == 0
|| contained_in (block_found,
innermost_block))
innermost_block = block_found;
}
write_exp_elt_opcode (OP_VAR_VALUE);
/* We want to use the selected frame, not
another more inner frame which happens to
be in the same block. */
write_exp_elt_block (NULL);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE);
break;
}
else
{
struct bound_minimal_symbol msymbol;
char *arg = copy_name ($1.stoken);
msymbol =
lookup_bound_minimal_symbol (arg);
if (msymbol.minsym != NULL)
write_exp_msymbol (msymbol);
else if (!have_full_symbols () && !have_partial_symbols ())
error (_("No symbol table is loaded. Use the \"file\" command."));
else
error (_("No symbol \"%s\" in current context."),
copy_name ($1.stoken));
}
}
;
type : ptype
;
ptype : typebase
| typebase abs_decl
{
/* This is where the interesting stuff happens. */
int done = 0;
int array_size;
struct type *follow_type = $1;
struct type *range_type;
while (!done)
switch (pop_type ())
{
case tp_end:
done = 1;
break;
case tp_pointer:
follow_type = lookup_pointer_type (follow_type);
break;
case tp_reference:
follow_type = lookup_reference_type (follow_type);
break;
case tp_array:
array_size = pop_type_int ();
if (array_size != -1)
{
range_type =
create_range_type ((struct type *) NULL,
parse_f_type->builtin_integer,
0, array_size - 1);
follow_type =
create_array_type ((struct type *) NULL,
follow_type, range_type);
}
else
follow_type = lookup_pointer_type (follow_type);
break;
case tp_function:
follow_type = lookup_function_type (follow_type);
break;
}
$$ = follow_type;
}
;
abs_decl: '*'
{ push_type (tp_pointer); $$ = 0; }
| '*' abs_decl
{ push_type (tp_pointer); $$ = $2; }
| '&'
{ push_type (tp_reference); $$ = 0; }
| '&' abs_decl
{ push_type (tp_reference); $$ = $2; }
| direct_abs_decl
;
direct_abs_decl: '(' abs_decl ')'
{ $$ = $2; }
| direct_abs_decl func_mod
{ push_type (tp_function); }
| func_mod
{ push_type (tp_function); }
;
func_mod: '(' ')'
{ $$ = 0; }
| '(' nonempty_typelist ')'
{ free ($2); $$ = 0; }
;
typebase /* Implements (approximately): (type-qualifier)* type-specifier */
: TYPENAME
{ $$ = $1.type; }
| INT_KEYWORD
{ $$ = parse_f_type->builtin_integer; }
| INT_S2_KEYWORD
{ $$ = parse_f_type->builtin_integer_s2; }
| CHARACTER
{ $$ = parse_f_type->builtin_character; }
| LOGICAL_S8_KEYWORD
{ $$ = parse_f_type->builtin_logical_s8; }
| LOGICAL_KEYWORD
{ $$ = parse_f_type->builtin_logical; }
| LOGICAL_S2_KEYWORD
{ $$ = parse_f_type->builtin_logical_s2; }
| LOGICAL_S1_KEYWORD
{ $$ = parse_f_type->builtin_logical_s1; }
| REAL_KEYWORD
{ $$ = parse_f_type->builtin_real; }
| REAL_S8_KEYWORD
{ $$ = parse_f_type->builtin_real_s8; }
| REAL_S16_KEYWORD
{ $$ = parse_f_type->builtin_real_s16; }
| COMPLEX_S8_KEYWORD
{ $$ = parse_f_type->builtin_complex_s8; }
| COMPLEX_S16_KEYWORD
{ $$ = parse_f_type->builtin_complex_s16; }
| COMPLEX_S32_KEYWORD
{ $$ = parse_f_type->builtin_complex_s32; }
;
nonempty_typelist
: type
{ $$ = (struct type **) malloc (sizeof (struct type *) * 2);
$<ivec>$[0] = 1; /* Number of types in vector */
$$[1] = $1;
}
| nonempty_typelist ',' type
{ int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
$$ = (struct type **) realloc ((char *) $1, len);
$$[$<ivec>$[0]] = $3;
}
;
name : NAME
{ $$ = $1.stoken; }
;
name_not_typename : NAME
/* These would be useful if name_not_typename was useful, but it is just
a fake for "variable", so these cause reduce/reduce conflicts because
the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
=exp) or just an exp. If name_not_typename was ever used in an lvalue
context where only a name could occur, this might be useful.
| NAME_OR_INT
*/
;
%%
/* Take care of parsing a number (anything that starts with a digit).
Set yylval and return the token type; update lexptr.
