| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 
 | /* CTF type deduplication.
   Copyright (C) 2019 Free Software Foundation, Inc.
   This file is part of libctf.
   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.
   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.
   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */
#include <ctf-impl.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "hashtab.h"
/* (In the below, relevant functions are named in square brackets.)  */
/* Type deduplication is a three-phase process:
    [ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
    1) come up with unambiguous hash values for all types: no two types may have
       the same hash value, and any given type should have only one hash value
       (for optimal deduplication).
    [ctf_dedup, ctf_dedup_detect_name_ambiguity,
     ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
    2) mark those distinct types with names that collide (and thus cannot be
       declared simultaneously in the same translation unit) as conflicting, and
       recursively mark all types that cite one of those types as conflicting as
       well.  Possibly mark all types cited in only one TU as conflicting, if
       the CTF_LINK_SHARE_DUPLICATED link mode is active.
    [ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
    3) emit all the types, one hash value at a time.  Types not marked
       conflicting are emitted once, into the shared dictionary: types marked
       conflicting are emitted once per TU into a dictionary corresponding to
       each TU in which they appear.  Structs marked conflicting get at the very
       least a forward emitted into the shared dict so that other dicts can cite
       it if needed.
   [id_to_packed_id]
   This all works over an array of inputs (usually in the same order as the
   inputs on the link line).  We don't use the ctf_link_inputs hash directly
   because it is convenient to be able to address specific input types as a
   *global type ID* or 'GID', a pair of an array offset and a ctf_id_t.  Since
   both are already 32 bits or less or can easily be constrained to that range,
   we can pack them both into a single 64-bit hash word for easy lookups, which
   would be much more annoying to do with a ctf_file_t * and a ctf_id_t.  (On
   32-bit platforms, we must do that anyway, since pointers, and thus hash keys
   and values, are only 32 bits wide).  We track which inputs are parents of
   which other inputs so that we can correctly recognize that types we have
   traversed in children may cite types in parents, and so that we can process
   the parents first.)
   Note that thanks to ld -r, the deduplicator can be fed its own output, so the
   inputs may themselves have child dicts.  Since we need to support this usage
   anyway, we can use it in one other place.  If the caller finds translation
   units to be too small a unit ambiguous types, links can be 'cu-mapped', where
   the caller provides a mapping of input TU names to output child dict names.
   This mapping can fuse many child TUs into one potential child dict, so that
   ambiguous types in any of those input TUs go into the same child dict.
   When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
   repeatedly, once for every output name that has more than one input, to fuse
   all the input TUs associated with a given output dict into one, and once again
   as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
   together.  This has much higher memory usage than otherwise, because in the
   intermediate state, all the output TUs are in memory at once and cannot be
   lazily opened.  It also has implications for the emission code: if types
   appear ambiguously in multiple input TUs that are all mapped to the same
   child dict, we cannot put them in children in the cu-mapping link phase
   because this output is meant to *become* a child in the next link stage and
   parent/child relationships are only one level deep: so instead, we just hide
   all but one of the ambiguous types.
   There are a few other subtleties here that make this more complex than it
   seems.  Let's go over the steps above in more detail.
   1) HASHING.
   [ctf_dedup_hash_type, ctf_dedup_rhash_type]
   Hashing proceeds recursively, mixing in the properties of each input type
   (including its name, if any), and then adding the hash values of every type
   cited by that type.  The result is stashed in the cd_type_hashes so other
   phases can find the hash values of input types given their IDs, and so that
   if we encounter this type again while hashing we can just return its hash
   value: it is also stashed in the *output mapping*, a mapping from hash value
   to the set of GIDs corresponding to that type in all inputs.  We also keep
   track of the GID of the first appearance of the type in any input (in
   cd_output_first_gid), and the GID of structs, unions, and forwards that only
   appear in one TU (in cd_struct_origin).  See below for where these things are
   used.
   Everything in this phase is time-critical, because it is operating over
   non-deduplicated types and so may have hundreds or thousands of times the
   data volume to deal with than later phases.  Trace output is hidden behind
   ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
   ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
   from the calls to ctf_dprintf(), even with debugging switched off), and keep
   down the volume of output (hundreds of gigabytes of debug output are not
   uncommon on larger links).
