1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
// -*- C -*-
//
// NEC specific instructions
//
:%s::::MFHI:int hi
{
return hi ? "hi" : "";
}
:%s::::SAT:int s
{
return s ? "s" : "";
}
:%s::::UNS:int u
{
return u ? "u" : "";
}
// Simulate the various kinds of multiply and multiply-accumulate instructions.
// Perform an operation of the form:
//
// LHS (+/-) GPR[RS] * GPR[RT]
//
// and store it in the 64-bit accumulator. Optionally copy either LO or
// HI into a general purpose register.
//
// - RD is the destination register of the LO or HI move
// - RS are RT are the multiplication source registers
// - ACCUMULATE_P is true if LHS should be the value of the 64-bit accumulator,
// false if it should be 0.
// - STORE_HI_P is true if HI should be stored in RD, false if LO should be.
// - UNSIGNED_P is true if the operation should be unsigned.
// - SATURATE_P is true if the result should be saturated to a 32-bit value.
// - SUBTRACT_P is true if the right hand side should be subtraced from LHS,
// false if it should be added.
// - SHORT_P is true if RS and RT must be 16-bit numbers.
// - DOUBLE_P is true if the 64-bit accumulator is in LO, false it is a
// concatenation of the low 32 bits of HI and LO.
:function:::void:do_vr_mul_op:int rd, int rs, int rt, int accumulate_p, int store_hi_p, int unsigned_p, int saturate_p, int subtract_p, int short_p, int double_p
{
unsigned64 lhs, x, y, xcut, ycut, product, result;
check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
lhs = (!accumulate_p ? 0 : double_p ? LO : U8_4 (HI, LO));
x = GPR[rs];
y = GPR[rt];
/* Work out the canonical form of X and Y from their significant bits. */
if (!short_p)
{
/* Normal sign-extension rule for 32-bit operands. */
xcut = EXTEND32 (x);
ycut = EXTEND32 (y);
}
else if (unsigned_p)
{
/* Operands must be zero-extended 16-bit numbers. */
xcut = x & 0xffff;
ycut = y & 0xffff;
}
else
{
/* Likewise but sign-extended. */
xcut = EXTEND16 (x);
ycut = EXTEND16 (y);
}
if (x != xcut || y != ycut)
sim_engine_abort (SD, CPU, CIA,
"invalid multiplication operand at 0x%08lx\n",
(long) CIA);
TRACE_ALU_INPUT2 (x, y);
product = (unsigned_p
? V8_4 (x, 1) * V8_4 (y, 1)
: EXTEND32 (x) * EXTEND32 (y));
result = (subtract_p ? lhs - product : lhs + product);
if (saturate_p)
{
/* Saturate the result to 32 bits. An unsigned, unsaturated
result is zero-extended to 64 bits, but unsigned overflow
causes all 64 bits to be set. */
if (!unsigned_p && (unsigned64) EXTEND32 (result) != result)
result = ((signed64) result < 0 ? -0x7fffffff - 1 : 0x7fffffff);
else if (unsigned_p && (result >> 32) != 0)
result = (unsigned64) 0 - 1;
}
TRACE_ALU_RESULT (result);
if (double_p)
LO = result;
else
{
LO = EXTEND32 (result);
HI = EXTEND32 (VH4_8 (result));
}
if (rd != 0)
GPR[rd] = store_hi_p ? HI : LO;
}
// VR4100 instructions.
000000,5.RS,5.RT,00000,00000,101000::32::MADD16
"madd16 r<RS>, r<RT>"
*vr4100:
{
do_vr_mul_op (SD_, 0, RS, RT,
1 /* accumulate */,
0 /* store in LO */,
0 /* signed arithmetic */,
0 /* don't saturate */,
0 /* don't subtract */,
1 /* short */,
0 /* single */);
}
000000,5.RS,5.RT,00000,00000,101001::64::DMADD16
"dmadd16 r<RS>, r<RT>"
*vr4100:
{
do_vr_mul_op (SD_, 0, RS, RT,
1 /* accumulate */,
0 /* store in LO */,
0 /* signed arithmetic */,
0 /* don't saturate */,
0 /* don't subtract */,
1 /* short */,
1 /* double */);
}
// VR4120 and VR4130 instructions.