LEN is the number of characters in it. */
/*** Needs some error checking for the float case ***/
static int
parse_number (const char *p, int len, int parsed_float, YYSTYPE *putithere)
{
LONGEST n = 0;
LONGEST prevn = 0;
int c;
int base = input_radix;
int unsigned_p = 0;
int long_p = 0;
ULONGEST high_bit;
struct type *signed_type;
struct type *unsigned_type;
if (parsed_float)
{
/* It's a float since it contains a point or an exponent. */
/* [dD] is not understood as an exponent by atof, change it to 'e'. */
char *tmp, *tmp2;
tmp = xstrdup (p);
for (tmp2 = tmp; *tmp2; ++tmp2)
if (*tmp2 == 'd' || *tmp2 == 'D')
*tmp2 = 'e';
putithere->dval = atof (tmp);
free (tmp);
return FLOAT;
}
/* Handle base-switching prefixes 0x, 0t, 0d, 0 */
if (p[0] == '0')
switch (p[1])
{
case 'x':
case 'X':
if (len >= 3)
{
p += 2;
base = 16;
len -= 2;
}
break;
case 't':
case 'T':
case 'd':
case 'D':
if (len >= 3)
{
p += 2;
base = 10;
len -= 2;
}
break;
default:
base = 8;
break;
}
while (len-- > 0)
{
c = *p++;
if (isupper (c))
c = tolower (c);
if (len == 0 && c == 'l')
long_p = 1;
else if (len == 0 && c == 'u')
unsigned_p = 1;
else
{
int i;
if (c >= '0' && c <= '9')
i = c - '0';
else if (c >= 'a' && c <= 'f')
i = c - 'a' + 10;
else
return ERROR; /* Char not a digit */
if (i >= base)
return ERROR; /* Invalid digit in this base */
n *= base;
n += i;
}
/* Portably test for overflow (only works for nonzero values, so make
a second check for zero). */
if ((prevn >= n) && n != 0)
unsigned_p=1; /* Try something unsigned */
/* If range checking enabled, portably test for unsigned overflow. */
if (RANGE_CHECK && n != 0)
{
if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
range_error (_("Overflow on numeric constant."));
}
prevn = n;
}
/* If the number is too big to be an int, or it's got an l suffix
then it's a long. Work out if this has to be a long by
shifting right and seeing if anything remains, and the
target int size is different to the target long size.
In the expression below, we could have tested
(n >> gdbarch_int_bit (parse_gdbarch))
to see if it was zero,
but too many compilers warn about that, when ints and longs
are the same size. So we shift it twice, with fewer bits
each time, for the same result. */
if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
&& ((n >> 2)
>> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
|| long_p)
{
high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
unsigned_type = parse_type->builtin_unsigned_long;
signed_type = parse_type->builtin_long;
}
else
{
high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
unsigned_type = parse_type->builtin_unsigned_int;
signed_type = parse_type->builtin_int;
}
putithere->typed_val.val = n;
/* If the high bit of the worked out type is set then this number
has to be unsigned. */
if (unsigned_p || (n & high_bit))
putithere->typed_val.type = unsigned_type;
else
putithere->typed_val.type = signed_type;
return INT;
}
struct token
{
char *operator;
int token;
enum exp_opcode opcode;
};
static const struct token dot_ops[] =
{
{ ".and.", BOOL_AND, BINOP_END },
{ ".AND.", BOOL_AND, BINOP_END },
{ ".or.", BOOL_OR, BINOP_END },
{ ".OR.", BOOL_OR, BINOP_END },
{ ".not.", BOOL_NOT, BINOP_END },
{ ".NOT.", BOOL_NOT, BINOP_END },
{ ".eq.", EQUAL, BINOP_END },
{ ".EQ.", EQUAL, BINOP_END },
{ ".eqv.", EQUAL, BINOP_END },
{ ".NEQV.", NOTEQUAL, BINOP_END },
{ ".neqv.", NOTEQUAL, BINOP_END },
{ ".EQV.", EQUAL, BINOP_END },
{ ".ne.", NOTEQUAL, BINOP_END },
{ ".NE.", NOTEQUAL, BINOP_END },
{ ".le.", LEQ, BINOP_END },
{ ".LE.", LEQ, BINOP_END },
{ ".ge.", GEQ, BINOP_END },
{ ".GE.", GEQ, BINOP_END },
{ ".gt.", GREATERTHAN, BINOP_END },
{ ".GT.", GREATERTHAN, BINOP_END },
{ ".lt.", LESSTHAN, BINOP_END },
{ ".LT.", LESSTHAN, BINOP_END },
{ NULL, 0, 0 }
};
struct f77_boolean_val
{
char *name;
int value;
};
static const struct f77_boolean_val boolean_values[] =
{
{ ".true.", 1 },
{ ".TRUE.", 1 },
{ ".false.", 0 },
{ ".FALSE.", 0 },
{ NULL, 0 }
};
static const struct token f77_keywords[] =
{
{ "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
{ "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
{ "character", CHARACTER, BINOP_END },
{ "integer_2", INT_S2_KEYWORD, BINOP_END },
{ "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
{ "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
