File: gdbtypes.c

package info (click to toggle)
gdb 10.1-1.7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 310,484 kB
  • sloc: ansic: 1,939,704; asm: 342,615; exp: 164,493; cpp: 69,350; makefile: 59,036; sh: 25,131; yacc: 13,167; ada: 5,758; xml: 5,461; perl: 5,334; python: 4,761; pascal: 3,220; lisp: 1,575; tcl: 1,541; f90: 1,395; cs: 879; lex: 620; sed: 234; awk: 141; objc: 137; fortran: 62
file content (6089 lines) | stat: -rw-r--r-- 178,224 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
/* Support routines for manipulating internal types for GDB.

   Copyright (C) 1992-2021 Free Software Foundation, Inc.

   Contributed by Cygnus Support, using pieces from other GDB modules.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "bfd.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "expression.h"
#include "language.h"
#include "target.h"
#include "value.h"
#include "demangle.h"
#include "complaints.h"
#include "gdbcmd.h"
#include "cp-abi.h"
#include "hashtab.h"
#include "cp-support.h"
#include "bcache.h"
#include "dwarf2/loc.h"
#include "gdbcore.h"
#include "floatformat.h"
#include <algorithm>

/* Initialize BADNESS constants.  */

const struct rank LENGTH_MISMATCH_BADNESS = {100,0};

const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};

const struct rank EXACT_MATCH_BADNESS = {0,0};

const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
const struct rank CV_CONVERSION_BADNESS = {1, 0};
const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
const struct rank BOOL_CONVERSION_BADNESS = {3,0};
const struct rank BASE_CONVERSION_BADNESS = {2,0};
const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};

/* Floatformat pairs.  */
const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_half_big,
  &floatformat_ieee_half_little
};
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_single_big,
  &floatformat_ieee_single_little
};
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_little
};
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_littlebyte_bigword
};
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_i387_ext,
  &floatformat_i387_ext
};
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_m68881_ext,
  &floatformat_m68881_ext
};
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_arm_ext_big,
  &floatformat_arm_ext_littlebyte_bigword
};
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ia64_spill_big,
  &floatformat_ia64_spill_little
};
const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ia64_quad_big,
  &floatformat_ia64_quad_little
};
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_vax_f,
  &floatformat_vax_f
};
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_vax_d,
  &floatformat_vax_d
};
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ibm_long_double_big,
  &floatformat_ibm_long_double_little
};
const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_bfloat16_big,
  &floatformat_bfloat16_little
};

/* Should opaque types be resolved?  */

static bool opaque_type_resolution = true;

/* See gdbtypes.h.  */

unsigned int overload_debug = 0;

/* A flag to enable strict type checking.  */

static bool strict_type_checking = true;

/* A function to show whether opaque types are resolved.  */

static void
show_opaque_type_resolution (struct ui_file *file, int from_tty,
			     struct cmd_list_element *c, 
			     const char *value)
{
  fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
			    "(if set before loading symbols) is %s.\n"),
		    value);
}

/* A function to show whether C++ overload debugging is enabled.  */

static void
show_overload_debug (struct ui_file *file, int from_tty,
		     struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"), 
		    value);
}

/* A function to show the status of strict type checking.  */

static void
show_strict_type_checking (struct ui_file *file, int from_tty,
			   struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
}


/* Allocate a new OBJFILE-associated type structure and fill it
   with some defaults.  Space for the type structure is allocated
   on the objfile's objfile_obstack.  */

struct type *
alloc_type (struct objfile *objfile)
{
  struct type *type;

  gdb_assert (objfile != NULL);

  /* Alloc the structure and start off with all fields zeroed.  */
  type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
  TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
					  struct main_type);
  OBJSTAT (objfile, n_types++);

  TYPE_OBJFILE_OWNED (type) = 1;
  TYPE_OWNER (type).objfile = objfile;

  /* Initialize the fields that might not be zero.  */

  type->set_code (TYPE_CODE_UNDEF);
  TYPE_CHAIN (type) = type;	/* Chain back to itself.  */

  return type;
}

/* Allocate a new GDBARCH-associated type structure and fill it
   with some defaults.  Space for the type structure is allocated
   on the obstack associated with GDBARCH.  */

struct type *
alloc_type_arch (struct gdbarch *gdbarch)
{
  struct type *type;

  gdb_assert (gdbarch != NULL);

  /* Alloc the structure and start off with all fields zeroed.  */

  type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
  TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);

  TYPE_OBJFILE_OWNED (type) = 0;
  TYPE_OWNER (type).gdbarch = gdbarch;

  /* Initialize the fields that might not be zero.  */

  type->set_code (TYPE_CODE_UNDEF);
  TYPE_CHAIN (type) = type;	/* Chain back to itself.  */

  return type;
}

/* If TYPE is objfile-associated, allocate a new type structure
   associated with the same objfile.  If TYPE is gdbarch-associated,
   allocate a new type structure associated with the same gdbarch.  */

struct type *
alloc_type_copy (const struct type *type)
{
  if (TYPE_OBJFILE_OWNED (type))
    return alloc_type (TYPE_OWNER (type).objfile);
  else
    return alloc_type_arch (TYPE_OWNER (type).gdbarch);
}

/* If TYPE is gdbarch-associated, return that architecture.
   If TYPE is objfile-associated, return that objfile's architecture.  */

struct gdbarch *
get_type_arch (const struct type *type)
{
  struct gdbarch *arch;

  if (TYPE_OBJFILE_OWNED (type))
    arch = TYPE_OWNER (type).objfile->arch ();
  else
    arch = TYPE_OWNER (type).gdbarch;

  /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
     a gdbarch, however, this is very rare, and even then, in most cases
     that get_type_arch is called, we assume that a non-NULL value is
     returned.  */
  gdb_assert (arch != NULL);
  return arch;
}

/* See gdbtypes.h.  */

struct type *
get_target_type (struct type *type)
{
  if (type != NULL)
    {
      type = TYPE_TARGET_TYPE (type);
      if (type != NULL)
	type = check_typedef (type);
    }

  return type;
}

/* See gdbtypes.h.  */

unsigned int
type_length_units (struct type *type)
{
  struct gdbarch *arch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (arch);

  return TYPE_LENGTH (type) / unit_size;
}

/* Alloc a new type instance structure, fill it with some defaults,
   and point it at OLDTYPE.  Allocate the new type instance from the
   same place as OLDTYPE.  */

static struct type *
alloc_type_instance (struct type *oldtype)
{
  struct type *type;

  /* Allocate the structure.  */

  if (! TYPE_OBJFILE_OWNED (oldtype))
    type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
  else
    type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
			   struct type);

  TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);

  TYPE_CHAIN (type) = type;	/* Chain back to itself for now.  */

  return type;
}

/* Clear all remnants of the previous type at TYPE, in preparation for
   replacing it with something else.  Preserve owner information.  */

static void
smash_type (struct type *type)
{
  int objfile_owned = TYPE_OBJFILE_OWNED (type);
  union type_owner owner = TYPE_OWNER (type);

  memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));

  /* Restore owner information.  */
  TYPE_OBJFILE_OWNED (type) = objfile_owned;
  TYPE_OWNER (type) = owner;

  /* For now, delete the rings.  */
  TYPE_CHAIN (type) = type;

  /* For now, leave the pointer/reference types alone.  */
}

/* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
   to a pointer to memory where the pointer type should be stored.
   If *TYPEPTR is zero, update it to point to the pointer type we return.
   We allocate new memory if needed.  */

struct type *
make_pointer_type (struct type *type, struct type **typeptr)
{
  struct type *ntype;	/* New type */
  struct type *chain;

  ntype = TYPE_POINTER_TYPE (type);

  if (ntype)
    {
      if (typeptr == 0)
	return ntype;		/* Don't care about alloc, 
				   and have new type.  */
      else if (*typeptr == 0)
	{
	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
	  return ntype;
	}
    }

  if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
    {
      ntype = alloc_type_copy (type);
      if (typeptr)
	*typeptr = ntype;
    }
  else			/* We have storage, but need to reset it.  */
    {
      ntype = *typeptr;
      chain = TYPE_CHAIN (ntype);
      smash_type (ntype);
      TYPE_CHAIN (ntype) = chain;
    }

  TYPE_TARGET_TYPE (ntype) = type;
  TYPE_POINTER_TYPE (type) = ntype;

  /* FIXME!  Assumes the machine has only one representation for pointers!  */

  TYPE_LENGTH (ntype)
    = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
  ntype->set_code (TYPE_CODE_PTR);

  /* Mark pointers as unsigned.  The target converts between pointers
     and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
     gdbarch_address_to_pointer.  */
  TYPE_UNSIGNED (ntype) = 1;

  /* Update the length of all the other variants of this type.  */
  chain = TYPE_CHAIN (ntype);
  while (chain != ntype)
    {
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      chain = TYPE_CHAIN (chain);
    }

  return ntype;
}

/* Given a type TYPE, return a type of pointers to that type.
   May need to construct such a type if this is the first use.  */

struct type *
lookup_pointer_type (struct type *type)
{
  return make_pointer_type (type, (struct type **) 0);
}

/* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero,
   points to a pointer to memory where the reference type should be
   stored.  If *TYPEPTR is zero, update it to point to the reference
   type we return.  We allocate new memory if needed. REFCODE denotes
   the kind of reference type to lookup (lvalue or rvalue reference).  */

struct type *
make_reference_type (struct type *type, struct type **typeptr,
                      enum type_code refcode)
{
  struct type *ntype;	/* New type */
  struct type **reftype;
  struct type *chain;

  gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);

  ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
           : TYPE_RVALUE_REFERENCE_TYPE (type));

  if (ntype)
    {
      if (typeptr == 0)
	return ntype;		/* Don't care about alloc, 
				   and have new type.  */
      else if (*typeptr == 0)
	{
	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
	  return ntype;
	}
    }

  if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
    {
      ntype = alloc_type_copy (type);
      if (typeptr)
	*typeptr = ntype;
    }
  else			/* We have storage, but need to reset it.  */
    {
      ntype = *typeptr;
      chain = TYPE_CHAIN (ntype);
      smash_type (ntype);
      TYPE_CHAIN (ntype) = chain;
    }

  TYPE_TARGET_TYPE (ntype) = type;
  reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
             : &TYPE_RVALUE_REFERENCE_TYPE (type));

  *reftype = ntype;

  /* FIXME!  Assume the machine has only one representation for
     references, and that it matches the (only) representation for
     pointers!  */

  TYPE_LENGTH (ntype) =
    gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
  ntype->set_code (refcode);

  *reftype = ntype;

  /* Update the length of all the other variants of this type.  */
  chain = TYPE_CHAIN (ntype);
  while (chain != ntype)
    {
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      chain = TYPE_CHAIN (chain);
    }

  return ntype;
}

/* Same as above, but caller doesn't care about memory allocation
   details.  */

struct type *
lookup_reference_type (struct type *type, enum type_code refcode)
{
  return make_reference_type (type, (struct type **) 0, refcode);
}

/* Lookup the lvalue reference type for the type TYPE.  */

struct type *
lookup_lvalue_reference_type (struct type *type)
{
  return lookup_reference_type (type, TYPE_CODE_REF);
}

/* Lookup the rvalue reference type for the type TYPE.  */

struct type *
lookup_rvalue_reference_type (struct type *type)
{
  return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
}

/* Lookup a function type that returns type TYPE.  TYPEPTR, if
   nonzero, points to a pointer to memory where the function type
   should be stored.  If *TYPEPTR is zero, update it to point to the
   function type we return.  We allocate new memory if needed.  */

struct type *
make_function_type (struct type *type, struct type **typeptr)
{
  struct type *ntype;	/* New type */

  if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
    {
      ntype = alloc_type_copy (type);
      if (typeptr)
	*typeptr = ntype;
    }
  else			/* We have storage, but need to reset it.  */
    {
      ntype = *typeptr;
      smash_type (ntype);
    }

  TYPE_TARGET_TYPE (ntype) = type;

  TYPE_LENGTH (ntype) = 1;
  ntype->set_code (TYPE_CODE_FUNC);

  INIT_FUNC_SPECIFIC (ntype);

  return ntype;
}

/* Given a type TYPE, return a type of functions that return that type.
   May need to construct such a type if this is the first use.  */

struct type *
lookup_function_type (struct type *type)
{
  return make_function_type (type, (struct type **) 0);
}

/* Given a type TYPE and argument types, return the appropriate
   function type.  If the final type in PARAM_TYPES is NULL, make a
   varargs function.  */

struct type *
lookup_function_type_with_arguments (struct type *type,
				     int nparams,
				     struct type **param_types)
{
  struct type *fn = make_function_type (type, (struct type **) 0);
  int i;

  if (nparams > 0)
    {
      if (param_types[nparams - 1] == NULL)
	{
	  --nparams;
	  TYPE_VARARGS (fn) = 1;
	}
      else if (check_typedef (param_types[nparams - 1])->code ()
	       == TYPE_CODE_VOID)
	{
	  --nparams;
	  /* Caller should have ensured this.  */
	  gdb_assert (nparams == 0);
	  TYPE_PROTOTYPED (fn) = 1;
	}
      else
	TYPE_PROTOTYPED (fn) = 1;
    }

  fn->set_num_fields (nparams);
  fn->set_fields
    ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
  for (i = 0; i < nparams; ++i)
    fn->field (i).set_type (param_types[i]);

  return fn;
}

/* Identify address space identifier by name --
   return the integer flag defined in gdbtypes.h.  */

int
address_space_name_to_int (struct gdbarch *gdbarch,
			   const char *space_identifier)
{
  int type_flags;

  /* Check for known address space delimiters.  */
  if (!strcmp (space_identifier, "code"))
    return TYPE_INSTANCE_FLAG_CODE_SPACE;
  else if (!strcmp (space_identifier, "data"))
    return TYPE_INSTANCE_FLAG_DATA_SPACE;
  else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
           && gdbarch_address_class_name_to_type_flags (gdbarch,
							space_identifier,
							&type_flags))
    return type_flags;
  else
    error (_("Unknown address space specifier: \"%s\""), space_identifier);
}

/* Identify address space identifier by integer flag as defined in 
   gdbtypes.h -- return the string version of the adress space name.  */

const char *
address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
{
  if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
    return "code";
  else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
    return "data";
  else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
           && gdbarch_address_class_type_flags_to_name_p (gdbarch))
    return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
  else
    return NULL;
}

/* Create a new type with instance flags NEW_FLAGS, based on TYPE.

   If STORAGE is non-NULL, create the new type instance there.
   STORAGE must be in the same obstack as TYPE.  */

static struct type *
make_qualified_type (struct type *type, int new_flags,
		     struct type *storage)
{
  struct type *ntype;

  ntype = type;
  do
    {
      if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
	return ntype;
      ntype = TYPE_CHAIN (ntype);
    }
  while (ntype != type);

  /* Create a new type instance.  */
  if (storage == NULL)
    ntype = alloc_type_instance (type);
  else
    {
      /* If STORAGE was provided, it had better be in the same objfile
	 as TYPE.  Otherwise, we can't link it into TYPE's cv chain:
	 if one objfile is freed and the other kept, we'd have
	 dangling pointers.  */
      gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));

      ntype = storage;
      TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
      TYPE_CHAIN (ntype) = ntype;
    }

  /* Pointers or references to the original type are not relevant to
     the new type.  */
  TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
  TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;

  /* Chain the new qualified type to the old type.  */
  TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
  TYPE_CHAIN (type) = ntype;

  /* Now set the instance flags and return the new type.  */
  TYPE_INSTANCE_FLAGS (ntype) = new_flags;

  /* Set length of new type to that of the original type.  */
  TYPE_LENGTH (ntype) = TYPE_LENGTH (type);

  return ntype;
}

/* Make an address-space-delimited variant of a type -- a type that
   is identical to the one supplied except that it has an address
   space attribute attached to it (such as "code" or "data").

   The space attributes "code" and "data" are for Harvard
   architectures.  The address space attributes are for architectures
   which have alternately sized pointers or pointers with alternate
   representations.  */

struct type *
make_type_with_address_space (struct type *type, int space_flag)
{
  int new_flags = ((TYPE_INSTANCE_FLAGS (type)
		    & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
			| TYPE_INSTANCE_FLAG_DATA_SPACE
		        | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
		   | space_flag);

  return make_qualified_type (type, new_flags, NULL);
}

/* Make a "c-v" variant of a type -- a type that is identical to the
   one supplied except that it may have const or volatile attributes
   CNST is a flag for setting the const attribute
   VOLTL is a flag for setting the volatile attribute
   TYPE is the base type whose variant we are creating.

   If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
   storage to hold the new qualified type; *TYPEPTR and TYPE must be
   in the same objfile.  Otherwise, allocate fresh memory for the new
   type whereever TYPE lives.  If TYPEPTR is non-zero, set it to the
   new type we construct.  */

struct type *
make_cv_type (int cnst, int voltl, 
	      struct type *type, 
	      struct type **typeptr)
{
  struct type *ntype;	/* New type */

  int new_flags = (TYPE_INSTANCE_FLAGS (type)
		   & ~(TYPE_INSTANCE_FLAG_CONST 
		       | TYPE_INSTANCE_FLAG_VOLATILE));

  if (cnst)
    new_flags |= TYPE_INSTANCE_FLAG_CONST;

  if (voltl)
    new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;

  if (typeptr && *typeptr != NULL)
    {
      /* TYPE and *TYPEPTR must be in the same objfile.  We can't have
	 a C-V variant chain that threads across objfiles: if one
	 objfile gets freed, then the other has a broken C-V chain.

	 This code used to try to copy over the main type from TYPE to
	 *TYPEPTR if they were in different objfiles, but that's
	 wrong, too: TYPE may have a field list or member function
	 lists, which refer to types of their own, etc. etc.  The
	 whole shebang would need to be copied over recursively; you
	 can't have inter-objfile pointers.  The only thing to do is
	 to leave stub types as stub types, and look them up afresh by
	 name each time you encounter them.  */
      gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
    }
  
  ntype = make_qualified_type (type, new_flags, 
			       typeptr ? *typeptr : NULL);

  if (typeptr != NULL)
    *typeptr = ntype;

  return ntype;
}

/* Make a 'restrict'-qualified version of TYPE.  */

struct type *
make_restrict_type (struct type *type)
{
  return make_qualified_type (type,
			      (TYPE_INSTANCE_FLAGS (type)
			       | TYPE_INSTANCE_FLAG_RESTRICT),
			      NULL);
}

/* Make a type without const, volatile, or restrict.  */

struct type *
make_unqualified_type (struct type *type)
{
  return make_qualified_type (type,
			      (TYPE_INSTANCE_FLAGS (type)
			       & ~(TYPE_INSTANCE_FLAG_CONST
				   | TYPE_INSTANCE_FLAG_VOLATILE
				   | TYPE_INSTANCE_FLAG_RESTRICT)),
			      NULL);
}

/* Make a '_Atomic'-qualified version of TYPE.  */

struct type *
make_atomic_type (struct type *type)
{
  return make_qualified_type (type,
			      (TYPE_INSTANCE_FLAGS (type)
			       | TYPE_INSTANCE_FLAG_ATOMIC),
			      NULL);
}

/* Replace the contents of ntype with the type *type.  This changes the
   contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
   the changes are propogated to all types in the TYPE_CHAIN.

