1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
|
/* Copyright (C) 2010-2014 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "ia64-tdep.h"
#include "inferior.h"
#include "inf-ttrace.h"
#include "regcache.h"
#include "solib-ia64-hpux.h"
#include <ia64/sys/uregs.h>
#include <sys/ttrace.h>
/* The offsets used with ttrace to read the value of the raw registers. */
static int u_offsets[] =
{ /* Static General Registers. */
-1, __r1, __r2, __r3, __r4, __r5, __r6, __r7,
__r8, __r9, __r10, __r11, __r12, __r13, __r14, __r15,
__r16, __r17, __r18, __r19, __r20, __r21, __r22, __r23,
__r24, __r25, __r26, __r27, __r28, __r29, __r30, __r31,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
/* Static Floating-Point Registers. */
-1, -1, __f2, __f3, __f4, __f5, __f6, __f7,
__f8, __f9, __f10, __f11, __f12, __f13, __f14, __f15,
__f16, __f17, __f18, __f19, __f20, __f21, __f22, __f23,
__f24, __f25, __f26, __f27, __f28, __f29, __f30, __f31,
__f32, __f33, __f34, __f35, __f36, __f37, __f38, __f39,
__f40, __f41, __f42, __f43, __f44, __f45, __f46, __f47,
__f48, __f49, __f50, __f51, __f52, __f53, __f54, __f55,
__f56, __f57, __f58, __f59, __f60, __f61, __f62, __f63,
__f64, __f65, __f66, __f67, __f68, __f69, __f70, __f71,
__f72, __f73, __f74, __f75, __f76, __f77, __f78, __f79,
__f80, __f81, __f82, __f83, __f84, __f85, __f86, __f87,
__f88, __f89, __f90, __f91, __f92, __f93, __f94, __f95,
__f96, __f97, __f98, __f99, __f100, __f101, __f102, __f103,
__f104, __f105, __f106, __f107, __f108, __f109, __f110, __f111,
__f112, __f113, __f114, __f115, __f116, __f117, __f118, __f119,
__f120, __f121, __f122, __f123, __f124, __f125, __f126, __f127,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
/* Branch Registers. */
__b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7,
/* Virtual frame pointer and virtual return address pointer. */
-1, -1,
/* Other registers. */
__pr, __ip, __cr_ipsr, __cfm,
/* Kernel registers. */
-1, -1, -1, -1,
-1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
/* Some application registers. */
__ar_rsc, __ar_bsp, __ar_bspstore, __ar_rnat,
-1,
-1, /* Not available: FCR, IA32 floating control register. */
-1, -1,
-1, /* Not available: EFLAG. */
-1, /* Not available: CSD. */
-1, /* Not available: SSD. */
-1, /* Not available: CFLG. */
-1, /* Not available: FSR. */
-1, /* Not available: FIR. */
-1, /* Not available: FDR. */
-1,
__ar_ccv, -1, -1, -1, __ar_unat, -1, -1, -1,
__ar_fpsr, -1, -1, -1,
-1, /* Not available: ITC. */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
__ar_pfs, __ar_lc, __ar_ec,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1
/* All following registers, starting with nat0, are handled as
pseudo registers, and hence are handled separately. */
};
/* Some register have a fixed value and can not be modified.