{ "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
{ "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
{ "integer", INT_KEYWORD, BINOP_END },
{ "logical", LOGICAL_KEYWORD, BINOP_END },
{ "real_16", REAL_S16_KEYWORD, BINOP_END },
{ "complex", COMPLEX_S8_KEYWORD, BINOP_END },
{ "sizeof", SIZEOF, BINOP_END },
{ "real_8", REAL_S8_KEYWORD, BINOP_END },
{ "real", REAL_KEYWORD, BINOP_END },
{ NULL, 0, 0 }
};
/* Implementation of a dynamically expandable buffer for processing input
characters acquired through lexptr and building a value to return in
yylval. Ripped off from ch-exp.y */
static char *tempbuf; /* Current buffer contents */
static int tempbufsize; /* Size of allocated buffer */
static int tempbufindex; /* Current index into buffer */
#define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
#define CHECKBUF(size) \
do { \
if (tempbufindex + (size) >= tempbufsize) \
{ \
growbuf_by_size (size); \
} \
} while (0);
/* Grow the static temp buffer if necessary, including allocating the
first one on demand. */
static void
growbuf_by_size (int count)
{
int growby;
growby = max (count, GROWBY_MIN_SIZE);
tempbufsize += growby;
if (tempbuf == NULL)
tempbuf = (char *) malloc (tempbufsize);
else
tempbuf = (char *) realloc (tempbuf, tempbufsize);
}
/* Blatantly ripped off from ch-exp.y. This routine recognizes F77
string-literals.
Recognize a string literal. A string literal is a nonzero sequence
of characters enclosed in matching single quotes, except that
a single character inside single quotes is a character literal, which
we reject as a string literal. To embed the terminator character inside
a string, it is simply doubled (I.E. 'this''is''one''string') */
static int
match_string_literal (void)
{
const char *tokptr = lexptr;
for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
{
CHECKBUF (1);
if (*tokptr == *lexptr)
{
if (*(tokptr + 1) == *lexptr)
tokptr++;
else
break;
}
tempbuf[tempbufindex++] = *tokptr;
}
if (*tokptr == '\0' /* no terminator */
|| tempbufindex == 0) /* no string */
return 0;
else
{
tempbuf[tempbufindex] = '\0';
yylval.sval.ptr = tempbuf;
yylval.sval.length = tempbufindex;
lexptr = ++tokptr;
return STRING_LITERAL;
}
}
/* Read one token, getting characters through lexptr. */
static int
yylex (void)
{
int c;
int namelen;
unsigned int i,token;
const char *tokstart;
retry:
prev_lexptr = lexptr;
tokstart = lexptr;
/* First of all, let us make sure we are not dealing with the
special tokens .true. and .false. which evaluate to 1 and 0. */
if (*lexptr == '.')
{
for (i = 0; boolean_values[i].name != NULL; i++)
{
if (strncmp (tokstart, boolean_values[i].name,
strlen (boolean_values[i].name)) == 0)
{
lexptr += strlen (boolean_values[i].name);
yylval.lval = boolean_values[i].value;
return BOOLEAN_LITERAL;
}
}
}
/* See if it is a special .foo. operator. */
for (i = 0; dot_ops[i].operator != NULL; i++)
if (strncmp (tokstart, dot_ops[i].operator,
strlen (dot_ops[i].operator)) == 0)
{
lexptr += strlen (dot_ops[i].operator);
yylval.opcode = dot_ops[i].opcode;
return dot_ops[i].token;
}
/* See if it is an exponentiation operator. */
if (strncmp (tokstart, "**", 2) == 0)
{
lexptr += 2;
yylval.opcode = BINOP_EXP;
return STARSTAR;
}
switch (c = *tokstart)
{
case 0:
return 0;
case ' ':
case '\t':
case '\n':
lexptr++;
goto retry;
case '\'':
token = match_string_literal ();
if (token != 0)
return (token);
break;
case '(':
paren_depth++;
lexptr++;
return c;
case ')':
if (paren_depth == 0)
return 0;
paren_depth--;
lexptr++;
return c;
case ',':
if (comma_terminates && paren_depth == 0)
return 0;
lexptr++;
return c;
case '.':
/* Might be a floating point number. */
if (lexptr[1] < '0' || lexptr[1] > '9')
goto symbol; /* Nope, must be a symbol. */
/* FALL THRU into number case. */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
/* It's a number. */
int got_dot = 0, got_e = 0, got_d = 0, toktype;
const char *p = tokstart;
int hex = input_radix > 10;
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
{
p += 2;
hex = 1;
}
else if (c == '0' && (p[1]=='t' || p[1]=='T'
|| p[1]=='d' || p[1]=='D'))
{
p += 2;
hex = 0;
}
for (;; ++p)
{
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
got_dot = got_e = 1;
else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
got_dot = got_d = 1;
else if (!hex && !got_dot && *p == '.')