   In order to build recursive types, it's inevitable that we'll need
   to update types in place --- but this sort of indiscriminate
   smashing is ugly, and needs to be replaced with something more
   controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
   clear if more steps are needed.  */

void
replace_type (struct type *ntype, struct type *type)
{
  struct type *chain;

  /* These two types had better be in the same objfile.  Otherwise,
     the assignment of one type's main type structure to the other
     will produce a type with references to objects (names; field
     lists; etc.) allocated on an objfile other than its own.  */
  gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));

  *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);

  /* The type length is not a part of the main type.  Update it for
     each type on the variant chain.  */
  chain = ntype;
  do
    {
      /* Assert that this element of the chain has no address-class bits
	 set in its flags.  Such type variants might have type lengths
	 which are supposed to be different from the non-address-class
	 variants.  This assertion shouldn't ever be triggered because
	 symbol readers which do construct address-class variants don't
	 call replace_type().  */
      gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);

      TYPE_LENGTH (chain) = TYPE_LENGTH (type);
      chain = TYPE_CHAIN (chain);
    }
  while (ntype != chain);

  /* Assert that the two types have equivalent instance qualifiers.
     This should be true for at least all of our debug readers.  */
  gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
}

/* Implement direct support for MEMBER_TYPE in GNU C++.
   May need to construct such a type if this is the first use.
   The TYPE is the type of the member.  The DOMAIN is the type
   of the aggregate that the member belongs to.  */

struct type *
lookup_memberptr_type (struct type *type, struct type *domain)
{
  struct type *mtype;

  mtype = alloc_type_copy (type);
  smash_to_memberptr_type (mtype, domain, type);
  return mtype;
}

/* Return a pointer-to-method type, for a method of type TO_TYPE.  */

struct type *
lookup_methodptr_type (struct type *to_type)
{
  struct type *mtype;

  mtype = alloc_type_copy (to_type);
  smash_to_methodptr_type (mtype, to_type);
  return mtype;
}

/* Allocate a stub method whose return type is TYPE.  This apparently
   happens for speed of symbol reading, since parsing out the
   arguments to the method is cpu-intensive, the way we are doing it.
   So, we will fill in arguments later.  This always returns a fresh
   type.  */

struct type *
allocate_stub_method (struct type *type)
{
  struct type *mtype;

  mtype = alloc_type_copy (type);
  mtype->set_code (TYPE_CODE_METHOD);
  TYPE_LENGTH (mtype) = 1;
  TYPE_STUB (mtype) = 1;
  TYPE_TARGET_TYPE (mtype) = type;
  /* TYPE_SELF_TYPE (mtype) = unknown yet */
  return mtype;
}

/* See gdbtypes.h.  */

bool
operator== (const dynamic_prop &l, const dynamic_prop &r)
{
  if (l.kind () != r.kind ())
    return false;

  switch (l.kind ())
    {
    case PROP_UNDEFINED:
      return true;
    case PROP_CONST:
      return l.const_val () == r.const_val ();
    case PROP_ADDR_OFFSET:
    case PROP_LOCEXPR:
    case PROP_LOCLIST:
      return l.baton () == r.baton ();
    case PROP_VARIANT_PARTS:
      return l.variant_parts () == r.variant_parts ();
    case PROP_TYPE:
      return l.original_type () == r.original_type ();
    }

  gdb_assert_not_reached ("unhandled dynamic_prop kind");
}

/* See gdbtypes.h.  */

bool
operator== (const range_bounds &l, const range_bounds &r)
{
#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)

  return (FIELD_EQ (low)
	  && FIELD_EQ (high)
	  && FIELD_EQ (flag_upper_bound_is_count)
	  && FIELD_EQ (flag_bound_evaluated)
	  && FIELD_EQ (bias));

#undef FIELD_EQ
}

/* Create a range type with a dynamic range from LOW_BOUND to
   HIGH_BOUND, inclusive.  See create_range_type for further details. */

struct type *
create_range_type (struct type *result_type, struct type *index_type,
		   const struct dynamic_prop *low_bound,
		   const struct dynamic_prop *high_bound,
		   LONGEST bias)
{
  /* The INDEX_TYPE should be a type capable of holding the upper and lower
     bounds, as such a zero sized, or void type makes no sense.  */
  gdb_assert (index_type->code () != TYPE_CODE_VOID);
  gdb_assert (TYPE_LENGTH (index_type) > 0);

  if (result_type == NULL)
    result_type = alloc_type_copy (index_type);
  result_type->set_code (TYPE_CODE_RANGE);
  TYPE_TARGET_TYPE (result_type) = index_type;
  if (TYPE_STUB (index_type))
    TYPE_TARGET_STUB (result_type) = 1;
  else
    TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));

  range_bounds *bounds
    = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
  bounds->low = *low_bound;
  bounds->high = *high_bound;
  bounds->bias = bias;
  bounds->stride.set_const_val (0);

  result_type->set_bounds (bounds);

  if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
    TYPE_UNSIGNED (result_type) = 1;

  /* Ada allows the declaration of range types whose upper bound is
     less than the lower bound, so checking the lower bound is not
     enough.  Make sure we do not mark a range type whose upper bound
     is negative as unsigned.  */
  if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
    TYPE_UNSIGNED (result_type) = 0;

  TYPE_ENDIANITY_NOT_DEFAULT (result_type)
    = TYPE_ENDIANITY_NOT_DEFAULT (index_type);

  return result_type;
}

/* See gdbtypes.h.  */

struct type *
create_range_type_with_stride (struct type *result_type,
			       struct type *index_type,
			       const struct dynamic_prop *low_bound,
			       const struct dynamic_prop *high_bound,
			       LONGEST bias,
			       const struct dynamic_prop *stride,
			       bool byte_stride_p)
{
  result_type = create_range_type (result_type, index_type, low_bound,
				   high_bound, bias);

  gdb_assert (stride != nullptr);
  result_type->bounds ()->stride = *stride;
  result_type->bounds ()->flag_is_byte_stride = byte_stride_p;

  return result_type;
}



/* Create a range type using either a blank type supplied in
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   INDEX_TYPE.

   Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
   to HIGH_BOUND, inclusive.

   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into a range type?  */

struct type *
create_static_range_type (struct type *result_type, struct type *index_type,
			  LONGEST low_bound, LONGEST high_bound)
{
  struct dynamic_prop low, high;

  low.set_const_val (low_bound);
  high.set_const_val (high_bound);

  result_type = create_range_type (result_type, index_type, &low, &high, 0);

  return result_type;
}

/* Predicate tests whether BOUNDS are static.  Returns 1 if all bounds values
   are static, otherwise returns 0.  */

static bool
has_static_range (const struct range_bounds *bounds)
{
  /* If the range doesn't have a defined stride then its stride field will
     be initialized to the constant 0.  */
  return (bounds->low.kind () == PROP_CONST
	  && bounds->high.kind () == PROP_CONST
	  && bounds->stride.kind () == PROP_CONST);
}

/* See gdbtypes.h.  */

gdb::optional<LONGEST>
get_discrete_low_bound (struct type *type)
{
  type = check_typedef (type);
  switch (type->code ())
    {
    case TYPE_CODE_RANGE:
      {
	/* This function only works for ranges with a constant low bound.  */
	if (type->bounds ()->low.kind () != PROP_CONST)
	  return {};

	LONGEST low = type->bounds ()->low.const_val ();

	if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
	  {
	    gdb::optional<LONGEST> low_pos
	      = discrete_position (TYPE_TARGET_TYPE (type), low);

	    if (low_pos.has_value ())
	      low = *low_pos;
	  }

	return low;
      }

    case TYPE_CODE_ENUM:
      {
	if (type->num_fields () > 0)
	  {
	    /* The enums may not be sorted by value, so search all
	       entries.  */
	    LONGEST low = TYPE_FIELD_ENUMVAL (type, 0);

	    for (int i = 0; i < type->num_fields (); i++)
	      {
		if (TYPE_FIELD_ENUMVAL (type, i) < low)
		  low = TYPE_FIELD_ENUMVAL (type, i);
	      }

	    /* Set unsigned indicator if warranted.  */
	    if (low >= 0)
	      TYPE_UNSIGNED (type) = 1;

	    return low;
	  }
	else
	  return 0;
      }

    case TYPE_CODE_BOOL:
      return 0;

    case TYPE_CODE_INT:
      if (TYPE_LENGTH (type) > sizeof (LONGEST))	/* Too big */
	return {};

      if (!TYPE_UNSIGNED (type))
	return -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));

      /* fall through */
    case TYPE_CODE_CHAR:
      return 0;

    default:
      return {};
    }
}

/* See gdbtypes.h.  */

gdb::optional<LONGEST>
get_discrete_high_bound (struct type *type)
{
  type = check_typedef (type);
  switch (type->code ())
    {
    case TYPE_CODE_RANGE:
      {
	/* This function only works for ranges with a constant high bound.  */
	if (type->bounds ()->high.kind () != PROP_CONST)
	  return {};

	LONGEST high = type->bounds ()->high.const_val ();

	if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
	  {
	    gdb::optional<LONGEST> high_pos
	      = discrete_position (TYPE_TARGET_TYPE (type), high);

	    if (high_pos.has_value ())
	      high = *high_pos;
	  }

	return high;
      }

    case TYPE_CODE_ENUM:
      {
	if (type->num_fields () > 0)
	  {
	    /* The enums may not be sorted by value, so search all
	       entries.  */
	    LONGEST high = TYPE_FIELD_ENUMVAL (type, 0);

	    for (int i = 0; i < type->num_fields (); i++)
	      {
		if (TYPE_FIELD_ENUMVAL (type, i) > high)
		  high = TYPE_FIELD_ENUMVAL (type, i);
	      }

	    return high;
	  }
	else
	  return -1;
      }

    case TYPE_CODE_BOOL:
      return 1;

    case TYPE_CODE_INT:
      if (TYPE_LENGTH (type) > sizeof (LONGEST))	/* Too big */
	return {};

      if (!TYPE_UNSIGNED (type))
	{
	  LONGEST low = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
	  return -low - 1;
	}

      /* fall through */
    case TYPE_CODE_CHAR:
      {
	/* This round-about calculation is to avoid shifting by
	   TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
	   if TYPE_LENGTH (type) == sizeof (LONGEST).  */
	LONGEST high = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
	return (high - 1) | high;
      }

    default:
      return {};
    }
}

/* See gdbtypes.h.  */

bool
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
{
  gdb::optional<LONGEST> low = get_discrete_low_bound (type);
  if (!low.has_value ())
    return false;

  gdb::optional<LONGEST> high = get_discrete_high_bound (type);
  if (!high.has_value ())
    return false;

  *lowp = *low;
  *highp = *high;

  return true;
}

/* Assuming TYPE is a simple, non-empty array type, compute its upper
   and lower bound.  Save the low bound into LOW_BOUND if not NULL.
   Save the high bound into HIGH_BOUND if not NULL.

   Return 1 if the operation was successful.  Return zero otherwise,
   in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.  */

int
get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
{
  struct type *index = type->index_type ();
  LONGEST low = 0;
  LONGEST high = 0;

  if (index == NULL)
    return 0;

  if (!get_discrete_bounds (index, &low, &high))
    return 0;

  if (low_bound)
    *low_bound = low;

  if (high_bound)
    *high_bound = high;

  return 1;
}

/* Assuming that TYPE is a discrete type and VAL is a valid integer
   representation of a value of this type, save the corresponding
   position number in POS.

   Its differs from VAL only in the case of enumeration types.  In
   this case, the position number of the value of the first listed
   enumeration literal is zero; the position number of the value of
   each subsequent enumeration literal is one more than that of its
   predecessor in the list.

   Return 1 if the operation was successful.  Return zero otherwise,
   in which case the value of POS is unmodified.
*/

gdb::optional<LONGEST>
discrete_position (struct type *type, LONGEST val)
{
  if (type->code () == TYPE_CODE_RANGE)
    type = TYPE_TARGET_TYPE (type);

  if (type->code () == TYPE_CODE_ENUM)
    {
      int i;

      for (i = 0; i < type->num_fields (); i += 1)
        {
          if (val == TYPE_FIELD_ENUMVAL (type, i))
	    return i;
        }
      /* Invalid enumeration value.  */
      return {};
    }
  else
    return val;
}

/* If the array TYPE has static bounds calculate and update its
   size, then return true.  Otherwise return false and leave TYPE
   unchanged.  */

static bool
update_static_array_size (struct type *type)
{
  gdb_assert (type->code () == TYPE_CODE_ARRAY);

  struct type *range_type = type->index_type ();

  if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
      && has_static_range (range_type->bounds ())
      && (!type_not_associated (type)
	  && !type_not_allocated (type)))
    {
      LONGEST low_bound, high_bound;
      int stride;
      struct type *element_type;

      /* If the array itself doesn't provide a stride value then take
	 whatever stride the range provides.  Don't update BIT_STRIDE as
	 we don't want to place the stride value from the range into this
	 arrays bit size field.  */
      stride = TYPE_FIELD_BITSIZE (type, 0);
      if (stride == 0)
	stride = range_type->bit_stride ();

      if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
	low_bound = high_bound = 0;

      element_type = check_typedef (TYPE_TARGET_TYPE (type));
      /* Be careful when setting the array length.  Ada arrays can be
	 empty arrays with the high_bound being smaller than the low_bound.
	 In such cases, the array length should be zero.  */
      if (high_bound < low_bound)
	TYPE_LENGTH (type) = 0;
      else if (stride != 0)
	{
	  /* Ensure that the type length is always positive, even in the
	     case where (for example in Fortran) we have a negative
	     stride.  It is possible to have a single element array with a
	     negative stride in Fortran (this doesn't mean anything
	     special, it's still just a single element array) so do
	     consider that case when touching this code.  */
	  LONGEST element_count = std::abs (high_bound - low_bound + 1);
	  TYPE_LENGTH (type)
	    = ((std::abs (stride) * element_count) + 7) / 8;
	}
      else
	TYPE_LENGTH (type) =
	  TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);

      return true;
    }

  return false;
}

/* Create an array type using either a blank type supplied in
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   RANGE_TYPE.

   Elements will be of type ELEMENT_TYPE, the indices will be of type
   RANGE_TYPE.

   BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
   This byte stride property is added to the resulting array type
   as a DYN_PROP_BYTE_STRIDE.  As a consequence, the BYTE_STRIDE_PROP
   argument can only be used to create types that are objfile-owned
   (see add_dyn_prop), meaning that either this function must be called
   with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.

   BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
   If BIT_STRIDE is not zero, build a packed array type whose element
   size is BIT_STRIDE.  Otherwise, ignore this parameter.

   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into an array
   type?  */

struct type *
create_array_type_with_stride (struct type *result_type,
			       struct type *element_type,
			       struct type *range_type,
			       struct dynamic_prop *byte_stride_prop,
			       unsigned int bit_stride)
{
  if (byte_stride_prop != NULL
      && byte_stride_prop->kind () == PROP_CONST)
    {
      /* The byte stride is actually not dynamic.  Pretend we were
	 called with bit_stride set instead of byte_stride_prop.
	 This will give us the same result type, while avoiding
	 the need to handle this as a special case.  */
      bit_stride = byte_stride_prop->const_val () * 8;
      byte_stride_prop = NULL;
    }

  if (result_type == NULL)
    result_type = alloc_type_copy (range_type);

  result_type->set_code (TYPE_CODE_ARRAY);
  TYPE_TARGET_TYPE (result_type) = element_type;

  result_type->set_num_fields (1);
  result_type->set_fields
    ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
  result_type->set_index_type (range_type);
  if (byte_stride_prop != NULL)
    result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
  else if (bit_stride > 0)
    TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;

  if (!update_static_array_size (result_type))
    {
      /* This type is dynamic and its length needs to be computed
         on demand.  In the meantime, avoid leaving the TYPE_LENGTH
         undefined by setting it to zero.  Although we are not expected
         to trust TYPE_LENGTH in this case, setting the size to zero
         allows us to avoid allocating objects of random sizes in case
         we accidently do.  */
      TYPE_LENGTH (result_type) = 0;
    }

  /* TYPE_TARGET_STUB will take care of zero length arrays.  */
  if (TYPE_LENGTH (result_type) == 0)
    TYPE_TARGET_STUB (result_type) = 1;

  return result_type;
}

/* Same as create_array_type_with_stride but with no bit_stride
   (BIT_STRIDE = 0), thus building an unpacked array.  */

struct type *
create_array_type (struct type *result_type,
		   struct type *element_type,
		   struct type *range_type)
{
  return create_array_type_with_stride (result_type, element_type,
					range_type, NULL, 0);
}

struct type *
lookup_array_range_type (struct type *element_type,
			 LONGEST low_bound, LONGEST high_bound)
{
  struct type *index_type;
  struct type *range_type;

  if (TYPE_OBJFILE_OWNED (element_type))
    index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
  else
    index_type = builtin_type (get_type_arch (element_type))->builtin_int;
  range_type = create_static_range_type (NULL, index_type,
					 low_bound, high_bound);

  return create_array_type (NULL, element_type, range_type);
}

/* Create a string type using either a blank type supplied in
   RESULT_TYPE, or creating a new type.  String types are similar
   enough to array of char types that we can use create_array_type to
   build the basic type and then bash it into a string type.

   For fixed length strings, the range type contains 0 as the lower
   bound and the length of the string minus one as the upper bound.

   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into a string
   type?  */

struct type *
create_string_type (struct type *result_type,
		    struct type *string_char_type,
		    struct type *range_type)
{
  result_type = create_array_type (result_type,
				   string_char_type,
				   range_type);
  result_type->set_code (TYPE_CODE_STRING);
  return result_type;
}

struct type *
lookup_string_range_type (struct type *string_char_type,
			  LONGEST low_bound, LONGEST high_bound)
{
  struct type *result_type;

  result_type = lookup_array_range_type (string_char_type,
					 low_bound, high_bound);
  result_type->set_code (TYPE_CODE_STRING);
  return result_type;
}

struct type *
create_set_type (struct type *result_type, struct type *domain_type)
{
  if (result_type == NULL)
    result_type = alloc_type_copy (domain_type);

  result_type->set_code (TYPE_CODE_SET);
  result_type->set_num_fields (1);
  result_type->set_fields
    ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));

  if (!TYPE_STUB (domain_type))
    {
      LONGEST low_bound, high_bound, bit_length;

      if (!get_discrete_bounds (domain_type, &low_bound, &high_bound))
	low_bound = high_bound = 0;

      bit_length = high_bound - low_bound + 1;
      TYPE_LENGTH (result_type)
	= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
      if (low_bound >= 0)
	TYPE_UNSIGNED (result_type) = 1;
    }
  result_type->field (0).set_type (domain_type);

  return result_type;
}

/* Convert ARRAY_TYPE to a vector type.  This may modify ARRAY_TYPE
   and any array types nested inside it.  */

void
make_vector_type (struct type *array_type)
{
  struct type *inner_array, *elt_type;
  int flags;

  /* Find the innermost array type, in case the array is
     multi-dimensional.  */
  inner_array = array_type;
  while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
    inner_array = TYPE_TARGET_TYPE (inner_array);

  elt_type = TYPE_TARGET_TYPE (inner_array);
  if (elt_type->code () == TYPE_CODE_INT)
    {
      flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
      elt_type = make_qualified_type (elt_type, flags, NULL);
      TYPE_TARGET_TYPE (inner_array) = elt_type;
    }

  TYPE_VECTOR (array_type) = 1;
}

struct type *
init_vector_type (struct type *elt_type, int n)
{
  struct type *array_type;

  array_type = lookup_array_range_type (elt_type, 0, n - 1);
  make_vector_type (array_type);
  return array_type;
}

/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
   belongs to.  In c++ this is the class of "this", but TYPE_THIS_TYPE is too
   confusing.  "self" is a common enough replacement for "this".
   TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
   TYPE_CODE_METHOD.  */

struct type *
internal_type_self_type (struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_METHODPTR:
    case TYPE_CODE_MEMBERPTR:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	return NULL;
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
      return TYPE_MAIN_TYPE (type)->type_specific.self_type;
    case TYPE_CODE_METHOD:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	return NULL;
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
      return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
    default:
      gdb_assert_not_reached ("bad type");
    }
}

/* Set the type of the class that TYPE belongs to.
   In c++ this is the class of "this".
   TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
   TYPE_CODE_METHOD.  */

void
set_type_self_type (struct type *type, struct type *self_type)
{
  switch (type->code ())
    {
    case TYPE_CODE_METHODPTR:
    case TYPE_CODE_MEMBERPTR:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
      TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
      break;
    case TYPE_CODE_METHOD:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	INIT_FUNC_SPECIFIC (type);
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
      TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
      break;
    default:
      gdb_assert_not_reached ("bad type");
    }
}

/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
   TO_TYPE.  A member pointer is a wierd thing -- it amounts to a
   typed offset into a struct, e.g. "an int at offset 8".  A MEMBER
   TYPE doesn't include the offset (that's the value of the MEMBER
   itself), but does include the structure type into which it points
   (for some reason).