Store their value in static constant buffers that can be used
later to fill the register cache. */
static const char r0_value[8] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};
static const char f0_value[16] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};
static const char f1_value[16] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xff, 0xff,
0x80, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};
/* The "to_wait" routine from the "inf-ttrace" layer. */
static ptid_t (*super_to_wait) (struct target_ops *, ptid_t,
struct target_waitstatus *, int);
/* The "to_wait" target_ops routine routine for ia64-hpux. */
static ptid_t
ia64_hpux_wait (struct target_ops *ops, ptid_t ptid,
struct target_waitstatus *ourstatus, int options)
{
ptid_t new_ptid;
new_ptid = super_to_wait (ops, ptid, ourstatus, options);
/* If this is a DLD event (hard-coded breakpoint instruction
that was activated by the solib-ia64-hpux module), we need to
process it, and then resume the execution as if the event did
not happen. */
if (ourstatus->kind == TARGET_WAITKIND_STOPPED
&& ourstatus->value.sig == GDB_SIGNAL_TRAP
&& ia64_hpux_at_dld_breakpoint_p (new_ptid))
{
ia64_hpux_handle_dld_breakpoint (new_ptid);
target_resume (new_ptid, 0, GDB_SIGNAL_0);
ourstatus->kind = TARGET_WAITKIND_IGNORE;
}
return new_ptid;
}
/* Fetch the RNAT register and supply it to the REGCACHE. */
static void
ia64_hpux_fetch_rnat_register (struct regcache *regcache)
{
CORE_ADDR addr;
gdb_byte buf[8];
int status;
/* The value of RNAT is stored at bsp|0x1f8, and must be read using
TT_LWP_RDRSEBS. */
regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &addr);
addr |= 0x1f8;
status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
ptid_get_lwp (inferior_ptid), addr, sizeof (buf),
(uintptr_t) buf);
if (status < 0)
error (_("failed to read RNAT register at %s"),
paddress (get_regcache_arch(regcache), addr));
regcache_raw_supply (regcache, IA64_RNAT_REGNUM, buf);
}
/* Read the value of the register saved at OFFSET in the save_state_t
structure, and store its value in BUF. LEN is the size of the register
to be read. */
static int
ia64_hpux_read_register_from_save_state_t (int offset, gdb_byte *buf, int len)
{
int status;
status = ttrace (TT_LWP_RUREGS, ptid_get_pid (inferior_ptid),
ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
return status;
}
/* Fetch register REGNUM from the inferior. */
static void
ia64_hpux_fetch_register (struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int offset, len, status;
gdb_byte *buf;
if (regnum == IA64_GR0_REGNUM)
{
/* r0 is always 0. */
regcache_raw_supply (regcache, regnum, r0_value);
return;
}
if (regnum == IA64_FR0_REGNUM)
{
/* f0 is always 0.0. */
regcache_raw_supply (regcache, regnum, f0_value);
return;
}
if (regnum == IA64_FR1_REGNUM)
{
/* f1 is always 1.0. */
regcache_raw_supply (regcache, regnum, f1_value);
return;
}
if (regnum == IA64_RNAT_REGNUM)
{
ia64_hpux_fetch_rnat_register (regcache);
return;
}
/* Get the register location. If the register can not be fetched,
then return now. */
offset = u_offsets[regnum];
if (offset == -1)
return;
len = register_size (gdbarch, regnum);
buf = alloca (len * sizeof (gdb_byte));
status = ia64_hpux_read_register_from_save_state_t (offset, buf, len);
if (status < 0)
warning (_("Failed to read register value for %s."),
gdbarch_register_name (gdbarch, regnum));
regcache_raw_supply (regcache, regnum, buf);
}
/* The "to_fetch_registers" target_ops routine for ia64-hpux. */
static void
ia64_hpux_fetch_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
if (regnum == -1)
for (regnum = 0;
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
regnum++)
ia64_hpux_fetch_register (regcache, regnum);
else
ia64_hpux_fetch_register (regcache, regnum);
}
/* Save register REGNUM (stored in BUF) in the save_state_t structure.
LEN is the size of the register in bytes.
Return the value from the corresponding ttrace call (a negative value
means that the operation failed). */
static int
ia64_hpux_write_register_to_saved_state_t (int offset, gdb_byte *buf, int len)
{
return ttrace (TT_LWP_WUREGS, ptid_get_pid (inferior_ptid),
ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
}
/* Store register REGNUM into the inferior. */
static void
ia64_hpux_store_register (const struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int offset = u_offsets[regnum];
gdb_byte *buf;
int len, status;
/* If the register can not be stored, then return now. */
if (offset == -1)
return;
/* I don't know how to store that register for now. So just ignore any
request to store it, to avoid an internal error. */
if (regnum == IA64_PSR_REGNUM)
return;
len = register_size (gdbarch, regnum);
buf = alloca (len * sizeof (gdb_byte));
regcache_raw_collect (regcache, regnum, buf);
status = ia64_hpux_write_register_to_saved_state_t (offset, buf, len);
if (status < 0)
error (_("failed to write register value for %s."),
gdbarch_register_name (gdbarch, regnum));
}
/* The "to_store_registers" target_ops routine for ia64-hpux. */
static void
ia64_hpux_store_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
if (regnum == -1)
for (regnum = 0;
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
regnum++)
ia64_hpux_store_register (regcache, regnum);
else
ia64_hpux_store_register (regcache, regnum);
}
/* The "xfer_partial" routine from the "inf-ttrace" target layer.