000000,5.RS,5.RT,5.RD,1.SAT,1.MFHI,00,1.UNS,101001::64::DMACC
"dmacc%s<MFHI>%s<UNS>%s<SAT> r<RD>, r<RS>, r<RT>"
*vr4120:
{
do_vr_mul_op (SD_, RD, RS, RT,
1 /* accumulate */,
MFHI, UNS, SAT,
0 /* don't subtract */,
SAT /* short */,
1 /* double */);
}
000000,5.RS,5.RT,5.RD,1.SAT,1.MFHI,00,1.UNS,101000::32::MACC_4120
"macc%s<MFHI>%s<UNS>%s<SAT> r<RD>, r<RS>, r<RT>"
*vr4120:
{
do_vr_mul_op (SD_, RD, RS, RT,
1 /* accumulate */,
MFHI, UNS, SAT,
0 /* don't subtract */,
SAT /* short */,
0 /* single */);
}
// VR5400 and VR5500 instructions.
000000,5.RS,5.RT,5.RD,0,1.MFHI,001,01100,1.UNS::32::MUL
"mul%s<MFHI>%s<UNS> r<RD>, r<RS>, r<RT>"
*vr5400:
*vr5500:
{
do_vr_mul_op (SD_, RD, RS, RT,
0 /* don't accumulate */,
MFHI, UNS,
0 /* don't saturate */,
0 /* don't subtract */,
0 /* not short */,
0 /* single */);
}
000000,5.RS,5.RT,5.RD,0,1.MFHI,011,01100,1.UNS::32::MULS
"muls%s<MFHI>%s<UNS> r<RD>, r<RS>, r<RT>"
*vr5400:
*vr5500:
{
do_vr_mul_op (SD_, RD, RS, RT,
0 /* don't accumulate */,
MFHI, UNS,
0 /* don't saturate */,
1 /* subtract */,
0 /* not short */,
0 /* single */);
}
000000,5.RS,5.RT,5.RD,0,1.MFHI,101,01100,1.UNS::32::MACC_5xxx
"macc%s<MFHI>%s<UNS> r<RD>, r<RS>, r<RT>"
*vr5400:
*vr5500:
{
do_vr_mul_op (SD_, RD, RS, RT,
1 /* accumulate */,
MFHI, UNS,
0 /* don't saturate */,
0 /* don't subtract */,
0 /* not short */,
0 /* single */);
}
000000,5.RS,5.RT,5.RD,0,1.MFHI,111,01100,1.UNS::32::MSAC
"msac%s<MFHI>%s<UNS> r<RD>, r<RS>, r<RT>"
*vr5400:
*vr5500:
{
do_vr_mul_op (SD_, RD, RS, RT,
1 /* accumulate */,
MFHI, UNS,
0 /* don't saturate */,
1 /* subtract */,
0 /* not short */,
0 /* single */);
}
010011,5.BASE,5.INDEX,5.0,5.FD,000101:COP1X:64::LUXC1
"luxc1 f<FD>, r<INDEX>(r<BASE>)"
*vr5500:
{
check_fpu (SD_);
COP_LD (1, FD, do_load (SD_, AccessLength_DOUBLEWORD,
(GPR[BASE] + GPR[INDEX]) & ~MASK64 (2, 0), 0));
}
010011,5.BASE,5.INDEX,5.FS,00000,001101:COP1X:64::SUXC1
"suxc1 f<FS>, r<INDEX>(r<BASE>)"
*vr5500:
{
check_fpu (SD_);
do_store (SD_, AccessLength_DOUBLEWORD,
(GPR[BASE] + GPR[INDEX]) & ~MASK64 (2, 0), 0,
COP_SD (1, FS));
}
010000,1,19.*,100000:COP0:32::WAIT
"wait"
*vr5500:
011100,00000,5.RT,5.DR,00000,111101:SPECIAL:64::MFDR
"mfdr r<RT>, r<DR>"
*vr5400:
*vr5500:
011100,00100,5.RT,5.DR,00000,111101:SPECIAL:64::MTDR
"mtdr r<RT>, r<DR>"
*vr5400:
*vr5500:
011100,00000,00000,00000,00000,111110:SPECIAL:64::DRET
"dret"
*vr5400:
*vr5500:
|