   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   allocated.  */

void
smash_to_memberptr_type (struct type *type, struct type *self_type,
			 struct type *to_type)
{
  smash_type (type);
  type->set_code (TYPE_CODE_MEMBERPTR);
  TYPE_TARGET_TYPE (type) = to_type;
  set_type_self_type (type, self_type);
  /* Assume that a data member pointer is the same size as a normal
     pointer.  */
  TYPE_LENGTH (type)
    = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
}

/* Smash TYPE to be a type of pointer to methods type TO_TYPE.

   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   allocated.  */

void
smash_to_methodptr_type (struct type *type, struct type *to_type)
{
  smash_type (type);
  type->set_code (TYPE_CODE_METHODPTR);
  TYPE_TARGET_TYPE (type) = to_type;
  set_type_self_type (type, TYPE_SELF_TYPE (to_type));
  TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
}

/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
   METHOD just means `function that gets an extra "this" argument'.

   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   allocated.  */

void
smash_to_method_type (struct type *type, struct type *self_type,
		      struct type *to_type, struct field *args,
		      int nargs, int varargs)
{
  smash_type (type);
  type->set_code (TYPE_CODE_METHOD);
  TYPE_TARGET_TYPE (type) = to_type;
  set_type_self_type (type, self_type);
  type->set_fields (args);
  type->set_num_fields (nargs);
  if (varargs)
    TYPE_VARARGS (type) = 1;
  TYPE_LENGTH (type) = 1;	/* In practice, this is never needed.  */
}

/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
   Since GCC PR debug/47510 DWARF provides associated information to detect the
   anonymous class linkage name from its typedef.

   Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
   apply it itself.  */

const char *
type_name_or_error (struct type *type)
{
  struct type *saved_type = type;
  const char *name;
  struct objfile *objfile;

  type = check_typedef (type);

  name = type->name ();
  if (name != NULL)
    return name;

  name = saved_type->name ();
  objfile = TYPE_OBJFILE (saved_type);
  error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
	 name ? name : "<anonymous>",
	 objfile ? objfile_name (objfile) : "<arch>");
}

/* Lookup a typedef or primitive type named NAME, visible in lexical
   block BLOCK.  If NOERR is nonzero, return zero if NAME is not
   suitably defined.  */

struct type *
lookup_typename (const struct language_defn *language,
		 const char *name,
		 const struct block *block, int noerr)
{
  struct symbol *sym;

  sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
				   language->la_language, NULL).symbol;
  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
    return SYMBOL_TYPE (sym);

  if (noerr)
    return NULL;
  error (_("No type named %s."), name);
}

struct type *
lookup_unsigned_typename (const struct language_defn *language,
			  const char *name)
{
  char *uns = (char *) alloca (strlen (name) + 10);

  strcpy (uns, "unsigned ");
  strcpy (uns + 9, name);
  return lookup_typename (language, uns, NULL, 0);
}

struct type *
lookup_signed_typename (const struct language_defn *language, const char *name)
{
  struct type *t;
  char *uns = (char *) alloca (strlen (name) + 8);

  strcpy (uns, "signed ");
  strcpy (uns + 7, name);
  t = lookup_typename (language, uns, NULL, 1);
  /* If we don't find "signed FOO" just try again with plain "FOO".  */
  if (t != NULL)
    return t;
  return lookup_typename (language, name, NULL, 0);
}

/* Lookup a structure type named "struct NAME",
   visible in lexical block BLOCK.  */

struct type *
lookup_struct (const char *name, const struct block *block)
{
  struct symbol *sym;

  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;

  if (sym == NULL)
    {
      error (_("No struct type named %s."), name);
    }
  if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
    {
      error (_("This context has class, union or enum %s, not a struct."),
	     name);
    }
  return (SYMBOL_TYPE (sym));
}

/* Lookup a union type named "union NAME",
   visible in lexical block BLOCK.  */

struct type *
lookup_union (const char *name, const struct block *block)
{
  struct symbol *sym;
  struct type *t;

  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;

  if (sym == NULL)
    error (_("No union type named %s."), name);

  t = SYMBOL_TYPE (sym);

  if (t->code () == TYPE_CODE_UNION)
    return t;

  /* If we get here, it's not a union.  */
  error (_("This context has class, struct or enum %s, not a union."), 
	 name);
}

/* Lookup an enum type named "enum NAME",
   visible in lexical block BLOCK.  */

struct type *
lookup_enum (const char *name, const struct block *block)
{
  struct symbol *sym;

  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
  if (sym == NULL)
    {
      error (_("No enum type named %s."), name);
    }
  if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
    {
      error (_("This context has class, struct or union %s, not an enum."), 
	     name);
    }
  return (SYMBOL_TYPE (sym));
}

/* Lookup a template type named "template NAME<TYPE>",
   visible in lexical block BLOCK.  */

struct type *
lookup_template_type (const char *name, struct type *type, 
		      const struct block *block)
{
  struct symbol *sym;
  char *nam = (char *) 
    alloca (strlen (name) + strlen (type->name ()) + 4);

  strcpy (nam, name);
  strcat (nam, "<");
  strcat (nam, type->name ());
  strcat (nam, " >");	/* FIXME, extra space still introduced in gcc?  */

  sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;

  if (sym == NULL)
    {
      error (_("No template type named %s."), name);
    }
  if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
    {
      error (_("This context has class, union or enum %s, not a struct."),
	     name);
    }
  return (SYMBOL_TYPE (sym));
}

/* See gdbtypes.h.  */

struct_elt
lookup_struct_elt (struct type *type, const char *name, int noerr)
{
  int i;

  for (;;)
    {
      type = check_typedef (type);
      if (type->code () != TYPE_CODE_PTR
	  && type->code () != TYPE_CODE_REF)
	break;
      type = TYPE_TARGET_TYPE (type);
    }

  if (type->code () != TYPE_CODE_STRUCT
      && type->code () != TYPE_CODE_UNION)
    {
      std::string type_name = type_to_string (type);
      error (_("Type %s is not a structure or union type."),
	     type_name.c_str ());
    }

  for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
    {
      const char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	{
	  return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
	}
     else if (!t_field_name || *t_field_name == '\0')
	{
	  struct_elt elt
	    = lookup_struct_elt (type->field (i).type (), name, 1);
	  if (elt.field != NULL)
	    {
	      elt.offset += TYPE_FIELD_BITPOS (type, i);
	      return elt;
	    }
	}
    }

  /* OK, it's not in this class.  Recursively check the baseclasses.  */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
      if (elt.field != NULL)
	return elt;
    }

  if (noerr)
    return {nullptr, 0};

  std::string type_name = type_to_string (type);
  error (_("Type %s has no component named %s."), type_name.c_str (), name);
}

/* See gdbtypes.h.  */

struct type *
lookup_struct_elt_type (struct type *type, const char *name, int noerr)
{
  struct_elt elt = lookup_struct_elt (type, name, noerr);
  if (elt.field != NULL)
    return elt.field->type ();
  else
    return NULL;
}

/* Store in *MAX the largest number representable by unsigned integer type
   TYPE.  */

void
get_unsigned_type_max (struct type *type, ULONGEST *max)
{
  unsigned int n;

  type = check_typedef (type);
  gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
  gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));

  /* Written this way to avoid overflow.  */
  n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
  *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
}

/* Store in *MIN, *MAX the smallest and largest numbers representable by
   signed integer type TYPE.  */

void
get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
{
  unsigned int n;

  type = check_typedef (type);
  gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
  gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));

  n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
  *min = -((ULONGEST) 1 << (n - 1));
  *max = ((ULONGEST) 1 << (n - 1)) - 1;
}

/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
   cplus_stuff.vptr_fieldno.

   cplus_stuff is initialized to cplus_struct_default which does not
   set vptr_fieldno to -1 for portability reasons (IWBN to use C99
   designated initializers).  We cope with that here.  */

int
internal_type_vptr_fieldno (struct type *type)
{
  type = check_typedef (type);
  gdb_assert (type->code () == TYPE_CODE_STRUCT
	      || type->code () == TYPE_CODE_UNION);
  if (!HAVE_CPLUS_STRUCT (type))
    return -1;
  return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
}

/* Set the value of cplus_stuff.vptr_fieldno.  */

void
set_type_vptr_fieldno (struct type *type, int fieldno)
{
  type = check_typedef (type);
  gdb_assert (type->code () == TYPE_CODE_STRUCT
	      || type->code () == TYPE_CODE_UNION);
  if (!HAVE_CPLUS_STRUCT (type))
    ALLOCATE_CPLUS_STRUCT_TYPE (type);
  TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
}

/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
   cplus_stuff.vptr_basetype.  */

struct type *
internal_type_vptr_basetype (struct type *type)
{
  type = check_typedef (type);
  gdb_assert (type->code () == TYPE_CODE_STRUCT
	      || type->code () == TYPE_CODE_UNION);
  gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
  return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
}

/* Set the value of cplus_stuff.vptr_basetype.  */

void
set_type_vptr_basetype (struct type *type, struct type *basetype)
{
  type = check_typedef (type);
  gdb_assert (type->code () == TYPE_CODE_STRUCT
	      || type->code () == TYPE_CODE_UNION);
  if (!HAVE_CPLUS_STRUCT (type))
    ALLOCATE_CPLUS_STRUCT_TYPE (type);
  TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
}

/* Lookup the vptr basetype/fieldno values for TYPE.
   If found store vptr_basetype in *BASETYPEP if non-NULL, and return
   vptr_fieldno.  Also, if found and basetype is from the same objfile,
   cache the results.
   If not found, return -1 and ignore BASETYPEP.
   Callers should be aware that in some cases (for example,
   the type or one of its baseclasses is a stub type and we are
   debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
   this function will not be able to find the
   virtual function table pointer, and vptr_fieldno will remain -1 and
   vptr_basetype will remain NULL or incomplete.  */

int
get_vptr_fieldno (struct type *type, struct type **basetypep)
{
  type = check_typedef (type);

  if (TYPE_VPTR_FIELDNO (type) < 0)
    {
      int i;

      /* We must start at zero in case the first (and only) baseclass
         is virtual (and hence we cannot share the table pointer).  */
      for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
	{
	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
	  int fieldno;
	  struct type *basetype;

	  fieldno = get_vptr_fieldno (baseclass, &basetype);
	  if (fieldno >= 0)
	    {
	      /* If the type comes from a different objfile we can't cache
		 it, it may have a different lifetime.  PR 2384 */
	      if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
		{
		  set_type_vptr_fieldno (type, fieldno);
		  set_type_vptr_basetype (type, basetype);
		}
	      if (basetypep)
		*basetypep = basetype;
	      return fieldno;
	    }
	}

      /* Not found.  */
      return -1;
    }
  else
    {
      if (basetypep)
	*basetypep = TYPE_VPTR_BASETYPE (type);
      return TYPE_VPTR_FIELDNO (type);
    }
}

static void
stub_noname_complaint (void)
{
  complaint (_("stub type has NULL name"));
}

/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
   attached to it, and that property has a non-constant value.  */

static int
array_type_has_dynamic_stride (struct type *type)
{
  struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);

  return (prop != NULL && prop->kind () != PROP_CONST);
}

/* Worker for is_dynamic_type.  */

static int
is_dynamic_type_internal (struct type *type, int top_level)
{
  type = check_typedef (type);

  /* We only want to recognize references at the outermost level.  */
  if (top_level && type->code () == TYPE_CODE_REF)
    type = check_typedef (TYPE_TARGET_TYPE (type));

  /* Types that have a dynamic TYPE_DATA_LOCATION are considered
     dynamic, even if the type itself is statically defined.
     From a user's point of view, this may appear counter-intuitive;
     but it makes sense in this context, because the point is to determine
     whether any part of the type needs to be resolved before it can
     be exploited.  */
  if (TYPE_DATA_LOCATION (type) != NULL
      && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
	  || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
    return 1;

  if (TYPE_ASSOCIATED_PROP (type))
    return 1;

  if (TYPE_ALLOCATED_PROP (type))
    return 1;

  struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
  if (prop != nullptr && prop->kind () != PROP_TYPE)
    return 1;

  if (TYPE_HAS_DYNAMIC_LENGTH (type))
    return 1;

  switch (type->code ())
    {
    case TYPE_CODE_RANGE:
      {
	/* A range type is obviously dynamic if it has at least one
	   dynamic bound.  But also consider the range type to be
	   dynamic when its subtype is dynamic, even if the bounds
	   of the range type are static.  It allows us to assume that
	   the subtype of a static range type is also static.  */
	return (!has_static_range (type->bounds ())
		|| is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
      }

    case TYPE_CODE_STRING:
      /* Strings are very much like an array of characters, and can be
	 treated as one here.  */
    case TYPE_CODE_ARRAY:
      {
	gdb_assert (type->num_fields () == 1);

	/* The array is dynamic if either the bounds are dynamic...  */
	if (is_dynamic_type_internal (type->index_type (), 0))
	  return 1;
	/* ... or the elements it contains have a dynamic contents...  */
	if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
	  return 1;
	/* ... or if it has a dynamic stride...  */
	if (array_type_has_dynamic_stride (type))
	  return 1;
	return 0;
      }

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      {
	int i;

	bool is_cplus = HAVE_CPLUS_STRUCT (type);

	for (i = 0; i < type->num_fields (); ++i)
	  {
	    /* Static fields can be ignored here.  */
	    if (field_is_static (&type->field (i)))
	      continue;
	    /* If the field has dynamic type, then so does TYPE.  */
	    if (is_dynamic_type_internal (type->field (i).type (), 0))
	      return 1;
	    /* If the field is at a fixed offset, then it is not
	       dynamic.  */
	    if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
	      continue;
	    /* Do not consider C++ virtual base types to be dynamic
	       due to the field's offset being dynamic; these are
	       handled via other means.  */
	    if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
	      continue;
	    return 1;
	  }
      }
      break;
    }

  return 0;
}

/* See gdbtypes.h.  */

int
is_dynamic_type (struct type *type)
{
  return is_dynamic_type_internal (type, 1);
}

static struct type *resolve_dynamic_type_internal
  (struct type *type, struct property_addr_info *addr_stack, int top_level);

/* Given a dynamic range type (dyn_range_type) and a stack of
   struct property_addr_info elements, return a static version
   of that type.  */

static struct type *
resolve_dynamic_range (struct type *dyn_range_type,
		       struct property_addr_info *addr_stack)
{
  CORE_ADDR value;
  struct type *static_range_type, *static_target_type;
  struct dynamic_prop low_bound, high_bound, stride;

  gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);

  const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
  if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    low_bound.set_const_val (value);
  else
    low_bound.set_undefined ();

  prop = &dyn_range_type->bounds ()->high;
  if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    {
      high_bound.set_const_val (value);

      if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
	high_bound.set_const_val
	  (low_bound.const_val () + high_bound.const_val () - 1);
    }
  else
    high_bound.set_undefined ();

  bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
  prop = &dyn_range_type->bounds ()->stride;
  if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    {
      stride.set_const_val (value);

      /* If we have a bit stride that is not an exact number of bytes then
	 I really don't think this is going to work with current GDB, the
	 array indexing code in GDB seems to be pretty heavily tied to byte
	 offsets right now.  Assuming 8 bits in a byte.  */
      struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
      int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
      if (!byte_stride_p && (value % (unit_size * 8)) != 0)
	error (_("bit strides that are not a multiple of the byte size "
		 "are currently not supported"));
    }
  else
    {
      stride.set_undefined ();
      byte_stride_p = true;
    }

  static_target_type
    = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
				     addr_stack, 0);
  LONGEST bias = dyn_range_type->bounds ()->bias;
  static_range_type = create_range_type_with_stride
    (copy_type (dyn_range_type), static_target_type,
     &low_bound, &high_bound, bias, &stride, byte_stride_p);
  static_range_type->bounds ()->flag_bound_evaluated = 1;
  return static_range_type;
}

/* Resolves dynamic bound values of an array or string type TYPE to static
   ones.  ADDR_STACK is a stack of struct property_addr_info to be used if
   needed during the dynamic resolution.  */

static struct type *
resolve_dynamic_array_or_string (struct type *type,
				 struct property_addr_info *addr_stack)
{
  CORE_ADDR value;
  struct type *elt_type;
  struct type *range_type;
  struct type *ary_dim;
  struct dynamic_prop *prop;
  unsigned int bit_stride = 0;

  /* For dynamic type resolution strings can be treated like arrays of
     characters.  */
  gdb_assert (type->code () == TYPE_CODE_ARRAY
	      || type->code () == TYPE_CODE_STRING);

  type = copy_type (type);

  elt_type = type;
  range_type = check_typedef (elt_type->index_type ());
  range_type = resolve_dynamic_range (range_type, addr_stack);

  /* Resolve allocated/associated here before creating a new array type, which
     will update the length of the array accordingly.  */
  prop = TYPE_ALLOCATED_PROP (type);
  if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    prop->set_const_val (value);

  prop = TYPE_ASSOCIATED_PROP (type);
  if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    prop->set_const_val (value);

  ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));

  if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
    elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
  else
    elt_type = TYPE_TARGET_TYPE (type);

  prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
  if (prop != NULL)
    {
      if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
	{
	  type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
	  bit_stride = (unsigned int) (value * 8);
	}
      else
	{
	  /* Could be a bug in our code, but it could also happen
	     if the DWARF info is not correct.  Issue a warning,
	     and assume no byte/bit stride (leave bit_stride = 0).  */
	  warning (_("cannot determine array stride for type %s"),
		   type->name () ? type->name () : "<no name>");
	}
    }
  else
    bit_stride = TYPE_FIELD_BITSIZE (type, 0);

  return create_array_type_with_stride (type, elt_type, range_type, NULL,
                                        bit_stride);
}

/* Resolve dynamic bounds of members of the union TYPE to static
   bounds.  ADDR_STACK is a stack of struct property_addr_info
   to be used if needed during the dynamic resolution.  */

static struct type *
resolve_dynamic_union (struct type *type,
		       struct property_addr_info *addr_stack)
{
  struct type *resolved_type;
  int i;
  unsigned int max_len = 0;

  gdb_assert (type->code () == TYPE_CODE_UNION);

  resolved_type = copy_type (type);
  resolved_type->set_fields
    ((struct field *)
     TYPE_ALLOC (resolved_type,
		 resolved_type->num_fields () * sizeof (struct field)));
  memcpy (resolved_type->fields (),
	  type->fields (),
	  resolved_type->num_fields () * sizeof (struct field));
  for (i = 0; i < resolved_type->num_fields (); ++i)
    {
      struct type *t;

      if (field_is_static (&type->field (i)))
	continue;

      t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
					 addr_stack, 0);
      resolved_type->field (i).set_type (t);

      struct type *real_type = check_typedef (t);
      if (TYPE_LENGTH (real_type) > max_len)
	max_len = TYPE_LENGTH (real_type);
    }