Ideally, we would like to use this routine for all transfer
requests, but this platforms has a lot of special cases that
need to be handled manually. So we override this routine and
delegate back if we detect that we are not in a special case. */
static target_xfer_partial_ftype *super_xfer_partial;
/* The "xfer_partial" routine for a memory region that is completely
outside of the backing-store region. */
static LONGEST
ia64_hpux_xfer_memory_no_bs (struct target_ops *ops, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
CORE_ADDR addr, LONGEST len)
{
/* Memory writes need to be aligned on 16byte boundaries, at least
when writing in the text section. On the other hand, the size
of the buffer does not need to be a multiple of 16bytes.
No such restriction when performing memory reads. */
if (writebuf && addr & 0x0f)
{
const CORE_ADDR aligned_addr = addr & ~0x0f;
const int aligned_len = len + (addr - aligned_addr);
gdb_byte *aligned_buf = alloca (aligned_len * sizeof (gdb_byte));
LONGEST status;
/* Read the portion of memory between ALIGNED_ADDR and ADDR, so
that we can write it back during our aligned memory write. */
status = super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
aligned_buf /* read */,
NULL /* write */,
aligned_addr, addr - aligned_addr);
if (status <= 0)
return 0;
memcpy (aligned_buf + (addr - aligned_addr), writebuf, len);
return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
NULL /* read */, aligned_buf /* write */,
aligned_addr, aligned_len);
}
else
/* Memory read or properly aligned memory write. */
return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex, readbuf,
writebuf, addr, len);
}
/* Read LEN bytes at ADDR from memory, and store it in BUF. This memory
region is assumed to be inside the backing store.
Return zero if the operation failed. */
static int
ia64_hpux_read_memory_bs (gdb_byte *buf, CORE_ADDR addr, int len)
{
gdb_byte tmp_buf[8];
CORE_ADDR tmp_addr = addr & ~0x7;
while (tmp_addr < addr + len)
{
int status;
int skip_lo = 0;
int skip_hi = 0;
status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
ptid_get_lwp (inferior_ptid), tmp_addr,
sizeof (tmp_buf), (uintptr_t) tmp_buf);
if (status < 0)
return 0;
if (tmp_addr < addr)
skip_lo = addr - tmp_addr;
if (tmp_addr + sizeof (tmp_buf) > addr + len)
skip_hi = (tmp_addr + sizeof (tmp_buf)) - (addr + len);
memcpy (buf + (tmp_addr + skip_lo - addr),
tmp_buf + skip_lo,
sizeof (tmp_buf) - skip_lo - skip_hi);
tmp_addr += sizeof (tmp_buf);
}
return 1;
}
/* Write LEN bytes from BUF in memory at ADDR. This memory region is assumed
to be inside the backing store.
Return zero if the operation failed. */
static int
ia64_hpux_write_memory_bs (const gdb_byte *buf, CORE_ADDR addr, int len)
{
gdb_byte tmp_buf[8];
CORE_ADDR tmp_addr = addr & ~0x7;
while (tmp_addr < addr + len)
{
int status;
int lo = 0;
int hi = 7;
if (tmp_addr < addr || tmp_addr + sizeof (tmp_buf) > addr + len)
/* Part of the 8byte region pointed by tmp_addr needs to be preserved.
So read it in before we copy the data that needs to be changed. */
if (!ia64_hpux_read_memory_bs (tmp_buf, tmp_addr, sizeof (tmp_buf)))
return 0;
if (tmp_addr < addr)
lo = addr - tmp_addr;
if (tmp_addr + sizeof (tmp_buf) > addr + len)
hi = addr - tmp_addr + len - 1;
memcpy (tmp_buf + lo, buf + tmp_addr - addr + lo, hi - lo + 1);
status = ttrace (TT_LWP_WRRSEBS, ptid_get_pid (inferior_ptid),
ptid_get_lwp (inferior_ptid), tmp_addr,
sizeof (tmp_buf), (uintptr_t) tmp_buf);
if (status < 0)
return 0;
tmp_addr += sizeof (tmp_buf);
}
return 1;
}
/* The "xfer_partial" routine for a memory region that is completely
inside of the backing-store region. */
static LONGEST
ia64_hpux_xfer_memory_bs (struct target_ops *ops, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
CORE_ADDR addr, LONGEST len)
{
int success;
if (readbuf)
success = ia64_hpux_read_memory_bs (readbuf, addr, len);
else
success = ia64_hpux_write_memory_bs (writebuf, addr, len);
if (success)
return len;
else
return 0;
}
/* Get a register value as a unsigned value directly from the system,
instead of going through the regcache.