   We have to do *something* about potential cycles in the type graph.  We'd
   like to avoid emitting forwards in the final output if possible, because
   forwards aren't much use: they have no members.  We are mostly saved from
   needing to worry about this at emission time by ctf_add_struct*()
   automatically replacing newly-created forwards when the real struct/union
   comes along.  So we only have to avoid getting stuck in cycles during the
   hashing phase, while also not confusing types that cite members that are
   structs with each other.  It is easiest to solve this problem by noting two
   things:
    - all cycles in C depend on the presence of tagged structs/unions
    - all tagged structs/unions have a unique name they can be disambiguated by
   [ctf_dedup_is_stub]
   This means that we can break all cycles by ceasing to hash in cited types at
   every tagged struct/union and instead hashing in a stub consisting of the
   struct/union's *decorated name*, which is the name preceded by "s " or "u "
   depending on the namespace (cached in cd_decorated_names).  Forwards are
   decorated identically (so a forward to "struct foo" would be represented as
   "s foo"): this means that a citation of a forward to a type and a citation of
   a concrete definition of a type with the same name ends up getting the same
   hash value.
   Of course, it is quite possible to have two TUs with structs with the same
   name and different definitions, but that's OK because when we scan for types
   with ambiguous names we will identify these and mark them conflicting.
   We populate one thing to help conflictedness marking.  No unconflicted type
   may cite a conflicted one, but this means that conflictedness marking must
   walk from types to the types that cite them, which is the opposite of the
   usual order.  We can make this easier to do by constructing a *citers* graph
   in cd_citers, which points from types to the types that cite them: because we
   emit forwards corresponding to every conflicted struct/union, we don't need
   to do this for citations of structs/unions by other types.  This is very
   convenient for us, because that's the only type we don't traverse
   recursively: so we can construct the citers graph at the same time as we
   hash, rather than needing to add an extra pass.  (This graph is a dynhash of
   *type hash values*, so it's small: in effect it is automatically
   deduplicated.)
   2) COLLISIONAL MARKING.
   [ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
   We identify types whose names collide during the hashing process, and count
   the rough number of uses of each name (caching may throw it off a bit: this
   doesn't need to be accurate).  We then mark the less-frequently-cited types
   with each names conflicting: the most-frequently-cited one goes into the
   shared type dictionary, while all others are duplicated into per-TU
   dictionaries, named after the input TU, that have the shared dictionary as a
   parent.  For structures and unions this is not quite good enough: we'd like
   to have citations of forwards to ambiguously named structures and unions
   *stay* as citations of forwards, so that the user can tell that the caller
   didn't actually know which structure definition was meant: but if we put one
   of those structures into the shared dictionary, it would supplant and replace
   the forward, leaving no sign.  So structures and unions do not take part in
   this popularity contest: if their names are ambiguous, they are just
   duplicated, and only a forward appears in the shared dict.
   [ctf_dedup_propagate_conflictedness]
   The process of marking types conflicted is itself recursive: we recursively
   traverse the cd_citers graph populated in the hashing pass above and mark
   everything that we encounter conflicted (without wasting time re-marking
   anything that is already marked).  This naturally terminates just where we
   want it to (at types that are cited by no other types, and at structures and
   unions) and suffices to ensure that types that cite conflicted types are
   always marked conflicted.
   [ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
   When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
   are used in only one TU to end up in a per-CU dict. The easiest way to do
   that is to mark them conflicted.  ctf_dedup_conflictify_unshared does this,
   traversing the output mapping and using ctf_dedup_multiple_input_dicts to
   check the number of input dicts each distinct type hash value came from:
   types that only came from one get marked conflicted.  One caveat here is that
   we need to consider both structs and forwards to them: a struct that appears
   in one TU and has a dozen citations to an opaque forward in other TUs should
   *not* be considered to be used in only one TU, because users would find it
   useful to be able to traverse into opaque structures of that sort: so we use
   cd_struct_origin to check both structs/unions and the forwards corresponding
   to them.
   3) EMISSION.
   [ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
    ctf_dedup_rwalk_one_output_mapping]
   Emission involves another walk of the entire output mapping, this time
   traversing everything other than struct members, recursively.  Types are
   emitted from leaves to trunk, emitting all types a type cites before emitting
   the type itself.  We sort the output mapping before traversing it, for
   reproducibility and also correctness: the input dicts may have parent/child
   relationships, so we simply sort all types that first appear in parents
   before all children, then sort types that first appear in dicts appearing
   earlier on the linker command line before those that appear later, then sort
   by input ctf_id_t.  (This is where we use cd_output_first_gid, collected
   above.)