  TYPE_LENGTH (resolved_type) = max_len;
  return resolved_type;
}

/* See gdbtypes.h.  */

bool
variant::matches (ULONGEST value, bool is_unsigned) const
{
  for (const discriminant_range &range : discriminants)
    if (range.contains (value, is_unsigned))
      return true;
  return false;
}

static void
compute_variant_fields_inner (struct type *type,
			      struct property_addr_info *addr_stack,
			      const variant_part &part,
			      std::vector<bool> &flags);

/* A helper function to determine which variant fields will be active.
   This handles both the variant's direct fields, and any variant
   parts embedded in this variant.  TYPE is the type we're examining.
   ADDR_STACK holds information about the concrete object.  VARIANT is
   the current variant to be handled.  FLAGS is where the results are
   stored -- this function sets the Nth element in FLAGS if the
   corresponding field is enabled.  ENABLED is whether this variant is
   enabled or not.  */

static void
compute_variant_fields_recurse (struct type *type,
				struct property_addr_info *addr_stack,
				const variant &variant,
				std::vector<bool> &flags,
				bool enabled)
{
  for (int field = variant.first_field; field < variant.last_field; ++field)
    flags[field] = enabled;

  for (const variant_part &new_part : variant.parts)
    {
      if (enabled)
	compute_variant_fields_inner (type, addr_stack, new_part, flags);
      else
	{
	  for (const auto &sub_variant : new_part.variants)
	    compute_variant_fields_recurse (type, addr_stack, sub_variant,
					    flags, enabled);
	}
    }
}

/* A helper function to determine which variant fields will be active.
   This evaluates the discriminant, decides which variant (if any) is
   active, and then updates FLAGS to reflect which fields should be
   available.  TYPE is the type we're examining.  ADDR_STACK holds
   information about the concrete object.  VARIANT is the current
   variant to be handled.  FLAGS is where the results are stored --
   this function sets the Nth element in FLAGS if the corresponding
   field is enabled.  */

static void
compute_variant_fields_inner (struct type *type,
			      struct property_addr_info *addr_stack,
			      const variant_part &part,
			      std::vector<bool> &flags)
{
  /* Evaluate the discriminant.  */
  gdb::optional<ULONGEST> discr_value;
  if (part.discriminant_index != -1)
    {
      int idx = part.discriminant_index;

      if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
	error (_("Cannot determine struct field location"
		 " (invalid location kind)"));

      if (addr_stack->valaddr.data () != NULL)
	discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
					    idx);
      else
	{
	  CORE_ADDR addr = (addr_stack->addr
			    + (TYPE_FIELD_BITPOS (type, idx)
			       / TARGET_CHAR_BIT));

	  LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
	  LONGEST size = bitsize / 8;
	  if (size == 0)
	    size = TYPE_LENGTH (type->field (idx).type ());

	  gdb_byte bits[sizeof (ULONGEST)];
	  read_memory (addr, bits, size);

	  LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
			    % TARGET_CHAR_BIT);

	  discr_value = unpack_bits_as_long (type->field (idx).type (),
					     bits, bitpos, bitsize);
	}
    }

  /* Go through each variant and see which applies.  */
  const variant *default_variant = nullptr;
  const variant *applied_variant = nullptr;
  for (const auto &variant : part.variants)
    {
      if (variant.is_default ())
	default_variant = &variant;
      else if (discr_value.has_value ()
	       && variant.matches (*discr_value, part.is_unsigned))
	{
	  applied_variant = &variant;
	  break;
	}
    }
  if (applied_variant == nullptr)
    applied_variant = default_variant;

  for (const auto &variant : part.variants)
    compute_variant_fields_recurse (type, addr_stack, variant,
				    flags, applied_variant == &variant);
}  

/* Determine which variant fields are available in TYPE.  The enabled
   fields are stored in RESOLVED_TYPE.  ADDR_STACK holds information
   about the concrete object.  PARTS describes the top-level variant
   parts for this type.  */

static void
compute_variant_fields (struct type *type,
			struct type *resolved_type,
			struct property_addr_info *addr_stack,
			const gdb::array_view<variant_part> &parts)
{
  /* Assume all fields are included by default.  */
  std::vector<bool> flags (resolved_type->num_fields (), true);

  /* Now disable fields based on the variants that control them.  */
  for (const auto &part : parts)
    compute_variant_fields_inner (type, addr_stack, part, flags);

  resolved_type->set_num_fields
    (std::count (flags.begin (), flags.end (), true));
  resolved_type->set_fields
    ((struct field *)
     TYPE_ALLOC (resolved_type,
		 resolved_type->num_fields () * sizeof (struct field)));

  int out = 0;
  for (int i = 0; i < type->num_fields (); ++i)
    {
      if (!flags[i])
	continue;

      resolved_type->field (out) = type->field (i);
      ++out;
    }
}

/* Resolve dynamic bounds of members of the struct TYPE to static
   bounds.  ADDR_STACK is a stack of struct property_addr_info to
   be used if needed during the dynamic resolution.  */

static struct type *
resolve_dynamic_struct (struct type *type,
			struct property_addr_info *addr_stack)
{
  struct type *resolved_type;
  int i;
  unsigned resolved_type_bit_length = 0;

  gdb_assert (type->code () == TYPE_CODE_STRUCT);
  gdb_assert (type->num_fields () > 0);

  resolved_type = copy_type (type);

  dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
  if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
    {
      compute_variant_fields (type, resolved_type, addr_stack,
			      *variant_prop->variant_parts ());
      /* We want to leave the property attached, so that the Rust code
	 can tell whether the type was originally an enum.  */
      variant_prop->set_original_type (type);
    }
  else
    {
      resolved_type->set_fields
	((struct field *)
	 TYPE_ALLOC (resolved_type,
		     resolved_type->num_fields () * sizeof (struct field)));
      memcpy (resolved_type->fields (),
	      type->fields (),
	      resolved_type->num_fields () * sizeof (struct field));
    }

  for (i = 0; i < resolved_type->num_fields (); ++i)
    {
      unsigned new_bit_length;
      struct property_addr_info pinfo;

      if (field_is_static (&resolved_type->field (i)))
	continue;

      if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
	{
	  struct dwarf2_property_baton baton;
	  baton.property_type
	    = lookup_pointer_type (resolved_type->field (i).type ());
	  baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);

	  struct dynamic_prop prop;
	  prop.set_locexpr (&baton);

	  CORE_ADDR addr;
	  if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
					true))
	    SET_FIELD_BITPOS (resolved_type->field (i),
			      TARGET_CHAR_BIT * (addr - addr_stack->addr));
	}

      /* As we know this field is not a static field, the field's
	 field_loc_kind should be FIELD_LOC_KIND_BITPOS.  Verify
	 this is the case, but only trigger a simple error rather
	 than an internal error if that fails.  While failing
	 that verification indicates a bug in our code, the error
	 is not severe enough to suggest to the user he stops
	 his debugging session because of it.  */
      if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
	error (_("Cannot determine struct field location"
		 " (invalid location kind)"));

      pinfo.type = check_typedef (resolved_type->field (i).type ());
      pinfo.valaddr = addr_stack->valaddr;
      pinfo.addr
	= (addr_stack->addr
	   + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
      pinfo.next = addr_stack;

      resolved_type->field (i).set_type
	(resolve_dynamic_type_internal (resolved_type->field (i).type (),
					&pinfo, 0));
      gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
		  == FIELD_LOC_KIND_BITPOS);

      new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
      if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
	new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
      else
	{
	  struct type *real_type
	    = check_typedef (resolved_type->field (i).type ());

	  new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
	}

      /* Normally, we would use the position and size of the last field
	 to determine the size of the enclosing structure.  But GCC seems
	 to be encoding the position of some fields incorrectly when
	 the struct contains a dynamic field that is not placed last.
	 So we compute the struct size based on the field that has
	 the highest position + size - probably the best we can do.  */
      if (new_bit_length > resolved_type_bit_length)
	resolved_type_bit_length = new_bit_length;
    }

  /* The length of a type won't change for fortran, but it does for C and Ada.
     For fortran the size of dynamic fields might change over time but not the
     type length of the structure.  If we adapt it, we run into problems
     when calculating the element offset for arrays of structs.  */
  if (current_language->la_language != language_fortran)
    TYPE_LENGTH (resolved_type)
      = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;

  /* The Ada language uses this field as a cache for static fixed types: reset
     it as RESOLVED_TYPE must have its own static fixed type.  */
  TYPE_TARGET_TYPE (resolved_type) = NULL;

  return resolved_type;
}

/* Worker for resolved_dynamic_type.  */

static struct type *
resolve_dynamic_type_internal (struct type *type,
			       struct property_addr_info *addr_stack,
			       int top_level)
{
  struct type *real_type = check_typedef (type);
  struct type *resolved_type = nullptr;
  struct dynamic_prop *prop;
  CORE_ADDR value;

  if (!is_dynamic_type_internal (real_type, top_level))
    return type;

  gdb::optional<CORE_ADDR> type_length;
  prop = TYPE_DYNAMIC_LENGTH (type);
  if (prop != NULL
      && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    type_length = value;

  if (type->code () == TYPE_CODE_TYPEDEF)
    {
      resolved_type = copy_type (type);
      TYPE_TARGET_TYPE (resolved_type)
	= resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
					 top_level);
    }
  else 
    {
      /* Before trying to resolve TYPE, make sure it is not a stub.  */
      type = real_type;

      switch (type->code ())
	{
	case TYPE_CODE_REF:
	  {
	    struct property_addr_info pinfo;

	    pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
	    pinfo.valaddr = {};
	    if (addr_stack->valaddr.data () != NULL)
	      pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
						  type);
	    else
	      pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
	    pinfo.next = addr_stack;

	    resolved_type = copy_type (type);
	    TYPE_TARGET_TYPE (resolved_type)
	      = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
					       &pinfo, top_level);
	    break;
	  }

	case TYPE_CODE_STRING:
	  /* Strings are very much like an array of characters, and can be
	     treated as one here.  */
	case TYPE_CODE_ARRAY:
	  resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
	  break;

	case TYPE_CODE_RANGE:
	  resolved_type = resolve_dynamic_range (type, addr_stack);
	  break;

	case TYPE_CODE_UNION:
	  resolved_type = resolve_dynamic_union (type, addr_stack);
	  break;

	case TYPE_CODE_STRUCT:
	  resolved_type = resolve_dynamic_struct (type, addr_stack);
	  break;
	}
    }

  if (resolved_type == nullptr)
    return type;

  if (type_length.has_value ())
    {
      TYPE_LENGTH (resolved_type) = *type_length;
      resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
    }

  /* Resolve data_location attribute.  */
  prop = TYPE_DATA_LOCATION (resolved_type);
  if (prop != NULL
      && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    prop->set_const_val (value);

  return resolved_type;
}

/* See gdbtypes.h  */

struct type *
resolve_dynamic_type (struct type *type,
		      gdb::array_view<const gdb_byte> valaddr,
		      CORE_ADDR addr)
{
  struct property_addr_info pinfo
    = {check_typedef (type), valaddr, addr, NULL};

  return resolve_dynamic_type_internal (type, &pinfo, 1);
}

/* See gdbtypes.h  */

dynamic_prop *
type::dyn_prop (dynamic_prop_node_kind prop_kind) const
{
  dynamic_prop_list *node = this->main_type->dyn_prop_list;

  while (node != NULL)
    {
      if (node->prop_kind == prop_kind)
        return &node->prop;
      node = node->next;
    }
  return NULL;
}

/* See gdbtypes.h  */

void
type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
{
  struct dynamic_prop_list *temp;

  gdb_assert (TYPE_OBJFILE_OWNED (this));

  temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
		 struct dynamic_prop_list);
  temp->prop_kind = prop_kind;
  temp->prop = prop;
  temp->next = this->main_type->dyn_prop_list;

  this->main_type->dyn_prop_list = temp;
}

/* See gdbtypes.h.  */

void
type::remove_dyn_prop (dynamic_prop_node_kind kind)
{
  struct dynamic_prop_list *prev_node, *curr_node;

  curr_node = this->main_type->dyn_prop_list;
  prev_node = NULL;

  while (NULL != curr_node)
    {
      if (curr_node->prop_kind == kind)
	{
	  /* Update the linked list but don't free anything.
	     The property was allocated on objstack and it is not known
	     if we are on top of it.  Nevertheless, everything is released
	     when the complete objstack is freed.  */
	  if (NULL == prev_node)
	    this->main_type->dyn_prop_list = curr_node->next;
	  else
	    prev_node->next = curr_node->next;

	  return;
	}

      prev_node = curr_node;
      curr_node = curr_node->next;
    }
}

/* Find the real type of TYPE.  This function returns the real type,
   after removing all layers of typedefs, and completing opaque or stub
   types.  Completion changes the TYPE argument, but stripping of
   typedefs does not.

   Instance flags (e.g. const/volatile) are preserved as typedefs are
   stripped.  If necessary a new qualified form of the underlying type
   is created.

   NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
   not been computed and we're either in the middle of reading symbols, or
   there was no name for the typedef in the debug info.

   NOTE: Lookup of opaque types can throw errors for invalid symbol files.
   QUITs in the symbol reading code can also throw.
   Thus this function can throw an exception.

   If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
   the target type.

   If this is a stubbed struct (i.e. declared as struct foo *), see if
   we can find a full definition in some other file.  If so, copy this
   definition, so we can use it in future.  There used to be a comment
   (but not any code) that if we don't find a full definition, we'd
   set a flag so we don't spend time in the future checking the same
   type.  That would be a mistake, though--we might load in more
   symbols which contain a full definition for the type.  */

struct type *
check_typedef (struct type *type)
{
  struct type *orig_type = type;
  /* While we're removing typedefs, we don't want to lose qualifiers.
     E.g., const/volatile.  */
  int instance_flags = TYPE_INSTANCE_FLAGS (type);

  gdb_assert (type);

  while (type->code () == TYPE_CODE_TYPEDEF)
    {
      if (!TYPE_TARGET_TYPE (type))
	{
	  const char *name;
	  struct symbol *sym;

	  /* It is dangerous to call lookup_symbol if we are currently
	     reading a symtab.  Infinite recursion is one danger.  */
	  if (currently_reading_symtab)
	    return make_qualified_type (type, instance_flags, NULL);

	  name = type->name ();
	  /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
	     VAR_DOMAIN as appropriate?  */
	  if (name == NULL)
	    {
	      stub_noname_complaint ();
	      return make_qualified_type (type, instance_flags, NULL);
	    }
	  sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
	  if (sym)
	    TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
	  else					/* TYPE_CODE_UNDEF */
	    TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
	}
      type = TYPE_TARGET_TYPE (type);

      /* Preserve the instance flags as we traverse down the typedef chain.

	 Handling address spaces/classes is nasty, what do we do if there's a
	 conflict?
	 E.g., what if an outer typedef marks the type as class_1 and an inner
	 typedef marks the type as class_2?
	 This is the wrong place to do such error checking.  We leave it to
	 the code that created the typedef in the first place to flag the
	 error.  We just pick the outer address space (akin to letting the
	 outer cast in a chain of casting win), instead of assuming
	 "it can't happen".  */
      {
	const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
				| TYPE_INSTANCE_FLAG_DATA_SPACE);
	const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
	int new_instance_flags = TYPE_INSTANCE_FLAGS (type);

	/* Treat code vs data spaces and address classes separately.  */
	if ((instance_flags & ALL_SPACES) != 0)
	  new_instance_flags &= ~ALL_SPACES;
	if ((instance_flags & ALL_CLASSES) != 0)
	  new_instance_flags &= ~ALL_CLASSES;

	instance_flags |= new_instance_flags;
      }
    }

  /* If this is a struct/class/union with no fields, then check
     whether a full definition exists somewhere else.  This is for
     systems where a type definition with no fields is issued for such
     types, instead of identifying them as stub types in the first
     place.  */

  if (TYPE_IS_OPAQUE (type) 
      && opaque_type_resolution 
      && !currently_reading_symtab)
    {
      const char *name = type->name ();
      struct type *newtype;

      if (name == NULL)
	{
	  stub_noname_complaint ();
	  return make_qualified_type (type, instance_flags, NULL);
	}
      newtype = lookup_transparent_type (name);

      if (newtype)
	{
	  /* If the resolved type and the stub are in the same
	     objfile, then replace the stub type with the real deal.
	     But if they're in separate objfiles, leave the stub
	     alone; we'll just look up the transparent type every time
	     we call check_typedef.  We can't create pointers between
	     types allocated to different objfiles, since they may
	     have different lifetimes.  Trying to copy NEWTYPE over to
	     TYPE's objfile is pointless, too, since you'll have to
	     move over any other types NEWTYPE refers to, which could
	     be an unbounded amount of stuff.  */
	  if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
	    type = make_qualified_type (newtype,
					TYPE_INSTANCE_FLAGS (type),
					type);
	  else
	    type = newtype;
	}
    }
  /* Otherwise, rely on the stub flag being set for opaque/stubbed
     types.  */
  else if (TYPE_STUB (type) && !currently_reading_symtab)
    {
      const char *name = type->name ();
      /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
         as appropriate?  */
      struct symbol *sym;

      if (name == NULL)
	{
	  stub_noname_complaint ();
	  return make_qualified_type (type, instance_flags, NULL);
	}
      sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
      if (sym)
        {
          /* Same as above for opaque types, we can replace the stub
             with the complete type only if they are in the same
             objfile.  */
	  if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
            type = make_qualified_type (SYMBOL_TYPE (sym),
					TYPE_INSTANCE_FLAGS (type),
					type);
	  else
	    type = SYMBOL_TYPE (sym);
        }
    }

  if (TYPE_TARGET_STUB (type))
    {
      struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));

      if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
	{
	  /* Nothing we can do.  */
	}
      else if (type->code () == TYPE_CODE_RANGE)
	{
	  TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
	  TYPE_TARGET_STUB (type) = 0;
	}
      else if (type->code () == TYPE_CODE_ARRAY
	       && update_static_array_size (type))
	TYPE_TARGET_STUB (type) = 0;
    }

  type = make_qualified_type (type, instance_flags, NULL);

  /* Cache TYPE_LENGTH for future use.  */
  TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);

  return type;
}

/* Parse a type expression in the string [P..P+LENGTH).  If an error
   occurs, silently return a void type.  */

static struct type *
safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
{
  struct ui_file *saved_gdb_stderr;
  struct type *type = NULL; /* Initialize to keep gcc happy.  */

  /* Suppress error messages.  */
  saved_gdb_stderr = gdb_stderr;
  gdb_stderr = &null_stream;

  /* Call parse_and_eval_type() without fear of longjmp()s.  */
  try
    {
      type = parse_and_eval_type (p, length);
    }
  catch (const gdb_exception_error &except)
    {
      type = builtin_type (gdbarch)->builtin_void;
    }

  /* Stop suppressing error messages.  */
  gdb_stderr = saved_gdb_stderr;

  return type;
}

/* Ugly hack to convert method stubs into method types.