This function is meant to be used when inferior_ptid is not
a thread/process known to GDB. */
static ULONGEST
ia64_hpux_get_register_from_save_state_t (int regnum, int reg_size)
{
gdb_byte *buf = alloca (reg_size);
int offset = u_offsets[regnum];
int status;
/* The register is assumed to be available for fetching. */
gdb_assert (offset != -1);
status = ia64_hpux_read_register_from_save_state_t (offset, buf, reg_size);
if (status < 0)
{
/* This really should not happen. If it does, emit a warning
and pretend the register value is zero. Not exactly the best
error recovery mechanism, but better than nothing. We will
try to do better if we can demonstrate that this can happen
under normal circumstances. */
warning (_("Failed to read value of register number %d."), regnum);
return 0;
}
return extract_unsigned_integer (buf, reg_size, BFD_ENDIAN_BIG);
}
/* The "xfer_partial" target_ops routine for ia64-hpux, in the case
where the requested object is TARGET_OBJECT_MEMORY. */
static LONGEST
ia64_hpux_xfer_memory (struct target_ops *ops, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
CORE_ADDR addr, LONGEST len)
{
CORE_ADDR bsp, bspstore;
CORE_ADDR start_addr, short_len;
int status = 0;
/* The back-store region cannot be read/written by the standard memory
read/write operations. So we handle the memory region piecemeal:
(1) and (2) The regions before and after the backing-store region,
which can be treated as normal memory;
(3) The region inside the backing-store, which needs to be
read/written specially. */
if (in_inferior_list (ptid_get_pid (inferior_ptid)))
{
struct regcache *regcache = get_current_regcache ();
regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
regcache_raw_read_unsigned (regcache, IA64_BSPSTORE_REGNUM, &bspstore);
}
else
{
/* This is probably a child of our inferior created by a fork.
Because this process has not been added to our inferior list
(we are probably in the process of handling that child
process), we do not have a regcache to read the registers
from. So get those values directly from the kernel. */
bsp = ia64_hpux_get_register_from_save_state_t (IA64_BSP_REGNUM, 8);
bspstore =
ia64_hpux_get_register_from_save_state_t (IA64_BSPSTORE_REGNUM, 8);
}
/* 1. Memory region before BSPSTORE. */
if (addr < bspstore)
{
short_len = len;
if (addr + len > bspstore)
short_len = bspstore - addr;
status = ia64_hpux_xfer_memory_no_bs (ops, annex, readbuf, writebuf,
addr, short_len);
if (status <= 0)
return 0;
}
/* 2. Memory region after BSP. */
if (addr + len > bsp)
{
start_addr = addr;
if (start_addr < bsp)
start_addr = bsp;
short_len = len + addr - start_addr;
status = ia64_hpux_xfer_memory_no_bs
(ops, annex,
readbuf ? readbuf + (start_addr - addr) : NULL,
writebuf ? writebuf + (start_addr - addr) : NULL,
start_addr, short_len);
if (status <= 0)
return 0;
}
/* 3. Memory region between BSPSTORE and BSP. */
if (bspstore != bsp
&& ((addr < bspstore && addr + len > bspstore)
|| (addr + len <= bsp && addr + len > bsp)))
{
start_addr = addr;
if (addr < bspstore)
start_addr = bspstore;
short_len = len + addr - start_addr;
if (start_addr + short_len > bsp)
short_len = bsp - start_addr;
gdb_assert (short_len > 0);
status = ia64_hpux_xfer_memory_bs
(ops, annex,
readbuf ? readbuf + (start_addr - addr) : NULL,
writebuf ? writebuf + (start_addr - addr) : NULL,
start_addr, short_len);
if (status < 0)
return 0;
}
return len;
}
/* Handle the transfer of TARGET_OBJECT_HPUX_UREGS objects on ia64-hpux.