   The walking is done using a recursive traverser which arranges to not revisit
   any type already visited and to call its callback once per input GID for
   input GIDs corresponding to conflicted output types.  The traverser only
   finds input types and calls a callback for them as many times as the output
   needs to appear: it doesn't try to figure out anything about where the output
   might go.  That's done by the callback based on whether the type is
   marked conflicted or not.
   [ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
   ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
   Conflicted types have all necessary dictionaries created, and then we emit
   the type into each dictionary in turn, working over each input CTF type
   corresponding to each hash value and using ctf_dedup_id_to_target to map each
   input ctf_id_t into the corresponding type in the output (dealing with input
   ctf_id_t's with parents in the process by simply chasing to the parent dict
   if the type we're looking up is in there).  Emitting structures involves
   simply noting that the members of this structure need emission later on:
   because you cannot cite a single structure member from another type, we avoid
   emitting the members at this stage to keep recursion depths down a bit.
   At this point, if we have by some mischance decided that two different types
   with child types that hash to different values have in fact got the same hash
   value themselves and *not* marked it conflicting, the type walk will walk
   only *one* of them and in all likelihood we'll find that we are trying to
   emit a type into some child dictionary that references a type that was never
   emitted into that dictionary and assertion-fail.  This always indicates a bug
   in the conflictedness marking machinery or the hashing code, or both.
   ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
   thing, alluded to above: if this is a conflicted tagged structure or union,
   and the target is the shared dict (i.e., the type we're being asked to emit
   is not itself conflicted so can't just point straight at the conflicted
   type), we instead synthesise a forward with the same name, emit it into the
   shared dict, record it in cd_output_emission_conflicted_forwards so that we
   don't re-emit it, and return it.  This means that cycles that contain
   conflicts do not cause the entire cycle to be replicated in every child: only
   that piece of the cycle which takes you back as far as the closest tagged
   struct/union needs to be replicated.  This trick means that no part of the
   deduplicator needs a cycle detector: every recursive walk can stop at tagged
   structures.
   [ctf_dedup_emit_struct_members]
   The final stage of emission is to walk over all structures with members
   that need emission and emit all of them. Every type has been emitted at
   this stage, so emission cannot fail.
   [ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
   Finally, we update the input -> output type ID mappings used by the ctf-link
   machinery to update all the other sections.  This is surprisingly expensive
   and may be replaced with a scheme which lets the ctf-link machinery extract
   the needed info directly from the deduplicator.  */
/* Possible future optimizations are flagged with 'optimization opportunity'
   below.  */
/* Global optimization opportunity: a GC pass, eliminating types with no direct
   or indirect citations from the other sections in the dictionary.  */
/* Internal flag values for ctf_dedup_hash_type.  */
/* Child call: consider forwardable types equivalent to forwards or stubs below
   this point.  */
#define CTF_DEDUP_HASH_INTERNAL_CHILD         0x01
/* Transform references to single ctf_id_ts in passed-in inputs into a number
   that will fit in a uint64_t.  Needs rethinking if CTF_MAX_TYPE is boosted.
   On 32-bit platforms, we pack things together differently: see the note
   above.  */
#if UINTPTR_MAX < UINT64_MAX
# define IDS_NEED_ALLOCATION 1
# define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
# define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
# define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
#else
# define CTF_DEDUP_GID(fp, input, type)	\
  (void *) (((uint64_t) input) << 32 | (type))
# define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
# define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
#endif
#ifdef IDS_NEED_ALLOCATION
 /* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
    into the pool.  It is notably less efficient than the 64-bit direct storage
    approach, but with a smaller key, this is all we can do.  */
static void *
id_to_packed_id (ctf_file_t *fp, int input_num, ctf_id_t type)
{
  const void *lookup;
  ctf_type_id_key_t *dynkey = NULL;
  ctf_type_id_key_t key = { input_num, type };
  if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_file_t,
			      &key, &lookup, NULL))
    {
      if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
	goto oom;
      memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));
      if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_file_t, dynkey, NULL) < 0)
	goto oom;
      ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_file_t,
			     dynkey, &lookup, NULL);
    }
  /* We use a raw assert() here because there isn't really a way to get any sort
     of error back from this routine without vastly complicating things for the
     much more common case of !IDS_NEED_ALLOCATION.  */
  assert (lookup);
  return (void *) lookup;
 oom:
  free (dynkey);
  ctf_set_errno (fp, ENOMEM);
  return NULL;
}
static int
packed_id_to_input (const void *id)
{
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
  return key->ctii_input_num;
}
static ctf_id_t
packed_id_to_type (const void *id)
{
  const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
  return key->ctii_type;
}
#endif
/* Make an element in a dynhash-of-dynsets, or return it if already present.  */
static ctf_dynset_t *
make_set_element (ctf_dynhash_t *set, const void *key)
{
  ctf_dynset_t *element;
  if ((element = ctf_dynhash_lookup (set, key)) == NULL)
    {
      if ((element = ctf_dynset_create (htab_hash_string,
					ctf_dynset_eq_string,
					NULL)) == NULL)
	return NULL;
      if (ctf_dynhash_insert (set, (void *) key, element) < 0)
	{
	  ctf_dynset_destroy (element);
	  return NULL;
	}
    }
  return element;
}
/* Initialize the dedup atoms table.  */
int
ctf_dedup_atoms_init (ctf_file_t *fp)
{
  if (fp->ctf_dedup_atoms)
    return 0;
  if (!fp->ctf_dedup_atoms_alloc)
    {
      if ((fp->ctf_dedup_atoms_alloc
	   = ctf_dynset_create (htab_hash_string, ctf_dynset_eq_string,
				free)) == NULL)
	return ctf_set_errno (fp, ENOMEM);
    }
  fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
  return 0;
}
/* Intern things in the dedup atoms table.  */
static const char *
intern (ctf_file_t *fp, char *atom)
{
  const void *foo;
  if (atom == NULL)
    return NULL;
  if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
    {
      if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
	{
	  ctf_set_errno (fp, ENOMEM);
	  return NULL;
	}
      foo = atom;
    }
  else
    free (atom);
  return (const char *) foo;
}
/* Add an indication of the namespace to a type name in a way that is not valid
   for C identifiers.  Used to maintain hashes of type names to other things
   while allowing for the four C namespaces (normal, struct, union, enum).
   Return a new dynamically-allocated string.  */
static const char *
ctf_decorate_type_name (ctf_file_t *fp, const char *name, int kind)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  const char *ret;
  const char *k;
  char *p;
  size_t i;
  switch (kind)
    {
    case CTF_K_STRUCT:
      k = "s ";
      i = 0;
      break;
    case CTF_K_UNION:
      k = "u ";
      i = 1;
      break;
    case CTF_K_ENUM:
      k = "e ";
      i = 2;
      break;
    default:
      k = "";
      i = 3;
    }
  if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
    {
      char *str;
      if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
	goto oom;
      p = stpcpy (str, k);
      strcpy (p, name);
      ret = intern (fp, str);
      if (!ret)
	goto oom;
      if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
	goto oom;
    }
  return ret;
 oom:
  ctf_set_errno (fp, ENOMEM);
  return NULL;
}
/* Hash a type, possibly debugging-dumping something about it as well.  */
static inline void
ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
		    const char *description _libctf_unused_,
		    unsigned long depth _libctf_unused_)
{
  ctf_sha1_add (sha1, buf, len);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_sha1_t tmp;
  char tmp_hval[CTF_SHA1_SIZE];
  tmp = *sha1;
  ctf_sha1_fini (&tmp, tmp_hval);
  ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
	       tmp_hval);
#endif
}
static const char *
ctf_dedup_hash_type (ctf_file_t *fp, ctf_file_t *input,
		     ctf_file_t **inputs, uint32_t *parents,
		     int input_num, ctf_id_t type, int flags,
		     unsigned long depth,
		     int (*populate_fun) (ctf_file_t *fp,
					  ctf_file_t *input,
					  ctf_file_t **inputs,
					  int input_num,
					  ctf_id_t type,
					  void *id,
					  const char *decorated_name,
					  const char *hash));
/* Determine whether this type is being hashed as a stub (in which case it is
   unsafe to cache it).  */
static int
ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
{
  /* We can cache all types unless we are recursing to children and are hashing
     in a tagged struct, union or forward, all of which are replaced with their
     decorated name as a stub and will have different hash values when hashed at
     the top level.  */
  return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
	  && (kind == CTF_K_STRUCT || kind == CTF_K_UNION
	      || (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
					    || fwdkind == CTF_K_UNION))));
}
/* Populate struct_origin if need be (not already populated, or populated with
   a different origin), in which case it must go to -1, "shared".)