   He ain't kiddin'.  This demangles the name of the method into a
   string including argument types, parses out each argument type,
   generates a string casting a zero to that type, evaluates the
   string, and stuffs the resulting type into an argtype vector!!!
   Then it knows the type of the whole function (including argument
   types for overloading), which info used to be in the stab's but was
   removed to hack back the space required for them.  */

static void
check_stub_method (struct type *type, int method_id, int signature_id)
{
  struct gdbarch *gdbarch = get_type_arch (type);
  struct fn_field *f;
  char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
  char *demangled_name = gdb_demangle (mangled_name,
				       DMGL_PARAMS | DMGL_ANSI);
  char *argtypetext, *p;
  int depth = 0, argcount = 1;
  struct field *argtypes;
  struct type *mtype;

  /* Make sure we got back a function string that we can use.  */
  if (demangled_name)
    p = strchr (demangled_name, '(');
  else
    p = NULL;

  if (demangled_name == NULL || p == NULL)
    error (_("Internal: Cannot demangle mangled name `%s'."), 
	   mangled_name);

  /* Now, read in the parameters that define this type.  */
  p += 1;
  argtypetext = p;
  while (*p)
    {
      if (*p == '(' || *p == '<')
	{
	  depth += 1;
	}
      else if (*p == ')' || *p == '>')
	{
	  depth -= 1;
	}
      else if (*p == ',' && depth == 0)
	{
	  argcount += 1;
	}

      p += 1;
    }

  /* If we read one argument and it was ``void'', don't count it.  */
  if (startswith (argtypetext, "(void)"))
    argcount -= 1;

  /* We need one extra slot, for the THIS pointer.  */

  argtypes = (struct field *)
    TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
  p = argtypetext;

  /* Add THIS pointer for non-static methods.  */
  f = TYPE_FN_FIELDLIST1 (type, method_id);
  if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
    argcount = 0;
  else
    {
      argtypes[0].set_type (lookup_pointer_type (type));
      argcount = 1;
    }

  if (*p != ')')		/* () means no args, skip while.  */
    {
      depth = 0;
      while (*p)
	{
	  if (depth <= 0 && (*p == ',' || *p == ')'))
	    {
	      /* Avoid parsing of ellipsis, they will be handled below.
	         Also avoid ``void'' as above.  */
	      if (strncmp (argtypetext, "...", p - argtypetext) != 0
		  && strncmp (argtypetext, "void", p - argtypetext) != 0)
		{
		  argtypes[argcount].set_type
		    (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
		  argcount += 1;
		}
	      argtypetext = p + 1;
	    }

	  if (*p == '(' || *p == '<')
	    {
	      depth += 1;
	    }
	  else if (*p == ')' || *p == '>')
	    {
	      depth -= 1;
	    }

	  p += 1;
	}
    }

  TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;

  /* Now update the old "stub" type into a real type.  */
  mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
  /* MTYPE may currently be a function (TYPE_CODE_FUNC).
     We want a method (TYPE_CODE_METHOD).  */
  smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
			argtypes, argcount, p[-2] == '.');
  TYPE_STUB (mtype) = 0;
  TYPE_FN_FIELD_STUB (f, signature_id) = 0;

  xfree (demangled_name);
}

/* This is the external interface to check_stub_method, above.  This
   function unstubs all of the signatures for TYPE's METHOD_ID method
   name.  After calling this function TYPE_FN_FIELD_STUB will be
   cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
   correct.

   This function unfortunately can not die until stabs do.  */

void
check_stub_method_group (struct type *type, int method_id)
{
  int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);

  for (int j = 0; j < len; j++)
    {
      if (TYPE_FN_FIELD_STUB (f, j))
	check_stub_method (type, method_id, j);
    }
}

/* Ensure it is in .rodata (if available) by working around GCC PR 44690.  */
const struct cplus_struct_type cplus_struct_default = { };

void
allocate_cplus_struct_type (struct type *type)
{
  if (HAVE_CPLUS_STRUCT (type))
    /* Structure was already allocated.  Nothing more to do.  */
    return;

  TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
  TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
    TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
  *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
  set_type_vptr_fieldno (type, -1);
}

const struct gnat_aux_type gnat_aux_default =
  { NULL };

/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
   and allocate the associated gnat-specific data.  The gnat-specific
   data is also initialized to gnat_aux_default.  */

void
allocate_gnat_aux_type (struct type *type)
{
  TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
  TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
    TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
  *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
}

/* Helper function to initialize a newly allocated type.  Set type code
   to CODE and initialize the type-specific fields accordingly.  */

static void
set_type_code (struct type *type, enum type_code code)
{
  type->set_code (code);

  switch (code)
    {
      case TYPE_CODE_STRUCT:
      case TYPE_CODE_UNION:
      case TYPE_CODE_NAMESPACE:
        INIT_CPLUS_SPECIFIC (type);
        break;
      case TYPE_CODE_FLT:
        TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
        break;
      case TYPE_CODE_FUNC:
	INIT_FUNC_SPECIFIC (type);
        break;
    }
}

/* Helper function to verify floating-point format and size.
   BIT is the type size in bits; if BIT equals -1, the size is
   determined by the floatformat.  Returns size to be used.  */

static int
verify_floatformat (int bit, const struct floatformat *floatformat)
{
  gdb_assert (floatformat != NULL);

  if (bit == -1)
    bit = floatformat->totalsize;

  gdb_assert (bit >= 0);
  gdb_assert (bit >= floatformat->totalsize);

  return bit;
}

/* Return the floating-point format for a floating-point variable of
   type TYPE.  */

const struct floatformat *
floatformat_from_type (const struct type *type)
{
  gdb_assert (type->code () == TYPE_CODE_FLT);
  gdb_assert (TYPE_FLOATFORMAT (type));
  return TYPE_FLOATFORMAT (type);
}

/* Helper function to initialize the standard scalar types.

   If NAME is non-NULL, then it is used to initialize the type name.
   Note that NAME is not copied; it is required to have a lifetime at
   least as long as OBJFILE.  */

struct type *
init_type (struct objfile *objfile, enum type_code code, int bit,
	   const char *name)
{
  struct type *type;

  type = alloc_type (objfile);
  set_type_code (type, code);
  gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
  TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
  type->set_name (name);

  return type;
}

/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
   to use with variables that have no debug info.  NAME is the type
   name.  */

static struct type *
init_nodebug_var_type (struct objfile *objfile, const char *name)
{
  return init_type (objfile, TYPE_CODE_ERROR, 0, name);
}

/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
init_integer_type (struct objfile *objfile,
		   int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_INT, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
init_character_type (struct objfile *objfile,
		     int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
init_boolean_type (struct objfile *objfile,
		   int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
   BIT is the type size in bits; if BIT equals -1, the size is
   determined by the floatformat.  NAME is the type name.  Set the
   TYPE_FLOATFORMAT from FLOATFORMATS.  BYTE_ORDER is the byte order
   to use.  If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
   order of the objfile's architecture is used.  */

struct type *
init_float_type (struct objfile *objfile,
		 int bit, const char *name,
		 const struct floatformat **floatformats,
		 enum bfd_endian byte_order)
{
  if (byte_order == BFD_ENDIAN_UNKNOWN)
    {
      struct gdbarch *gdbarch = objfile->arch ();
      byte_order = gdbarch_byte_order (gdbarch);
    }
  const struct floatformat *fmt = floatformats[byte_order];
  struct type *t;

  bit = verify_floatformat (bit, fmt);
  t = init_type (objfile, TYPE_CODE_FLT, bit, name);
  TYPE_FLOATFORMAT (t) = fmt;

  return t;
}

/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
   BIT is the type size in bits.  NAME is the type name.  */

struct type *
init_decfloat_type (struct objfile *objfile, int bit, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
  return t;
}

/* Allocate a TYPE_CODE_COMPLEX type structure.  NAME is the type
   name.  TARGET_TYPE is the component type.  */

struct type *
init_complex_type (const char *name, struct type *target_type)
{
  struct type *t;

  gdb_assert (target_type->code () == TYPE_CODE_INT
	      || target_type->code () == TYPE_CODE_FLT);

  if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
    {
      if (name == nullptr && target_type->name () != nullptr)
	{
	  char *new_name
	    = (char *) TYPE_ALLOC (target_type,
				   strlen (target_type->name ())
				   + strlen ("_Complex ") + 1);
	  strcpy (new_name, "_Complex ");
	  strcat (new_name, target_type->name ());
	  name = new_name;
	}

      t = alloc_type_copy (target_type);
      set_type_code (t, TYPE_CODE_COMPLEX);
      TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
      t->set_name (name);

      TYPE_TARGET_TYPE (t) = target_type;
      TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
    }

  return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
}

/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
   BIT is the pointer type size in bits.  NAME is the type name.
   TARGET_TYPE is the pointer target type.  Always sets the pointer type's
   TYPE_UNSIGNED flag.  */

struct type *
init_pointer_type (struct objfile *objfile,
		   int bit, const char *name, struct type *target_type)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_PTR, bit, name);
  TYPE_TARGET_TYPE (t) = target_type;
  TYPE_UNSIGNED (t) = 1;
  return t;
}

/* See gdbtypes.h.  */

unsigned
type_raw_align (struct type *type)
{
  if (type->align_log2 != 0)
    return 1 << (type->align_log2 - 1);
  return 0;
}

/* See gdbtypes.h.  */

unsigned
type_align (struct type *type)
{
  /* Check alignment provided in the debug information.  */
  unsigned raw_align = type_raw_align (type);
  if (raw_align != 0)
    return raw_align;

  /* Allow the architecture to provide an alignment.  */
  struct gdbarch *arch = get_type_arch (type);
  ULONGEST align = gdbarch_type_align (arch, type);
  if (align != 0)
    return align;

  switch (type->code ())
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_FUNC:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_INT:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_FLT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_DECFLOAT:
    case TYPE_CODE_METHODPTR:
    case TYPE_CODE_MEMBERPTR:
      align = type_length_units (check_typedef (type));
      break;

    case TYPE_CODE_ARRAY:
    case TYPE_CODE_COMPLEX:
    case TYPE_CODE_TYPEDEF:
      align = type_align (TYPE_TARGET_TYPE (type));
      break;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      {
	int number_of_non_static_fields = 0;
	for (unsigned i = 0; i < type->num_fields (); ++i)
	  {
	    if (!field_is_static (&type->field (i)))
	      {
		number_of_non_static_fields++;
		ULONGEST f_align = type_align (type->field (i).type ());
		if (f_align == 0)
		  {
		    /* Don't pretend we know something we don't.  */
		    align = 0;
		    break;
		  }
		if (f_align > align)
		  align = f_align;
	      }
	  }
	/* A struct with no fields, or with only static fields has an
	   alignment of 1.  */
	if (number_of_non_static_fields == 0)
	  align = 1;
      }
      break;

    case TYPE_CODE_SET:
    case TYPE_CODE_STRING:
      /* Not sure what to do here, and these can't appear in C or C++
	 anyway.  */
      break;

    case TYPE_CODE_VOID:
      align = 1;
      break;

    case TYPE_CODE_ERROR:
    case TYPE_CODE_METHOD:
    default:
      break;
    }

  if ((align & (align - 1)) != 0)
    {
      /* Not a power of 2, so pass.  */
      align = 0;
    }

  return align;
}

/* See gdbtypes.h.  */

bool
set_type_align (struct type *type, ULONGEST align)
{
  /* Must be a power of 2.  Zero is ok.  */
  gdb_assert ((align & (align - 1)) == 0);

  unsigned result = 0;
  while (align != 0)
    {
      ++result;
      align >>= 1;
    }

  if (result >= (1 << TYPE_ALIGN_BITS))
    return false;

  type->align_log2 = result;
  return true;
}


/* Queries on types.  */

int
can_dereference (struct type *t)
{
  /* FIXME: Should we return true for references as well as
     pointers?  */
  t = check_typedef (t);
  return
    (t != NULL
     && t->code () == TYPE_CODE_PTR
     && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
}

int
is_integral_type (struct type *t)
{
  t = check_typedef (t);
  return
    ((t != NULL)
     && ((t->code () == TYPE_CODE_INT)
	 || (t->code () == TYPE_CODE_ENUM)
	 || (t->code () == TYPE_CODE_FLAGS)
	 || (t->code () == TYPE_CODE_CHAR)
	 || (t->code () == TYPE_CODE_RANGE)
	 || (t->code () == TYPE_CODE_BOOL)));
}

int
is_floating_type (struct type *t)
{
  t = check_typedef (t);
  return
    ((t != NULL)
     && ((t->code () == TYPE_CODE_FLT)
	 || (t->code () == TYPE_CODE_DECFLOAT)));
}

/* Return true if TYPE is scalar.  */

int
is_scalar_type (struct type *type)
{
  type = check_typedef (type);

  switch (type->code ())
    {
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_SET:
    case TYPE_CODE_STRING:
      return 0;
    default:
      return 1;
    }
}

/* Return true if T is scalar, or a composite type which in practice has
   the memory layout of a scalar type.  E.g., an array or struct with only
   one scalar element inside it, or a union with only scalar elements.  */

int
is_scalar_type_recursive (struct type *t)
{
  t = check_typedef (t);

  if (is_scalar_type (t))
    return 1;
  /* Are we dealing with an array or string of known dimensions?  */
  else if ((t->code () == TYPE_CODE_ARRAY
	    || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
	   && t->index_type ()->code () == TYPE_CODE_RANGE)
    {
      LONGEST low_bound, high_bound;
      struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));

      get_discrete_bounds (t->index_type (), &low_bound, &high_bound);

      return high_bound == low_bound && is_scalar_type_recursive (elt_type);
    }
  /* Are we dealing with a struct with one element?  */
  else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
    return is_scalar_type_recursive (t->field (0).type ());
  else if (t->code () == TYPE_CODE_UNION)
    {
      int i, n = t->num_fields ();

      /* If all elements of the union are scalar, then the union is scalar.  */
      for (i = 0; i < n; i++)
	if (!is_scalar_type_recursive (t->field (i).type ()))
	  return 0;

      return 1;
    }

  return 0;
}

/* Return true is T is a class or a union.  False otherwise.  */

int
class_or_union_p (const struct type *t)
{
  return (t->code () == TYPE_CODE_STRUCT
          || t->code () == TYPE_CODE_UNION);
}

/* A helper function which returns true if types A and B represent the
   "same" class type.  This is true if the types have the same main
   type, or the same name.  */

int
class_types_same_p (const struct type *a, const struct type *b)
{
  return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
	  || (a->name () && b->name ()
	      && !strcmp (a->name (), b->name ())));
}

/* If BASE is an ancestor of DCLASS return the distance between them.
   otherwise return -1;
   eg:

   class A {};
   class B: public A {};
   class C: public B {};
   class D: C {};

   distance_to_ancestor (A, A, 0) = 0
   distance_to_ancestor (A, B, 0) = 1
   distance_to_ancestor (A, C, 0) = 2
   distance_to_ancestor (A, D, 0) = 3

   If PUBLIC is 1 then only public ancestors are considered,
   and the function returns the distance only if BASE is a public ancestor
   of DCLASS.
   Eg:

   distance_to_ancestor (A, D, 1) = -1.  */

static int
distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
{
  int i;
  int d;

  base = check_typedef (base);
  dclass = check_typedef (dclass);

  if (class_types_same_p (base, dclass))
    return 0;

  for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
    {
      if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
	continue;

      d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
      if (d >= 0)
	return 1 + d;
    }

  return -1;
}

/* Check whether BASE is an ancestor or base class or DCLASS
   Return 1 if so, and 0 if not.
   Note: If BASE and DCLASS are of the same type, this function
   will return 1. So for some class A, is_ancestor (A, A) will
   return 1.  */

int
is_ancestor (struct type *base, struct type *dclass)
{
  return distance_to_ancestor (base, dclass, 0) >= 0;
}

/* Like is_ancestor, but only returns true when BASE is a public
   ancestor of DCLASS.  */

int
is_public_ancestor (struct type *base, struct type *dclass)
{
  return distance_to_ancestor (base, dclass, 1) >= 0;
}

/* A helper function for is_unique_ancestor.  */

static int
is_unique_ancestor_worker (struct type *base, struct type *dclass,
			   int *offset,
			   const gdb_byte *valaddr, int embedded_offset,
			   CORE_ADDR address, struct value *val)
{
  int i, count = 0;

  base = check_typedef (base);
  dclass = check_typedef (dclass);

  for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
    {
      struct type *iter;
      int this_offset;

      iter = check_typedef (TYPE_BASECLASS (dclass, i));

      this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
				      address, val);

      if (class_types_same_p (base, iter))
	{
	  /* If this is the first subclass, set *OFFSET and set count
	     to 1.  Otherwise, if this is at the same offset as
	     previous instances, do nothing.  Otherwise, increment
	     count.  */
	  if (*offset == -1)
	    {
	      *offset = this_offset;
	      count = 1;
	    }
	  else if (this_offset == *offset)
	    {
	      /* Nothing.  */
	    }
	  else
	    ++count;
	}
      else
	count += is_unique_ancestor_worker (base, iter, offset,
					    valaddr,
					    embedded_offset + this_offset,
					    address, val);
    }

  return count;
}

/* Like is_ancestor, but only returns true if BASE is a unique base
   class of the type of VAL.  */

int
is_unique_ancestor (struct type *base, struct value *val)
{
  int offset = -1;

  return is_unique_ancestor_worker (base, value_type (val), &offset,
				    value_contents_for_printing (val),
				    value_embedded_offset (val),
				    value_address (val), val) == 1;
}

/* See gdbtypes.h.  */

enum bfd_endian
type_byte_order (const struct type *type)
{
  bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
  if (TYPE_ENDIANITY_NOT_DEFAULT (type))
    {
      if (byteorder == BFD_ENDIAN_BIG)
        return BFD_ENDIAN_LITTLE;
      else
	{
	  gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
	  return BFD_ENDIAN_BIG;
	}
    }

  return byteorder;
}


/* Overload resolution.  */

/* Return the sum of the rank of A with the rank of B.  */

struct rank
sum_ranks (struct rank a, struct rank b)
{
  struct rank c;
  c.rank = a.rank + b.rank;
  c.subrank = a.subrank + b.subrank;
  return c;
}

/* Compare rank A and B and return:
   0 if a = b
   1 if a is better than b
  -1 if b is better than a.  */

int
compare_ranks (struct rank a, struct rank b)
{
  if (a.rank == b.rank)
    {
      if (a.subrank == b.subrank)
	return 0;
      if (a.subrank < b.subrank)
	return 1;
      if (a.subrank > b.subrank)
	return -1;
    }

  if (a.rank < b.rank)
    return 1;

  /* a.rank > b.rank */
  return -1;
}

/* Functions for overload resolution begin here.  */

/* Compare two badness vectors A and B and return the result.
   0 => A and B are identical
   1 => A and B are incomparable
   2 => A is better than B
   3 => A is worse than B  */

int
compare_badness (const badness_vector &a, const badness_vector &b)
{
  int i;
  int tmp;
  short found_pos = 0;		/* any positives in c? */
  short found_neg = 0;		/* any negatives in c? */

  /* differing sizes => incomparable */
  if (a.size () != b.size ())
    return 1;

  /* Subtract b from a */
  for (i = 0; i < a.size (); i++)
    {
      tmp = compare_ranks (b[i], a[i]);
      if (tmp > 0)
	found_pos = 1;
      else if (tmp < 0)
	found_neg = 1;
    }

  if (found_pos)
    {
      if (found_neg)
	return 1;		/* incomparable */
      else
	return 3;		/* A > B */
    }
  else
    /* no positives */
    {
      if (found_neg)
	return 2;		/* A < B */
      else
	return 0;		/* A == B */
    }
}

/* Rank a function by comparing its parameter types (PARMS), to the
   types of an argument list (ARGS).  Return the badness vector.  This
   has ARGS.size() + 1 entries.  */

badness_vector
rank_function (gdb::array_view<type *> parms,
	       gdb::array_view<value *> args)
{
  /* add 1 for the length-match rank.  */
  badness_vector bv;
  bv.reserve (1 + args.size ());

  /* First compare the lengths of the supplied lists.
     If there is a mismatch, set it to a high value.  */

  /* pai/1997-06-03 FIXME: when we have debug info about default
     arguments and ellipsis parameter lists, we should consider those
     and rank the length-match more finely.  */

  bv.push_back ((args.size () != parms.size ())
		? LENGTH_MISMATCH_BADNESS
		: EXACT_MATCH_BADNESS);