ANNEX is currently ignored.
The current implementation does not support write transfers (because
we do not currently do not need these transfers), and will raise
a failed assertion if WRITEBUF is not NULL. */
static LONGEST
ia64_hpux_xfer_uregs (struct target_ops *ops, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
int status;
gdb_assert (writebuf == NULL);
status = ia64_hpux_read_register_from_save_state_t (offset, readbuf, len);
if (status < 0)
return -1;
return len;
}
/* Handle the transfer of TARGET_OBJECT_HPUX_SOLIB_GOT objects on ia64-hpux.
The current implementation does not support write transfers (because
we do not currently do not need these transfers), and will raise
a failed assertion if WRITEBUF is not NULL. */
static LONGEST
ia64_hpux_xfer_solib_got (struct target_ops *ops, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
CORE_ADDR fun_addr;
/* The linkage pointer. We use a uint64_t to make sure that the size
of the object we are returning is always 64 bits long, as explained
in the description of the TARGET_OBJECT_HPUX_SOLIB_GOT object.
This is probably paranoia, but we do not use a CORE_ADDR because
it could conceivably be larger than uint64_t. */
uint64_t got;
gdb_assert (writebuf == NULL);
if (offset > sizeof (got))
return 0;
fun_addr = string_to_core_addr (annex);
got = ia64_hpux_get_solib_linkage_addr (fun_addr);
if (len > sizeof (got) - offset)
len = sizeof (got) - offset;
memcpy (readbuf, &got + offset, len);
return len;
}
/* The "to_xfer_partial" target_ops routine for ia64-hpux. */
static LONGEST
ia64_hpux_xfer_partial (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
LONGEST val;
if (object == TARGET_OBJECT_MEMORY)
val = ia64_hpux_xfer_memory (ops, annex, readbuf, writebuf, offset, len);
else if (object == TARGET_OBJECT_HPUX_UREGS)
val = ia64_hpux_xfer_uregs (ops, annex, readbuf, writebuf, offset, len);
else if (object == TARGET_OBJECT_HPUX_SOLIB_GOT)
val = ia64_hpux_xfer_solib_got (ops, annex, readbuf, writebuf, offset,
len);
else
val = super_xfer_partial (ops, object, annex, readbuf, writebuf, offset,
len);
return val;
}
/* The "to_can_use_hw_breakpoint" target_ops routine for ia64-hpux. */
static int
ia64_hpux_can_use_hw_breakpoint (int type, int cnt, int othertype)
{
/* No hardware watchpoint/breakpoint support yet. */
return 0;
}
/* The "to_mourn_inferior" routine from the "inf-ttrace" target_ops layer. */
static void (*super_mourn_inferior) (struct target_ops *);
/* The "to_mourn_inferior" target_ops routine for ia64-hpux. */
static void
ia64_hpux_mourn_inferior (struct target_ops *ops)
{
const int pid = ptid_get_pid (inferior_ptid);
int status;
super_mourn_inferior (ops);
/* On this platform, the process still exists even after we received
an exit event. Detaching from the process isn't sufficient either,
as it only turns the process into a zombie. So the only solution
we found is to kill it. */
ttrace (TT_PROC_EXIT, pid, 0, 0, 0, 0);
wait (&status);
}
/* Prevent warning from -Wmissing-prototypes. */
void _initialize_ia64_hpux_nat (void);
void
_initialize_ia64_hpux_nat (void)
{
struct target_ops *t;
t = inf_ttrace_target ();
super_to_wait = t->to_wait;
super_xfer_partial = t->to_xfer_partial;
super_mourn_inferior = t->to_mourn_inferior;
t->to_wait = ia64_hpux_wait;
t->to_fetch_registers = ia64_hpux_fetch_registers;
t->to_store_registers = ia64_hpux_store_registers;
t->to_xfer_partial = ia64_hpux_xfer_partial;
t->to_can_use_hw_breakpoint = ia64_hpux_can_use_hw_breakpoint;
t->to_mourn_inferior = ia64_hpux_mourn_inferior;
t->to_attach_no_wait = 1;
add_target (t);
}
|