got_dot = 1;
else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
|| (got_d && (p[-1] == 'd' || p[-1] == 'D')))
&& (*p == '-' || *p == '+'))
/* This is the sign of the exponent, not the end of the
number. */
continue;
/* We will take any letters or digits. parse_number will
complain if past the radix, or if L or U are not final. */
else if ((*p < '0' || *p > '9')
&& ((*p < 'a' || *p > 'z')
&& (*p < 'A' || *p > 'Z')))
break;
}
toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
&yylval);
if (toktype == ERROR)
{
char *err_copy = (char *) alloca (p - tokstart + 1);
memcpy (err_copy, tokstart, p - tokstart);
err_copy[p - tokstart] = 0;
error (_("Invalid number \"%s\"."), err_copy);
}
lexptr = p;
return toktype;
}
case '+':
case '-':
case '*':
case '/':
case '%':
case '|':
case '&':
case '^':
case '~':
case '!':
case '@':
case '<':
case '>':
case '[':
case ']':
case '?':
case ':':
case '=':
case '{':
case '}':
symbol:
lexptr++;
return c;
}
if (!(c == '_' || c == '$' || c ==':'
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
/* We must have come across a bad character (e.g. ';'). */
error (_("Invalid character '%c' in expression."), c);
namelen = 0;
for (c = tokstart[namelen];
(c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
c = tokstart[++namelen]);
/* The token "if" terminates the expression and is NOT
removed from the input stream. */
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
return 0;
lexptr += namelen;
/* Catch specific keywords. */
for (i = 0; f77_keywords[i].operator != NULL; i++)
if (strlen (f77_keywords[i].operator) == namelen
&& strncmp (tokstart, f77_keywords[i].operator, namelen) == 0)
{
/* lexptr += strlen(f77_keywords[i].operator); */
yylval.opcode = f77_keywords[i].opcode;
return f77_keywords[i].token;
}
yylval.sval.ptr = tokstart;
yylval.sval.length = namelen;
if (*tokstart == '$')
{
write_dollar_variable (yylval.sval);
return VARIABLE;
}
/* Use token-type TYPENAME for symbols that happen to be defined
currently as names of types; NAME for other symbols.
The caller is not constrained to care about the distinction. */
{
char *tmp = copy_name (yylval.sval);
struct symbol *sym;
struct field_of_this_result is_a_field_of_this;
enum domain_enum_tag lookup_domains[] =
{
STRUCT_DOMAIN,
VAR_DOMAIN,
MODULE_DOMAIN
};
int i;
int hextype;
for (i = 0; i < ARRAY_SIZE (lookup_domains); ++i)
{
/* Initialize this in case we *don't* use it in this call; that
way we can refer to it unconditionally below. */
memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
sym = lookup_symbol (tmp, expression_context_block,
lookup_domains[i],
parse_language->la_language == language_cplus
? &is_a_field_of_this : NULL);
if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
{
yylval.tsym.type = SYMBOL_TYPE (sym);
return TYPENAME;
}
if (sym)
break;
}
yylval.tsym.type
= language_lookup_primitive_type_by_name (parse_language,
parse_gdbarch, tmp);
if (yylval.tsym.type != NULL)
return TYPENAME;
/* Input names that aren't symbols but ARE valid hex numbers,
when the input radix permits them, can be names or numbers
depending on the parse. Note we support radixes > 16 here. */
if (!sym
&& ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
|| (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
{
YYSTYPE newlval; /* Its value is ignored. */
hextype = parse_number (tokstart, namelen, 0, &newlval);
if (hextype == INT)
{
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
return NAME_OR_INT;
}
}
/* Any other kind of symbol */
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
return NAME;
}
}
void
yyerror (char *msg)
{
if (prev_lexptr)
lexptr = prev_lexptr;
error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
}
|