  /* Now rank all the parameters of the candidate function.  */
  size_t min_len = std::min (parms.size (), args.size ());

  for (size_t i = 0; i < min_len; i++)
    bv.push_back (rank_one_type (parms[i], value_type (args[i]),
				 args[i]));

  /* If more arguments than parameters, add dummy entries.  */
  for (size_t i = min_len; i < args.size (); i++)
    bv.push_back (TOO_FEW_PARAMS_BADNESS);

  return bv;
}

/* Compare the names of two integer types, assuming that any sign
   qualifiers have been checked already.  We do it this way because
   there may be an "int" in the name of one of the types.  */

static int
integer_types_same_name_p (const char *first, const char *second)
{
  int first_p, second_p;

  /* If both are shorts, return 1; if neither is a short, keep
     checking.  */
  first_p = (strstr (first, "short") != NULL);
  second_p = (strstr (second, "short") != NULL);
  if (first_p && second_p)
    return 1;
  if (first_p || second_p)
    return 0;

  /* Likewise for long.  */
  first_p = (strstr (first, "long") != NULL);
  second_p = (strstr (second, "long") != NULL);
  if (first_p && second_p)
    return 1;
  if (first_p || second_p)
    return 0;

  /* Likewise for char.  */
  first_p = (strstr (first, "char") != NULL);
  second_p = (strstr (second, "char") != NULL);
  if (first_p && second_p)
    return 1;
  if (first_p || second_p)
    return 0;

  /* They must both be ints.  */
  return 1;
}

/* Compares type A to type B.  Returns true if they represent the same
   type, false otherwise.  */

bool
types_equal (struct type *a, struct type *b)
{
  /* Identical type pointers.  */
  /* However, this still doesn't catch all cases of same type for b
     and a.  The reason is that builtin types are different from
     the same ones constructed from the object.  */
  if (a == b)
    return true;

  /* Resolve typedefs */
  if (a->code () == TYPE_CODE_TYPEDEF)
    a = check_typedef (a);
  if (b->code () == TYPE_CODE_TYPEDEF)
    b = check_typedef (b);

  /* If after resolving typedefs a and b are not of the same type
     code then they are not equal.  */
  if (a->code () != b->code ())
    return false;

  /* If a and b are both pointers types or both reference types then
     they are equal of the same type iff the objects they refer to are
     of the same type.  */
  if (a->code () == TYPE_CODE_PTR
      || a->code () == TYPE_CODE_REF)
    return types_equal (TYPE_TARGET_TYPE (a),
                        TYPE_TARGET_TYPE (b));

  /* Well, damnit, if the names are exactly the same, I'll say they
     are exactly the same.  This happens when we generate method
     stubs.  The types won't point to the same address, but they
     really are the same.  */

  if (a->name () && b->name ()
      && strcmp (a->name (), b->name ()) == 0)
    return true;

  /* Check if identical after resolving typedefs.  */
  if (a == b)
    return true;

  /* Two function types are equal if their argument and return types
     are equal.  */
  if (a->code () == TYPE_CODE_FUNC)
    {
      int i;

      if (a->num_fields () != b->num_fields ())
	return false;
      
      if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
	return false;

      for (i = 0; i < a->num_fields (); ++i)
	if (!types_equal (a->field (i).type (), b->field (i).type ()))
	  return false;

      return true;
    }

  return false;
}

/* Deep comparison of types.  */

/* An entry in the type-equality bcache.  */

struct type_equality_entry
{
  type_equality_entry (struct type *t1, struct type *t2)
    : type1 (t1),
      type2 (t2)
  {
  }

  struct type *type1, *type2;
};

/* A helper function to compare two strings.  Returns true if they are
   the same, false otherwise.  Handles NULLs properly.  */

static bool
compare_maybe_null_strings (const char *s, const char *t)
{
  if (s == NULL || t == NULL)
    return s == t;
  return strcmp (s, t) == 0;
}

/* A helper function for check_types_worklist that checks two types for
   "deep" equality.  Returns true if the types are considered the
   same, false otherwise.  */

static bool
check_types_equal (struct type *type1, struct type *type2,
		   std::vector<type_equality_entry> *worklist)
{
  type1 = check_typedef (type1);
  type2 = check_typedef (type2);

  if (type1 == type2)
    return true;

  if (type1->code () != type2->code ()
      || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
      || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
      || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
      || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
      || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
      || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
      || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
      || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
      || type1->num_fields () != type2->num_fields ())
    return false;

  if (!compare_maybe_null_strings (type1->name (), type2->name ()))
    return false;
  if (!compare_maybe_null_strings (type1->name (), type2->name ()))
    return false;

  if (type1->code () == TYPE_CODE_RANGE)
    {
      if (*type1->bounds () != *type2->bounds ())
	return false;
    }
  else
    {
      int i;

      for (i = 0; i < type1->num_fields (); ++i)
	{
	  const struct field *field1 = &type1->field (i);
	  const struct field *field2 = &type2->field (i);

	  if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
	      || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
	      || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
	    return false;
	  if (!compare_maybe_null_strings (FIELD_NAME (*field1),
					   FIELD_NAME (*field2)))
	    return false;
	  switch (FIELD_LOC_KIND (*field1))
	    {
	    case FIELD_LOC_KIND_BITPOS:
	      if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
		return false;
	      break;
	    case FIELD_LOC_KIND_ENUMVAL:
	      if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
		return false;
	      break;
	    case FIELD_LOC_KIND_PHYSADDR:
	      if (FIELD_STATIC_PHYSADDR (*field1)
		  != FIELD_STATIC_PHYSADDR (*field2))
		return false;
	      break;
	    case FIELD_LOC_KIND_PHYSNAME:
	      if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
					       FIELD_STATIC_PHYSNAME (*field2)))
		return false;
	      break;
	    case FIELD_LOC_KIND_DWARF_BLOCK:
	      {
		struct dwarf2_locexpr_baton *block1, *block2;

		block1 = FIELD_DWARF_BLOCK (*field1);
		block2 = FIELD_DWARF_BLOCK (*field2);
		if (block1->per_cu != block2->per_cu
		    || block1->size != block2->size
		    || memcmp (block1->data, block2->data, block1->size) != 0)
		  return false;
	      }
	      break;
	    default:
	      internal_error (__FILE__, __LINE__, _("Unsupported field kind "
						    "%d by check_types_equal"),
			      FIELD_LOC_KIND (*field1));
	    }

	  worklist->emplace_back (field1->type (), field2->type ());
	}
    }

  if (TYPE_TARGET_TYPE (type1) != NULL)
    {
      if (TYPE_TARGET_TYPE (type2) == NULL)
	return false;

      worklist->emplace_back (TYPE_TARGET_TYPE (type1),
			      TYPE_TARGET_TYPE (type2));
    }
  else if (TYPE_TARGET_TYPE (type2) != NULL)
    return false;

  return true;
}

/* Check types on a worklist for equality.  Returns false if any pair
   is not equal, true if they are all considered equal.  */

static bool
check_types_worklist (std::vector<type_equality_entry> *worklist,
		      gdb::bcache *cache)
{
  while (!worklist->empty ())
    {
      bool added;

      struct type_equality_entry entry = std::move (worklist->back ());
      worklist->pop_back ();

      /* If the type pair has already been visited, we know it is
	 ok.  */
      cache->insert (&entry, sizeof (entry), &added);
      if (!added)
	continue;

      if (!check_types_equal (entry.type1, entry.type2, worklist))
	return false;
    }

  return true;
}

/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
   "deep comparison".  Otherwise return false.  */

bool
types_deeply_equal (struct type *type1, struct type *type2)
{
  std::vector<type_equality_entry> worklist;

  gdb_assert (type1 != NULL && type2 != NULL);

  /* Early exit for the simple case.  */
  if (type1 == type2)
    return true;

  gdb::bcache cache (nullptr, nullptr);
  worklist.emplace_back (type1, type2);
  return check_types_worklist (&worklist, &cache);
}

/* Allocated status of type TYPE.  Return zero if type TYPE is allocated.
   Otherwise return one.  */

int
type_not_allocated (const struct type *type)
{
  struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);

  return (prop != nullptr && prop->kind () == PROP_CONST
	  && prop->const_val () == 0);
}

/* Associated status of type TYPE.  Return zero if type TYPE is associated.
   Otherwise return one.  */

int
type_not_associated (const struct type *type)
{
  struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);

  return (prop != nullptr && prop->kind () == PROP_CONST
	  && prop->const_val () == 0);
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR.  */

static struct rank
rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
{
  struct rank rank = {0,0};

  switch (arg->code ())
    {
    case TYPE_CODE_PTR:

      /* Allowed pointer conversions are:
	 (a) pointer to void-pointer conversion.  */
      if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
	return VOID_PTR_CONVERSION_BADNESS;

      /* (b) pointer to ancestor-pointer conversion.  */
      rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
					   TYPE_TARGET_TYPE (arg),
					   0);
      if (rank.subrank >= 0)
	return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);

      return INCOMPATIBLE_TYPE_BADNESS;
    case TYPE_CODE_ARRAY:
      {
	struct type *t1 = TYPE_TARGET_TYPE (parm);
	struct type *t2 = TYPE_TARGET_TYPE (arg);

	if (types_equal (t1, t2))
	  {
	    /* Make sure they are CV equal.  */
	    if (TYPE_CONST (t1) != TYPE_CONST (t2))
	      rank.subrank |= CV_CONVERSION_CONST;
	    if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
	      rank.subrank |= CV_CONVERSION_VOLATILE;
	    if (rank.subrank != 0)
	      return sum_ranks (CV_CONVERSION_BADNESS, rank);
	    return EXACT_MATCH_BADNESS;
	  }
	return INCOMPATIBLE_TYPE_BADNESS;
      }
    case TYPE_CODE_FUNC:
      return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
    case TYPE_CODE_INT:
      if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
	{
	  if (value_as_long (value) == 0)
	    {
	      /* Null pointer conversion: allow it to be cast to a pointer.
		 [4.10.1 of C++ standard draft n3290]  */
	      return NULL_POINTER_CONVERSION_BADNESS;
	    }
	  else
	    {
	      /* If type checking is disabled, allow the conversion.  */
	      if (!strict_type_checking)
		return NS_INTEGER_POINTER_CONVERSION_BADNESS;
	    }
	}
      /* fall through  */
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY.  */

static struct rank
rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_ARRAY:
      return rank_one_type (TYPE_TARGET_TYPE (parm),
			    TYPE_TARGET_TYPE (arg), NULL);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC.  */

static struct rank
rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
    case TYPE_CODE_PTR:	/* funcptr -> func */
      return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT.  */

static struct rank
rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
    case TYPE_CODE_INT:
      if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
	{
	  /* Deal with signed, unsigned, and plain chars and
	     signed and unsigned ints.  */
	  if (TYPE_NOSIGN (parm))
	    {
	      /* This case only for character types.  */
	      if (TYPE_NOSIGN (arg))
		return EXACT_MATCH_BADNESS;	/* plain char -> plain char */
	      else		/* signed/unsigned char -> plain char */
		return INTEGER_CONVERSION_BADNESS;
	    }
	  else if (TYPE_UNSIGNED (parm))
	    {
	      if (TYPE_UNSIGNED (arg))
		{
		  /* unsigned int -> unsigned int, or
		     unsigned long -> unsigned long */
		  if (integer_types_same_name_p (parm->name (),
						 arg->name ()))
		    return EXACT_MATCH_BADNESS;
		  else if (integer_types_same_name_p (arg->name (),
						      "int")
			   && integer_types_same_name_p (parm->name (),
							 "long"))
		    /* unsigned int -> unsigned long */
		    return INTEGER_PROMOTION_BADNESS;
		  else
		    /* unsigned long -> unsigned int */
		    return INTEGER_CONVERSION_BADNESS;
		}
	      else
		{
		  if (integer_types_same_name_p (arg->name (),
						 "long")
		      && integer_types_same_name_p (parm->name (),
						    "int"))
		    /* signed long -> unsigned int */
		    return INTEGER_CONVERSION_BADNESS;
		  else
		    /* signed int/long -> unsigned int/long */
		    return INTEGER_CONVERSION_BADNESS;
		}
	    }
	  else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
	    {
	      if (integer_types_same_name_p (parm->name (),
					     arg->name ()))
		return EXACT_MATCH_BADNESS;
	      else if (integer_types_same_name_p (arg->name (),
						  "int")
		       && integer_types_same_name_p (parm->name (),
						     "long"))
		return INTEGER_PROMOTION_BADNESS;
	      else
		return INTEGER_CONVERSION_BADNESS;
	    }
	  else
	    return INTEGER_CONVERSION_BADNESS;
	}
      else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
	return INTEGER_PROMOTION_BADNESS;
      else
	return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
      if (TYPE_DECLARED_CLASS (arg))
	return INCOMPATIBLE_TYPE_BADNESS;
      return INTEGER_PROMOTION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    case TYPE_CODE_PTR:
      return NS_POINTER_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM.  */

static struct rank
rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
	return INCOMPATIBLE_TYPE_BADNESS;
      return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR.  */

static struct rank
rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      if (TYPE_DECLARED_CLASS (arg))
	return INCOMPATIBLE_TYPE_BADNESS;
      return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    case TYPE_CODE_INT:
      if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
	return INTEGER_CONVERSION_BADNESS;
      else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
	return INTEGER_PROMOTION_BADNESS;
      /* fall through */
    case TYPE_CODE_CHAR:
      /* Deal with signed, unsigned, and plain chars for C++ and
	 with int cases falling through from previous case.  */
      if (TYPE_NOSIGN (parm))
	{
	  if (TYPE_NOSIGN (arg))
	    return EXACT_MATCH_BADNESS;
	  else
	    return INTEGER_CONVERSION_BADNESS;
	}
      else if (TYPE_UNSIGNED (parm))
	{
	  if (TYPE_UNSIGNED (arg))
	    return EXACT_MATCH_BADNESS;
	  else
	    return INTEGER_PROMOTION_BADNESS;
	}
      else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
	return EXACT_MATCH_BADNESS;
      else
	return INTEGER_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE.  */

static struct rank
rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL.  */

static struct rank
rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
      /* n3290 draft, section 4.12.1 (conv.bool):

	 "A prvalue of arithmetic, unscoped enumeration, pointer, or
	 pointer to member type can be converted to a prvalue of type
	 bool.  A zero value, null pointer value, or null member pointer
	 value is converted to false; any other value is converted to
	 true.  A prvalue of type std::nullptr_t can be converted to a
	 prvalue of type bool; the resulting value is false."  */
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLT:
    case TYPE_CODE_MEMBERPTR:
    case TYPE_CODE_PTR:
      return BOOL_CONVERSION_BADNESS;
    case TYPE_CODE_RANGE:
      return INCOMPATIBLE_TYPE_BADNESS;
    case TYPE_CODE_BOOL:
      return EXACT_MATCH_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT.  */

static struct rank
rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
    case TYPE_CODE_FLT:
      if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
	return FLOAT_PROMOTION_BADNESS;
      else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
	return EXACT_MATCH_BADNESS;
      else
	return FLOAT_CONVERSION_BADNESS;
    case TYPE_CODE_INT:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_CHAR:
      return INT_FLOAT_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX.  */

static struct rank
rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {		/* Strictly not needed for C++, but...  */
    case TYPE_CODE_FLT:
      return FLOAT_PROMOTION_BADNESS;
    case TYPE_CODE_COMPLEX:
      return EXACT_MATCH_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT.  */

static struct rank
rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
{
  struct rank rank = {0, 0};

  switch (arg->code ())
    {
    case TYPE_CODE_STRUCT:
      /* Check for derivation */
      rank.subrank = distance_to_ancestor (parm, arg, 0);
      if (rank.subrank >= 0)
	return sum_ranks (BASE_CONVERSION_BADNESS, rank);
      /* fall through */
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET.  */

static struct rank
rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
{
  switch (arg->code ())
    {
      /* Not in C++ */
    case TYPE_CODE_SET:
      return rank_one_type (parm->field (0).type (),
			    arg->field (0).type (), NULL);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* Compare one type (PARM) for compatibility with another (ARG).
 * PARM is intended to be the parameter type of a function; and
 * ARG is the supplied argument's type.  This function tests if
 * the latter can be converted to the former.
 * VALUE is the argument's value or NULL if none (or called recursively)
 *
 * Return 0 if they are identical types;
 * Otherwise, return an integer which corresponds to how compatible
 * PARM is to ARG.  The higher the return value, the worse the match.
 * Generally the "bad" conversions are all uniformly assigned a 100.  */

struct rank
rank_one_type (struct type *parm, struct type *arg, struct value *value)
{
  struct rank rank = {0,0};

  /* Resolve typedefs */
  if (parm->code () == TYPE_CODE_TYPEDEF)
    parm = check_typedef (parm);
  if (arg->code () == TYPE_CODE_TYPEDEF)
    arg = check_typedef (arg);

  if (TYPE_IS_REFERENCE (parm) && value != NULL)
    {
      if (VALUE_LVAL (value) == not_lval)
	{
	  /* Rvalues should preferably bind to rvalue references or const
	     lvalue references.  */
	  if (parm->code () == TYPE_CODE_RVALUE_REF)
	    rank.subrank = REFERENCE_CONVERSION_RVALUE;
	  else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
	    rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
	  else
	    return INCOMPATIBLE_TYPE_BADNESS;
	  return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
	}
      else
	{
	  /* It's illegal to pass an lvalue as an rvalue.  */
	  if (parm->code () == TYPE_CODE_RVALUE_REF)
	    return INCOMPATIBLE_TYPE_BADNESS;
	}
    }

  if (types_equal (parm, arg))
    {
      struct type *t1 = parm;
      struct type *t2 = arg;

      /* For pointers and references, compare target type.  */
      if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
	{
	  t1 = TYPE_TARGET_TYPE (parm);
	  t2 = TYPE_TARGET_TYPE (arg);
	}

      /* Make sure they are CV equal, too.  */
      if (TYPE_CONST (t1) != TYPE_CONST (t2))
	rank.subrank |= CV_CONVERSION_CONST;
      if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
	rank.subrank |= CV_CONVERSION_VOLATILE;
      if (rank.subrank != 0)
	return sum_ranks (CV_CONVERSION_BADNESS, rank);
      return EXACT_MATCH_BADNESS;
    }

  /* See through references, since we can almost make non-references
     references.  */

  if (TYPE_IS_REFERENCE (arg))
    return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
                       REFERENCE_SEE_THROUGH_BADNESS));
  if (TYPE_IS_REFERENCE (parm))
    return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
                       REFERENCE_SEE_THROUGH_BADNESS));
  if (overload_debug)
  /* Debugging only.  */
    fprintf_filtered (gdb_stderr,
		      "------ Arg is %s [%d], parm is %s [%d]\n",
		      arg->name (), arg->code (),
		      parm->name (), parm->code ());

  /* x -> y means arg of type x being supplied for parameter of type y.  */

  switch (parm->code ())
    {
    case TYPE_CODE_PTR:
      return rank_one_type_parm_ptr (parm, arg, value);
    case TYPE_CODE_ARRAY:
      return rank_one_type_parm_array (parm, arg, value);
    case TYPE_CODE_FUNC:
      return rank_one_type_parm_func (parm, arg, value);
    case TYPE_CODE_INT:
      return rank_one_type_parm_int (parm, arg, value);
    case TYPE_CODE_ENUM:
      return rank_one_type_parm_enum (parm, arg, value);
    case TYPE_CODE_CHAR:
      return rank_one_type_parm_char (parm, arg, value);
    case TYPE_CODE_RANGE:
      return rank_one_type_parm_range (parm, arg, value);
    case TYPE_CODE_BOOL:
      return rank_one_type_parm_bool (parm, arg, value);
    case TYPE_CODE_FLT:
      return rank_one_type_parm_float (parm, arg, value);
    case TYPE_CODE_COMPLEX:
      return rank_one_type_parm_complex (parm, arg, value);
    case TYPE_CODE_STRUCT:
      return rank_one_type_parm_struct (parm, arg, value);
    case TYPE_CODE_SET:
      return rank_one_type_parm_set (parm, arg, value);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }				/* switch (arg->code ()) */
}

/* End of functions for overload resolution.  */

/* Routines to pretty-print types.  */

static void
print_bit_vector (B_TYPE *bits, int nbits)
{
  int bitno;

  for (bitno = 0; bitno < nbits; bitno++)
    {
      if ((bitno % 8) == 0)
	{
	  puts_filtered (" ");
	}
      if (B_TST (bits, bitno))
	printf_filtered (("1"));
      else
	printf_filtered (("0"));
    }
}

/* Note the first arg should be the "this" pointer, we may not want to
   include it since we may get into a infinitely recursive
   situation.  */

static void
print_args (struct field *args, int nargs, int spaces)
{
  if (args != NULL)
    {
      int i;

      for (i = 0; i < nargs; i++)
	{
	  printfi_filtered (spaces, "[%d] name '%s'\n", i,
			    args[i].name != NULL ? args[i].name : "<NULL>");
	  recursive_dump_type (args[i].type (), spaces + 2);
	}
    }
}

int
field_is_static (struct field *f)
{
  /* "static" fields are the fields whose location is not relative
     to the address of the enclosing struct.  It would be nice to
     have a dedicated flag that would be set for static fields when
     the type is being created.  But in practice, checking the field
     loc_kind should give us an accurate answer.  */
  return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
	  || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
}

static void
dump_fn_fieldlists (struct type *type, int spaces)
{
  int method_idx;
  int overload_idx;
  struct fn_field *f;

  printfi_filtered (spaces, "fn_fieldlists ");
  gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
  printf_filtered ("\n");
  for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
    {
      f = TYPE_FN_FIELDLIST1 (type, method_idx);
      printfi_filtered (spaces + 2, "[%d] name '%s' (",
			method_idx,
			TYPE_FN_FIELDLIST_NAME (type, method_idx));
      gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
			      gdb_stdout);
      printf_filtered (_(") length %d\n"),
		       TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
      for (overload_idx = 0;
	   overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
	   overload_idx++)
	{
	  printfi_filtered (spaces + 4, "[%d] physname '%s' (",
			    overload_idx,
			    TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
	  gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
				  gdb_stdout);
	  printf_filtered (")\n");
	  printfi_filtered (spaces + 8, "type ");
	  gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), 
				  gdb_stdout);
	  printf_filtered ("\n");

	  recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
			       spaces + 8 + 2);

	  printfi_filtered (spaces + 8, "args ");
	  gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), 
				  gdb_stdout);
	  printf_filtered ("\n");
	  print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
		      TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
		      spaces + 8 + 2);
	  printfi_filtered (spaces + 8, "fcontext ");
	  gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
				  gdb_stdout);
	  printf_filtered ("\n");

	  printfi_filtered (spaces + 8, "is_const %d\n",
			    TYPE_FN_FIELD_CONST (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_volatile %d\n",
			    TYPE_FN_FIELD_VOLATILE (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_private %d\n",
			    TYPE_FN_FIELD_PRIVATE (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_protected %d\n",
			    TYPE_FN_FIELD_PROTECTED (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_stub %d\n",
			    TYPE_FN_FIELD_STUB (f, overload_idx));
	  printfi_filtered (spaces + 8, "defaulted %d\n",
			    TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_deleted %d\n",
			    TYPE_FN_FIELD_DELETED (f, overload_idx));
	  printfi_filtered (spaces + 8, "voffset %u\n",
			    TYPE_FN_FIELD_VOFFSET (f, overload_idx));
	}
    }
}

static void
print_cplus_stuff (struct type *type, int spaces)
{
  printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
  printfi_filtered (spaces, "vptr_basetype ");
  gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
  puts_filtered ("\n");
  if (TYPE_VPTR_BASETYPE (type) != NULL)
    recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);

  printfi_filtered (spaces, "n_baseclasses %d\n",
		    TYPE_N_BASECLASSES (type));
  printfi_filtered (spaces, "nfn_fields %d\n",
		    TYPE_NFN_FIELDS (type));
  if (TYPE_N_BASECLASSES (type) > 0)
    {
      printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
			TYPE_N_BASECLASSES (type));
      gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), 
			      gdb_stdout);
      printf_filtered (")");

      print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
			TYPE_N_BASECLASSES (type));
      puts_filtered ("\n");
    }
  if (type->num_fields () > 0)
    {
      if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
	{
	  printfi_filtered (spaces, 
			    "private_field_bits (%d bits at *",
			    type->num_fields ());
	  gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), 
				  gdb_stdout);
	  printf_filtered (")");
	  print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
			    type->num_fields ());
	  puts_filtered ("\n");
	}
      if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
	{
	  printfi_filtered (spaces, 
			    "protected_field_bits (%d bits at *",
			    type->num_fields ());
	  gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), 
				  gdb_stdout);
	  printf_filtered (")");
	  print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
			    type->num_fields ());
	  puts_filtered ("\n");
	}
    }
  if (TYPE_NFN_FIELDS (type) > 0)
    {
      dump_fn_fieldlists (type, spaces);
    }

  printfi_filtered (spaces, "calling_convention %d\n",
		    TYPE_CPLUS_CALLING_CONVENTION (type));
}

/* Print the contents of the TYPE's type_specific union, assuming that
   its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF.  */

static void
print_gnat_stuff (struct type *type, int spaces)
{
  struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);

  if (descriptive_type == NULL)
    printfi_filtered (spaces + 2, "no descriptive type\n");
  else
    {
      printfi_filtered (spaces + 2, "descriptive type\n");
      recursive_dump_type (descriptive_type, spaces + 4);
    }
}

static struct obstack dont_print_type_obstack;

/* Print the dynamic_prop PROP.  */

static void
dump_dynamic_prop (dynamic_prop const& prop)
{
  switch (prop.kind ())
    {
    case PROP_CONST:
      printf_filtered ("%s", plongest (prop.const_val ()));
      break;
    case PROP_UNDEFINED:
      printf_filtered ("(undefined)");
      break;
    case PROP_LOCEXPR:
    case PROP_LOCLIST:
      printf_filtered ("(dynamic)");
      break;
    default:
      gdb_assert_not_reached ("unhandled prop kind");
      break;
    }
}

void
recursive_dump_type (struct type *type, int spaces)
{
  int idx;

  if (spaces == 0)
    obstack_begin (&dont_print_type_obstack, 0);

  if (type->num_fields () > 0
      || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
    {
      struct type **first_dont_print
	= (struct type **) obstack_base (&dont_print_type_obstack);

      int i = (struct type **) 
	obstack_next_free (&dont_print_type_obstack) - first_dont_print;

      while (--i >= 0)
	{
	  if (type == first_dont_print[i])
	    {
	      printfi_filtered (spaces, "type node ");
	      gdb_print_host_address (type, gdb_stdout);
	      printf_filtered (_(" <same as already seen type>\n"));
	      return;
	    }
	}

      obstack_ptr_grow (&dont_print_type_obstack, type);
    }

  printfi_filtered (spaces, "type node ");
  gdb_print_host_address (type, gdb_stdout);
  printf_filtered ("\n");
  printfi_filtered (spaces, "name '%s' (",
		    type->name () ? type->name () : "<NULL>");
  gdb_print_host_address (type->name (), gdb_stdout);
  printf_filtered (")\n");
  printfi_filtered (spaces, "code 0x%x ", type->code ());
  switch (type->code ())
    {
    case TYPE_CODE_UNDEF:
      printf_filtered ("(TYPE_CODE_UNDEF)");
      break;
    case TYPE_CODE_PTR:
      printf_filtered ("(TYPE_CODE_PTR)");
      break;
    case TYPE_CODE_ARRAY:
      printf_filtered ("(TYPE_CODE_ARRAY)");
      break;
    case TYPE_CODE_STRUCT:
      printf_filtered ("(TYPE_CODE_STRUCT)");
      break;
    case TYPE_CODE_UNION:
      printf_filtered ("(TYPE_CODE_UNION)");
      break;
    case TYPE_CODE_ENUM:
      printf_filtered ("(TYPE_CODE_ENUM)");
      break;
    case TYPE_CODE_FLAGS:
      printf_filtered ("(TYPE_CODE_FLAGS)");
      break;
    case TYPE_CODE_FUNC:
      printf_filtered ("(TYPE_CODE_FUNC)");
      break;
    case TYPE_CODE_INT:
      printf_filtered ("(TYPE_CODE_INT)");
      break;
    case TYPE_CODE_FLT:
      printf_filtered ("(TYPE_CODE_FLT)");
      break;
    case TYPE_CODE_VOID:
      printf_filtered ("(TYPE_CODE_VOID)");
      break;
    case TYPE_CODE_SET:
      printf_filtered ("(TYPE_CODE_SET)");
      break;
    case TYPE_CODE_RANGE:
      printf_filtered ("(TYPE_CODE_RANGE)");
      break;
    case TYPE_CODE_STRING:
      printf_filtered ("(TYPE_CODE_STRING)");
      break;
    case TYPE_CODE_ERROR:
      printf_filtered ("(TYPE_CODE_ERROR)");
      break;
    case TYPE_CODE_MEMBERPTR:
      printf_filtered ("(TYPE_CODE_MEMBERPTR)");
      break;
    case TYPE_CODE_METHODPTR:
      printf_filtered ("(TYPE_CODE_METHODPTR)");
      break;
    case TYPE_CODE_METHOD:
      printf_filtered ("(TYPE_CODE_METHOD)");
      break;
    case TYPE_CODE_REF:
      printf_filtered ("(TYPE_CODE_REF)");
      break;
    case TYPE_CODE_CHAR:
      printf_filtered ("(TYPE_CODE_CHAR)");
      break;
    case TYPE_CODE_BOOL:
      printf_filtered ("(TYPE_CODE_BOOL)");
      break;
    case TYPE_CODE_COMPLEX:
      printf_filtered ("(TYPE_CODE_COMPLEX)");
      break;
    case TYPE_CODE_TYPEDEF:
      printf_filtered ("(TYPE_CODE_TYPEDEF)");
      break;
    case TYPE_CODE_NAMESPACE:
      printf_filtered ("(TYPE_CODE_NAMESPACE)");
      break;
    default:
      printf_filtered ("(UNKNOWN TYPE CODE)");
      break;
    }
  puts_filtered ("\n");
  printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
  if (TYPE_OBJFILE_OWNED (type))
    {
      printfi_filtered (spaces, "objfile ");
      gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
    }
  else
    {
      printfi_filtered (spaces, "gdbarch ");
      gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
    }
  printf_filtered ("\n");
  printfi_filtered (spaces, "target_type ");
  gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
  printf_filtered ("\n");
  if (TYPE_TARGET_TYPE (type) != NULL)
    {
      recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
    }
  printfi_filtered (spaces, "pointer_type ");
  gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
  printf_filtered ("\n");
  printfi_filtered (spaces, "reference_type ");
  gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
  printf_filtered ("\n");
  printfi_filtered (spaces, "type_chain ");
  gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
  printf_filtered ("\n");
  printfi_filtered (spaces, "instance_flags 0x%x", 
		    TYPE_INSTANCE_FLAGS (type));
  if (TYPE_CONST (type))
    {
      puts_filtered (" TYPE_CONST");
    }
  if (TYPE_VOLATILE (type))
    {
      puts_filtered (" TYPE_VOLATILE");
    }
  if (TYPE_CODE_SPACE (type))
    {
      puts_filtered (" TYPE_CODE_SPACE");
    }
  if (TYPE_DATA_SPACE (type))
    {
      puts_filtered (" TYPE_DATA_SPACE");
    }
  if (TYPE_ADDRESS_CLASS_1 (type))
    {
      puts_filtered (" TYPE_ADDRESS_CLASS_1");
    }
  if (TYPE_ADDRESS_CLASS_2 (type))
    {
      puts_filtered (" TYPE_ADDRESS_CLASS_2");
    }
  if (TYPE_RESTRICT (type))
    {
      puts_filtered (" TYPE_RESTRICT");
    }
  if (TYPE_ATOMIC (type))
    {
      puts_filtered (" TYPE_ATOMIC");
    }
  puts_filtered ("\n");

  printfi_filtered (spaces, "flags");
  if (TYPE_UNSIGNED (type))
    {
      puts_filtered (" TYPE_UNSIGNED");
    }
  if (TYPE_NOSIGN (type))
    {
      puts_filtered (" TYPE_NOSIGN");
    }
  if (TYPE_ENDIANITY_NOT_DEFAULT (type))
    {
      puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
    }
  if (TYPE_STUB (type))
    {
      puts_filtered (" TYPE_STUB");
    }
  if (TYPE_TARGET_STUB (type))
    {
      puts_filtered (" TYPE_TARGET_STUB");
    }
  if (TYPE_PROTOTYPED (type))
    {
      puts_filtered (" TYPE_PROTOTYPED");
    }
  if (TYPE_VARARGS (type))
    {
      puts_filtered (" TYPE_VARARGS");
    }
  /* This is used for things like AltiVec registers on ppc.  Gcc emits
     an attribute for the array type, which tells whether or not we
     have a vector, instead of a regular array.  */
  if (TYPE_VECTOR (type))
    {
      puts_filtered (" TYPE_VECTOR");
    }
  if (TYPE_FIXED_INSTANCE (type))
    {
      puts_filtered (" TYPE_FIXED_INSTANCE");
    }
  if (TYPE_STUB_SUPPORTED (type))
    {
      puts_filtered (" TYPE_STUB_SUPPORTED");
    }
  if (TYPE_NOTTEXT (type))
    {
      puts_filtered (" TYPE_NOTTEXT");
    }
  puts_filtered ("\n");
  printfi_filtered (spaces, "nfields %d ", type->num_fields ());
  gdb_print_host_address (type->fields (), gdb_stdout);
  puts_filtered ("\n");
  for (idx = 0; idx < type->num_fields (); idx++)
    {
      if (type->code () == TYPE_CODE_ENUM)
	printfi_filtered (spaces + 2,
			  "[%d] enumval %s type ",
			  idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
      else
	printfi_filtered (spaces + 2,
			  "[%d] bitpos %s bitsize %d type ",
			  idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
			  TYPE_FIELD_BITSIZE (type, idx));
      gdb_print_host_address (type->field (idx).type (), gdb_stdout);
      printf_filtered (" name '%s' (",
		       TYPE_FIELD_NAME (type, idx) != NULL
		       ? TYPE_FIELD_NAME (type, idx)
		       : "<NULL>");
      gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
      printf_filtered (")\n");
      if (type->field (idx).type () != NULL)
	{
	  recursive_dump_type (type->field (idx).type (), spaces + 4);
	}
    }
  if (type->code () == TYPE_CODE_RANGE)
    {
      printfi_filtered (spaces, "low ");
      dump_dynamic_prop (type->bounds ()->low);
      printf_filtered ("  high ");
      dump_dynamic_prop (type->bounds ()->high);
      printf_filtered ("\n");
    }

  switch (TYPE_SPECIFIC_FIELD (type))
    {
      case TYPE_SPECIFIC_CPLUS_STUFF:
	printfi_filtered (spaces, "cplus_stuff ");
	gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), 
				gdb_stdout);
	puts_filtered ("\n");
	print_cplus_stuff (type, spaces);
	break;

      case TYPE_SPECIFIC_GNAT_STUFF:
	printfi_filtered (spaces, "gnat_stuff ");
	gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
	puts_filtered ("\n");
	print_gnat_stuff (type, spaces);
	break;

      case TYPE_SPECIFIC_FLOATFORMAT:
	printfi_filtered (spaces, "floatformat ");
	if (TYPE_FLOATFORMAT (type) == NULL
	    || TYPE_FLOATFORMAT (type)->name == NULL)
	  puts_filtered ("(null)");
	else
	  puts_filtered (TYPE_FLOATFORMAT (type)->name);
	puts_filtered ("\n");
	break;

      case TYPE_SPECIFIC_FUNC:
	printfi_filtered (spaces, "calling_convention %d\n",
                          TYPE_CALLING_CONVENTION (type));
	/* tail_call_list is not printed.  */
	break;

      case TYPE_SPECIFIC_SELF_TYPE:
	printfi_filtered (spaces, "self_type ");
	gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
	puts_filtered ("\n");
	break;
    }

  if (spaces == 0)
    obstack_free (&dont_print_type_obstack, NULL);
}

/* Trivial helpers for the libiberty hash table, for mapping one
   type to another.  */

struct type_pair : public allocate_on_obstack
{
  type_pair (struct type *old_, struct type *newobj_)
    : old (old_), newobj (newobj_)
  {}

  struct type * const old, * const newobj;
};

static hashval_t
type_pair_hash (const void *item)
{
  const struct type_pair *pair = (const struct type_pair *) item;

  return htab_hash_pointer (pair->old);
}

static int
type_pair_eq (const void *item_lhs, const void *item_rhs)
{
  const struct type_pair *lhs = (const struct type_pair *) item_lhs;
  const struct type_pair *rhs = (const struct type_pair *) item_rhs;

  return lhs->old == rhs->old;
}

/* Allocate the hash table used by copy_type_recursive to walk
   types without duplicates.  We use OBJFILE's obstack, because
   OBJFILE is about to be deleted.  */

htab_t
create_copied_types_hash (struct objfile *objfile)
{
  return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
			       NULL, &objfile->objfile_obstack,
			       hashtab_obstack_allocate,
			       dummy_obstack_deallocate);
}

/* Recursively copy (deep copy) a dynamic attribute list of a type.  */

static struct dynamic_prop_list *
copy_dynamic_prop_list (struct obstack *objfile_obstack,
			struct dynamic_prop_list *list)
{
  struct dynamic_prop_list *copy = list;
  struct dynamic_prop_list **node_ptr = &copy;

  while (*node_ptr != NULL)
    {
      struct dynamic_prop_list *node_copy;

      node_copy = ((struct dynamic_prop_list *)
		   obstack_copy (objfile_obstack, *node_ptr,
				 sizeof (struct dynamic_prop_list)));
      node_copy->prop = (*node_ptr)->prop;
      *node_ptr = node_copy;

      node_ptr = &node_copy->next;
    }

  return copy;
}

/* Recursively copy (deep copy) TYPE, if it is associated with
   OBJFILE.  Return a new type owned by the gdbarch associated with the type, a
   saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
   it is not associated with OBJFILE.  */

struct type *
copy_type_recursive (struct objfile *objfile, 
		     struct type *type,
		     htab_t copied_types)
{
  void **slot;
  struct type *new_type;

  if (! TYPE_OBJFILE_OWNED (type))
    return type;

  /* This type shouldn't be pointing to any types in other objfiles;
     if it did, the type might disappear unexpectedly.  */
  gdb_assert (TYPE_OBJFILE (type) == objfile);

  struct type_pair pair (type, nullptr);

  slot = htab_find_slot (copied_types, &pair, INSERT);
  if (*slot != NULL)
    return ((struct type_pair *) *slot)->newobj;

  new_type = alloc_type_arch (get_type_arch (type));

  /* We must add the new type to the hash table immediately, in case
     we encounter this type again during a recursive call below.  */
  struct type_pair *stored
    = new (&objfile->objfile_obstack) struct type_pair (type, new_type);

  *slot = stored;

  /* Copy the common fields of types.  For the main type, we simply
     copy the entire thing and then update specific fields as needed.  */
  *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
  TYPE_OBJFILE_OWNED (new_type) = 0;
  TYPE_OWNER (new_type).gdbarch = get_type_arch (type);

  if (type->name ())
    new_type->set_name (xstrdup (type->name ()));

  TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
  TYPE_LENGTH (new_type) = TYPE_LENGTH (type);

  /* Copy the fields.  */
  if (type->num_fields ())
    {
      int i, nfields;

      nfields = type->num_fields ();
      new_type->set_fields
	((struct field *)
	 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));

      for (i = 0; i < nfields; i++)
	{
	  TYPE_FIELD_ARTIFICIAL (new_type, i) = 
	    TYPE_FIELD_ARTIFICIAL (type, i);
	  TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
	  if (type->field (i).type ())
	    new_type->field (i).set_type
	      (copy_type_recursive (objfile, type->field (i).type (),
				    copied_types));
	  if (TYPE_FIELD_NAME (type, i))
	    TYPE_FIELD_NAME (new_type, i) = 
	      xstrdup (TYPE_FIELD_NAME (type, i));
	  switch (TYPE_FIELD_LOC_KIND (type, i))
	    {
	    case FIELD_LOC_KIND_BITPOS:
	      SET_FIELD_BITPOS (new_type->field (i),
				TYPE_FIELD_BITPOS (type, i));
	      break;
	    case FIELD_LOC_KIND_ENUMVAL:
	      SET_FIELD_ENUMVAL (new_type->field (i),
				 TYPE_FIELD_ENUMVAL (type, i));
	      break;
	    case FIELD_LOC_KIND_PHYSADDR:
	      SET_FIELD_PHYSADDR (new_type->field (i),
				  TYPE_FIELD_STATIC_PHYSADDR (type, i));
	      break;
	    case FIELD_LOC_KIND_PHYSNAME:
	      SET_FIELD_PHYSNAME (new_type->field (i),
				  xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
								       i)));
	      break;
	    default:
	      internal_error (__FILE__, __LINE__,
			      _("Unexpected type field location kind: %d"),
			      TYPE_FIELD_LOC_KIND (type, i));
	    }
	}
    }

  /* For range types, copy the bounds information.  */
  if (type->code () == TYPE_CODE_RANGE)
    {
      range_bounds *bounds
        = ((struct range_bounds *) TYPE_ALLOC
	   (new_type, sizeof (struct range_bounds)));

      *bounds = *type->bounds ();
      new_type->set_bounds (bounds);
    }

  if (type->main_type->dyn_prop_list != NULL)
    new_type->main_type->dyn_prop_list
      = copy_dynamic_prop_list (&objfile->objfile_obstack,
				type->main_type->dyn_prop_list);


  /* Copy pointers to other types.  */
  if (TYPE_TARGET_TYPE (type))
    TYPE_TARGET_TYPE (new_type) = 
      copy_type_recursive (objfile, 
			   TYPE_TARGET_TYPE (type),
			   copied_types);

  /* Maybe copy the type_specific bits.

     NOTE drow/2005-12-09: We do not copy the C++-specific bits like
     base classes and methods.  There's no fundamental reason why we
     can't, but at the moment it is not needed.  */

  switch (TYPE_SPECIFIC_FIELD (type))
    {
    case TYPE_SPECIFIC_NONE:
      break;
    case TYPE_SPECIFIC_FUNC:
      INIT_FUNC_SPECIFIC (new_type);
      TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
      TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
      TYPE_TAIL_CALL_LIST (new_type) = NULL;
      break;
    case TYPE_SPECIFIC_FLOATFORMAT:
      TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
      break;
    case TYPE_SPECIFIC_CPLUS_STUFF:
      INIT_CPLUS_SPECIFIC (new_type);
      break;
    case TYPE_SPECIFIC_GNAT_STUFF:
      INIT_GNAT_SPECIFIC (new_type);
      break;
    case TYPE_SPECIFIC_SELF_TYPE:
      set_type_self_type (new_type,
			  copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
					       copied_types));
      break;
    default:
      gdb_assert_not_reached ("bad type_specific_kind");
    }

  return new_type;
}

/* Make a copy of the given TYPE, except that the pointer & reference
   types are not preserved.
   
   This function assumes that the given type has an associated objfile.
   This objfile is used to allocate the new type.  */

struct type *
copy_type (const struct type *type)
{
  struct type *new_type;

  gdb_assert (TYPE_OBJFILE_OWNED (type));

  new_type = alloc_type_copy (type);
  TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
  TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
  memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
	  sizeof (struct main_type));
  if (type->main_type->dyn_prop_list != NULL)
    new_type->main_type->dyn_prop_list
      = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
				type->main_type->dyn_prop_list);

  return new_type;
}

/* Helper functions to initialize architecture-specific types.  */

/* Allocate a type structure associated with GDBARCH and set its
   CODE, LENGTH, and NAME fields.  */

struct type *
arch_type (struct gdbarch *gdbarch,
	   enum type_code code, int bit, const char *name)
{
  struct type *type;

  type = alloc_type_arch (gdbarch);
  set_type_code (type, code);
  gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
  TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;

  if (name)
    type->set_name (gdbarch_obstack_strdup (gdbarch, name));

  return type;
}

/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
arch_integer_type (struct gdbarch *gdbarch,
		   int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
arch_character_type (struct gdbarch *gdbarch,
		     int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
arch_boolean_type (struct gdbarch *gdbarch,
		   int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
   BIT is the type size in bits; if BIT equals -1, the size is
   determined by the floatformat.  NAME is the type name.  Set the
   TYPE_FLOATFORMAT from FLOATFORMATS.  */

struct type *
arch_float_type (struct gdbarch *gdbarch,
		 int bit, const char *name,
		 const struct floatformat **floatformats)
{
  const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
  struct type *t;

  bit = verify_floatformat (bit, fmt);
  t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
  TYPE_FLOATFORMAT (t) = fmt;

  return t;
}

/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
   BIT is the type size in bits.  NAME is the type name.  */

struct type *
arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
{
  struct type *t;

  t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
  return t;
}

/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
   BIT is the pointer type size in bits.  NAME is the type name.
   TARGET_TYPE is the pointer target type.  Always sets the pointer type's
   TYPE_UNSIGNED flag.  */

struct type *
arch_pointer_type (struct gdbarch *gdbarch,
		   int bit, const char *name, struct type *target_type)
{
  struct type *t;

  t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
  TYPE_TARGET_TYPE (t) = target_type;
  TYPE_UNSIGNED (t) = 1;
  return t;
}

/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
   NAME is the type name.  BIT is the size of the flag word in bits.  */

struct type *
arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
{
  struct type *type;

  type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
  TYPE_UNSIGNED (type) = 1;
  type->set_num_fields (0);
  /* Pre-allocate enough space assuming every field is one bit.  */
  type->set_fields
    ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));

  return type;
}

/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
   position BITPOS is called NAME.  Pass NAME as "" for fields that
   should not be printed.  */

void
append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
			 struct type *field_type, const char *name)
{
  int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
  int field_nr = type->num_fields ();

  gdb_assert (type->code () == TYPE_CODE_FLAGS);
  gdb_assert (type->num_fields () + 1 <= type_bitsize);
  gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
  gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
  gdb_assert (name != NULL);

  TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
  type->field (field_nr).set_type (field_type);
  SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
  TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
  type->set_num_fields (type->num_fields () + 1);
}

/* Special version of append_flags_type_field to add a flag field.
   Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
   position BITPOS is called NAME.  */

void
append_flags_type_flag (struct type *type, int bitpos, const char *name)
{
  struct gdbarch *gdbarch = get_type_arch (type);

  append_flags_type_field (type, bitpos, 1,
			   builtin_type (gdbarch)->builtin_bool,
			   name);
}

/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
   specified by CODE) associated with GDBARCH.  NAME is the type name.  */

struct type *
arch_composite_type (struct gdbarch *gdbarch, const char *name,
		     enum type_code code)
{
  struct type *t;

  gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
  t = arch_type (gdbarch, code, 0, NULL);
  t->set_name (name);
  INIT_CPLUS_SPECIFIC (t);
  return t;
}

/* Add new field with name NAME and type FIELD to composite type T.
   Do not set the field's position or adjust the type's length;
   the caller should do so.  Return the new field.  */

struct field *
append_composite_type_field_raw (struct type *t, const char *name,
				 struct type *field)
{
  struct field *f;

  t->set_num_fields (t->num_fields () + 1);
  t->set_fields (XRESIZEVEC (struct field, t->fields (),
			     t->num_fields ()));
  f = &t->field (t->num_fields () - 1);
  memset (f, 0, sizeof f[0]);
  f[0].set_type (field);
  FIELD_NAME (f[0]) = name;
  return f;
}

/* Add new field with name NAME and type FIELD to composite type T.
   ALIGNMENT (if non-zero) specifies the minimum field alignment.  */

void
append_composite_type_field_aligned (struct type *t, const char *name,
				     struct type *field, int alignment)
{
  struct field *f = append_composite_type_field_raw (t, name, field);

  if (t->code () == TYPE_CODE_UNION)
    {
      if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
	TYPE_LENGTH (t) = TYPE_LENGTH (field);
    }
  else if (t->code () == TYPE_CODE_STRUCT)
    {
      TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
      if (t->num_fields () > 1)
	{
	  SET_FIELD_BITPOS (f[0],
			    (FIELD_BITPOS (f[-1])
			     + (TYPE_LENGTH (f[-1].type ())
				* TARGET_CHAR_BIT)));

	  if (alignment)
	    {
	      int left;

	      alignment *= TARGET_CHAR_BIT;
	      left = FIELD_BITPOS (f[0]) % alignment;

	      if (left)
		{
		  SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
		  TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
		}
	    }
	}
    }
}

/* Add new field with name NAME and type FIELD to composite type T.  */

void
append_composite_type_field (struct type *t, const char *name,
			     struct type *field)
{
  append_composite_type_field_aligned (t, name, field, 0);
}

static struct gdbarch_data *gdbtypes_data;

const struct builtin_type *
builtin_type (struct gdbarch *gdbarch)
{
  return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
}

static void *
gdbtypes_post_init (struct gdbarch *gdbarch)
{
  struct builtin_type *builtin_type
    = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);

  /* Basic types.  */
  builtin_type->builtin_void
    = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
  builtin_type->builtin_char
    = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
			 !gdbarch_char_signed (gdbarch), "char");
  TYPE_NOSIGN (builtin_type->builtin_char) = 1;
  builtin_type->builtin_signed_char
    = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
			 0, "signed char");
  builtin_type->builtin_unsigned_char
    = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
			 1, "unsigned char");
  builtin_type->builtin_short
    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
			 0, "short");
  builtin_type->builtin_unsigned_short
    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
			 1, "unsigned short");
  builtin_type->builtin_int
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 0, "int");
  builtin_type->builtin_unsigned_int
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 1, "unsigned int");
  builtin_type->builtin_long
    = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
			 0, "long");
  builtin_type->builtin_unsigned_long
    = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
			 1, "unsigned long");
  builtin_type->builtin_long_long
    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
			 0, "long long");
  builtin_type->builtin_unsigned_long_long
    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
			 1, "unsigned long long");
  builtin_type->builtin_half
    = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
		       "half", gdbarch_half_format (gdbarch));
  builtin_type->builtin_float
    = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
		       "float", gdbarch_float_format (gdbarch));
  builtin_type->builtin_bfloat16
    = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
		       "bfloat16", gdbarch_bfloat16_format (gdbarch));
  builtin_type->builtin_double
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
		       "double", gdbarch_double_format (gdbarch));
  builtin_type->builtin_long_double
    = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
		       "long double", gdbarch_long_double_format (gdbarch));
  builtin_type->builtin_complex
    = init_complex_type ("complex", builtin_type->builtin_float);
  builtin_type->builtin_double_complex
    = init_complex_type ("double complex", builtin_type->builtin_double);
  builtin_type->builtin_string
    = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
  builtin_type->builtin_bool
    = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");

  /* The following three are about decimal floating point types, which
     are 32-bits, 64-bits and 128-bits respectively.  */
  builtin_type->builtin_decfloat
    = arch_decfloat_type (gdbarch, 32, "_Decimal32");
  builtin_type->builtin_decdouble
    = arch_decfloat_type (gdbarch, 64, "_Decimal64");
  builtin_type->builtin_declong
    = arch_decfloat_type (gdbarch, 128, "_Decimal128");

  /* "True" character types.  */
  builtin_type->builtin_true_char
    = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
  builtin_type->builtin_true_unsigned_char
    = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");

  /* Fixed-size integer types.  */
  builtin_type->builtin_int0
    = arch_integer_type (gdbarch, 0, 0, "int0_t");
  builtin_type->builtin_int8
    = arch_integer_type (gdbarch, 8, 0, "int8_t");
  builtin_type->builtin_uint8
    = arch_integer_type (gdbarch, 8, 1, "uint8_t");
  builtin_type->builtin_int16
    = arch_integer_type (gdbarch, 16, 0, "int16_t");
  builtin_type->builtin_uint16
    = arch_integer_type (gdbarch, 16, 1, "uint16_t");
  builtin_type->builtin_int24
    = arch_integer_type (gdbarch, 24, 0, "int24_t");
  builtin_type->builtin_uint24
    = arch_integer_type (gdbarch, 24, 1, "uint24_t");
  builtin_type->builtin_int32
    = arch_integer_type (gdbarch, 32, 0, "int32_t");
  builtin_type->builtin_uint32
    = arch_integer_type (gdbarch, 32, 1, "uint32_t");
  builtin_type->builtin_int64
    = arch_integer_type (gdbarch, 64, 0, "int64_t");
  builtin_type->builtin_uint64
    = arch_integer_type (gdbarch, 64, 1, "uint64_t");
  builtin_type->builtin_int128
    = arch_integer_type (gdbarch, 128, 0, "int128_t");
  builtin_type->builtin_uint128
    = arch_integer_type (gdbarch, 128, 1, "uint128_t");
  TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
    TYPE_INSTANCE_FLAG_NOTTEXT;
  TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
    TYPE_INSTANCE_FLAG_NOTTEXT;

  /* Wide character types.  */
  builtin_type->builtin_char16
    = arch_integer_type (gdbarch, 16, 1, "char16_t");
  builtin_type->builtin_char32
    = arch_integer_type (gdbarch, 32, 1, "char32_t");
  builtin_type->builtin_wchar
    = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
			 !gdbarch_wchar_signed (gdbarch), "wchar_t");

  /* Default data/code pointer types.  */
  builtin_type->builtin_data_ptr
    = lookup_pointer_type (builtin_type->builtin_void);
  builtin_type->builtin_func_ptr
    = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
  builtin_type->builtin_func_func
    = lookup_function_type (builtin_type->builtin_func_ptr);

  /* This type represents a GDB internal function.  */
  builtin_type->internal_fn
    = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
		 "<internal function>");

  /* This type represents an xmethod.  */
  builtin_type->xmethod
    = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");

  return builtin_type;
}

/* This set of objfile-based types is intended to be used by symbol
   readers as basic types.  */

static const struct objfile_key<struct objfile_type,
				gdb::noop_deleter<struct objfile_type>>
  objfile_type_data;

const struct objfile_type *
objfile_type (struct objfile *objfile)
{
  struct gdbarch *gdbarch;
  struct objfile_type *objfile_type = objfile_type_data.get (objfile);

  if (objfile_type)
    return objfile_type;

  objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
				 1, struct objfile_type);

  /* Use the objfile architecture to determine basic type properties.  */
  gdbarch = objfile->arch ();

  /* Basic types.  */
  objfile_type->builtin_void
    = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
  objfile_type->builtin_char
    = init_integer_type (objfile, TARGET_CHAR_BIT,
			 !gdbarch_char_signed (gdbarch), "char");
  TYPE_NOSIGN (objfile_type->builtin_char) = 1;
  objfile_type->builtin_signed_char
    = init_integer_type (objfile, TARGET_CHAR_BIT,
			 0, "signed char");
  objfile_type->builtin_unsigned_char
    = init_integer_type (objfile, TARGET_CHAR_BIT,
			 1, "unsigned char");
  objfile_type->builtin_short
    = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
			 0, "short");
  objfile_type->builtin_unsigned_short
    = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
			 1, "unsigned short");
  objfile_type->builtin_int
    = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
			 0, "int");
  objfile_type->builtin_unsigned_int
    = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
			 1, "unsigned int");
  objfile_type->builtin_long
    = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
			 0, "long");
  objfile_type->builtin_unsigned_long
    = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
			 1, "unsigned long");
  objfile_type->builtin_long_long
    = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
			 0, "long long");
  objfile_type->builtin_unsigned_long_long
    = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
			 1, "unsigned long long");
  objfile_type->builtin_float
    = init_float_type (objfile, gdbarch_float_bit (gdbarch),
		       "float", gdbarch_float_format (gdbarch));
  objfile_type->builtin_double
    = init_float_type (objfile, gdbarch_double_bit (gdbarch),
		       "double", gdbarch_double_format (gdbarch));
  objfile_type->builtin_long_double
    = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
		       "long double", gdbarch_long_double_format (gdbarch));

  /* This type represents a type that was unrecognized in symbol read-in.  */
  objfile_type->builtin_error
    = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");

  /* The following set of types is used for symbols with no
     debug information.  */
  objfile_type->nodebug_text_symbol
    = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
		 "<text variable, no debug info>");
  objfile_type->nodebug_text_gnu_ifunc_symbol
    = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
		 "<text gnu-indirect-function variable, no debug info>");
  TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
  objfile_type->nodebug_got_plt_symbol
    = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
			 "<text from jump slot in .got.plt, no debug info>",
			 objfile_type->nodebug_text_symbol);
  objfile_type->nodebug_data_symbol
    = init_nodebug_var_type (objfile, "<data variable, no debug info>");
  objfile_type->nodebug_unknown_symbol
    = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
  objfile_type->nodebug_tls_symbol
    = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");

  /* NOTE: on some targets, addresses and pointers are not necessarily
     the same.

     The upshot is:
     - gdb's `struct type' always describes the target's
       representation.
     - gdb's `struct value' objects should always hold values in
       target form.
     - gdb's CORE_ADDR values are addresses in the unified virtual
       address space that the assembler and linker work with.  Thus,
       since target_read_memory takes a CORE_ADDR as an argument, it
       can access any memory on the target, even if the processor has
       separate code and data address spaces.

     In this context, objfile_type->builtin_core_addr is a bit odd:
     it's a target type for a value the target will never see.  It's
     only used to hold the values of (typeless) linker symbols, which
     are indeed in the unified virtual address space.  */

  objfile_type->builtin_core_addr
    = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
			 "__CORE_ADDR");

  objfile_type_data.set (objfile, objfile_type);
  return objfile_type;
}

void _initialize_gdbtypes ();
void
_initialize_gdbtypes ()
{
  gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);

  add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
			     _("Set debugging of C++ overloading."),
			     _("Show debugging of C++ overloading."),
			     _("When enabled, ranking of the "
			       "functions is displayed."),
			     NULL,
			     show_overload_debug,
			     &setdebuglist, &showdebuglist);

  /* Add user knob for controlling resolution of opaque types.  */
  add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
			   &opaque_type_resolution,
			   _("Set resolution of opaque struct/class/union"
			     " types (if set before loading symbols)."),
			   _("Show resolution of opaque struct/class/union"
			     " types (if set before loading symbols)."),
			   NULL, NULL,
			   show_opaque_type_resolution,
			   &setlist, &showlist);

  /* Add an option to permit non-strict type checking.  */
  add_setshow_boolean_cmd ("type", class_support,
			   &strict_type_checking,
			   _("Set strict type checking."),
			   _("Show strict type checking."),
			   NULL, NULL,
			   show_strict_type_checking,
			   &setchecklist, &showchecklist);
}