   Only called for forwards or forwardable types with names, when the link mode
   is CTF_LINK_SHARE_DUPLICATED.  */
static int
ctf_dedup_record_origin (ctf_file_t *fp, int input_num, const char *decorated,
			 void *id)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  void *origin;
  int populate_origin = 0;
  if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
    {
      if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
	  && CTF_DEDUP_GID_TO_INPUT (origin) != -1)
	{
	  populate_origin = 1;
	  origin = CTF_DEDUP_GID (fp, -1, -1);
	}
    }
  else
    {
      populate_origin = 1;
      origin = id;
    }
  if (populate_origin)
    if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
      return ctf_set_errno (fp, errno);
  return 0;
}
/* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
   calls, recursively).  */
static const char *
ctf_dedup_rhash_type (ctf_file_t *fp, ctf_file_t *input, ctf_file_t **inputs,
		      uint32_t *parents, int input_num, ctf_id_t type,
		      void *type_id, const ctf_type_t *tp, const char *name,
		      const char *decorated, int kind, int flags,
		      unsigned long depth,
		      int (*populate_fun) (ctf_file_t *fp,
					   ctf_file_t *input,
					   ctf_file_t **inputs,
					   int input_num,
					   ctf_id_t type,
					   void *id,
					   const char *decorated_name,
					   const char *hash))
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_next_t *i = NULL;
  ctf_sha1_t hash;
  ctf_id_t child_type;
  char hashbuf[CTF_SHA1_SIZE];
  const char *hval = NULL;
  const char *whaterr;
  int err;
  const char *citer = NULL;
  ctf_dynset_t *citers = NULL;
  /* Add a citer to the citers set.  */
#define ADD_CITER(citers, hval)						\
  do									\
    {									\
      whaterr = N_("error updating citers");				\
      if (!citers)							\
	if ((citers = ctf_dynset_create (htab_hash_string,		\
					  ctf_dynset_eq_string,		\
					  NULL)) == NULL)		\
	  goto oom;							\
      if (ctf_dynset_cinsert (citers, hval) < 0)			\
	goto oom;							\
    } while (0)
  /* If this is a named struct or union or a forward to one, and this is a child
     traversal, treat this type as if it were a forward -- do not recurse to
     children, ignore all content not already hashed in, and hash in the
     decorated name of the type instead.  */
  if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
    {
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
      ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
		   "stub with decorated name %s\n", decorated);
#endif
      ctf_sha1_init (&hash);
      ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
			  "decorated struct/union/forward name", depth);
      ctf_sha1_fini (&hash, hashbuf);
      if ((hval = intern (fp, strdup (hashbuf))) == NULL)
	{
	  ctf_err_warn (fp, 0, 0, _("%s (%i): out of memory during forwarding-"
				    "stub hashing for type with GID %p"),
			ctf_link_input_name (input), input_num, type_id);
	  return NULL;				/* errno is set for us.  */
	}
      /* In share-duplicated link mode, make sure the origin of this type is
	 recorded, even if this is a type in a parent dict which will not be
	 directly traversed.  */
      if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
	  && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
	return NULL;				/* errno is set for us.  */
      return hval;
    }
  /* Now ensure that subsequent recursive calls (but *not* the top-level call)
     get this treatment.  */
  flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;
  /* If this is a struct, union, or forward with a name, record the unique
     originating input TU, if there is one.  */
  if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
    if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
	&& ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
      return NULL;				/* errno is set for us.  */
  /* Mix in invariant stuff, transforming the type kind if needed.  Note that
     the vlen is *not* hashed in: the actual variable-length info is hashed in
     instead, piecewise.  The vlen is not part of the type, only the
     variable-length data is: identical types with distinct vlens are quite
     possible.  Equally, we do not want to hash in the isroot flag: both the
     compiler and the deduplicator set the nonroot flag to indicate clashes with
     *other types in the same TU* with the same name: so two types can easily
     have distinct nonroot flags, yet be exactly the same type.*/
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
	       depth, input_num, type, kind, name ? name : "");
#endif
  ctf_sha1_init (&hash);
  if (name)
    ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
  ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);
  /* Hash content of this type.  */
  switch (kind)
    {
    case CTF_K_UNKNOWN:
      /* No extra state.  */
      break;
    case CTF_K_FORWARD:
      /* Add the forwarded kind, stored in the ctt_type.  */
      ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
			  "forwarded kind", depth);
      break;
    case CTF_K_INTEGER:
    case CTF_K_FLOAT:
      {
	ctf_encoding_t ep;
	memset (&ep, 0, sizeof (ctf_encoding_t));
	ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
			    depth);
	if (ctf_type_encoding (input, type, &ep) < 0)
	  {
	    whaterr = N_("error getting encoding");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
			    depth);
	break;
      }
      /* Types that reference other types.  */
    case CTF_K_TYPEDEF:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_POINTER:
      /* Hash the referenced type, if not already hashed, and mix it in.  */
      child_type = ctf_type_reference (input, type);
      if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
				       child_type, flags, depth,
				       populate_fun)) == NULL)
	{
	  whaterr = N_("error doing referenced type hashing");
	  goto err;
	}
      ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
			  depth);
      citer = hval;
      break;
      /* The slices of two types hash identically only if the type they overlay
	 also has the same encoding.  This is not ideal, but in practice will work
	 well enough.  We work directly rather than using the CTF API because
	 we do not want the slice's normal automatically-shine-through
	 semantics to kick in here.  */
    case CTF_K_SLICE:
      {
	const ctf_slice_t *slice;
	const ctf_dtdef_t *dtd;
	ssize_t size;
	ssize_t increment;
	child_type = ctf_type_reference (input, type);
	ctf_get_ctt_size (input, tp, &size, &increment);
	ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);
	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 child_type, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error doing slice-referenced type hashing");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
			    depth);
	citer = hval;
	if ((dtd = ctf_dynamic_type (input, type)) != NULL)
	  slice = &dtd->dtd_u.dtu_slice;
	else
	  slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
	ctf_dedup_sha1_add (&hash, &slice->cts_offset,
			    sizeof (slice->cts_offset), "slice offset", depth);
	ctf_dedup_sha1_add (&hash, &slice->cts_bits,
			    sizeof (slice->cts_bits), "slice bits", depth);
	break;
      }
    case CTF_K_ARRAY:
      {
	ctf_arinfo_t ar;
	if (ctf_array_info (input, type, &ar) < 0)
	  {
	    whaterr = N_("error getting array info");
	    goto err;
	  }
	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 ar.ctr_contents, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error doing array contents type hashing");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
			    depth);
	ADD_CITER (citers, hval);
	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 ar.ctr_index, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error doing array index type hashing");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
			    depth);
	ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
			    "element count", depth);
	ADD_CITER (citers, hval);
	break;
      }
    case CTF_K_FUNCTION:
      {
	ctf_funcinfo_t fi;
	ctf_id_t *args;
	uint32_t j;
	if (ctf_func_type_info (input, type, &fi) < 0)
	  {
	    whaterr = N_("error getting func type info");
	    goto err;
	  }
	if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
					 fi.ctc_return, flags, depth,
					 populate_fun)) == NULL)
	  {
	    whaterr = N_("error getting func return type");
	    goto err;
	  }
	ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
			    depth);
	ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
			    "func argc", depth);
	ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
			    "func flags", depth);
	ADD_CITER (citers, hval);
	if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
	  {
	    whaterr = N_("error doing memory allocation");
	    goto err;
	  }
	if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
	  {
	    free (args);
	    whaterr = N_("error getting func arg type");
	    goto err;
	  }
	for (j = 0; j < fi.ctc_argc; j++)
	  {
	    if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
					     input_num, args[j], flags, depth,
					     populate_fun)) == NULL)
	      {
		free (args);
		whaterr = N_("error doing func arg type hashing");
		goto err;
	      }
	    ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
				depth);
	    ADD_CITER (citers, hval);
	  }
	free (args);
	break;
      }
    case CTF_K_ENUM:
      {
	int val;
	const char *ename;
	ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
			    "enum size", depth);
	while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
	  {
	    ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
				depth);
	    ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
	  }
	if (ctf_errno (input) != ECTF_NEXT_END)
	  {
	    whaterr = N_("error doing enum member iteration");
	    goto err;
	  }
	break;
      }
    /* Top-level only.  */
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      {
	ssize_t offset;
	const char *mname;
	ctf_id_t membtype;
	ssize_t size;
	ctf_get_ctt_size (input, tp, &size, NULL);
	ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
			    depth);
	while ((offset = ctf_member_next (input, type, &i, &mname,
					  &membtype)) >= 0)
	  {
	    if (mname == NULL)
	      mname = "";
	    ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
				"member name", depth);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
	    ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
#endif
	    if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
					     input_num, membtype, flags, depth,
					     populate_fun)) == NULL)
	      {
		whaterr = N_("error doing struct/union member type hashing");
		goto iterr;
	      }
	    ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
				depth);
	    ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
				depth);
	    ADD_CITER (citers, hval);
	  }
	if (ctf_errno (input) != ECTF_NEXT_END)
	  {
	    whaterr = N_("error doing struct/union member iteration");
	    goto err;
	  }
	break;
      }
    default:
      whaterr = N_("error: unknown type kind");
      goto err;
    }
  ctf_sha1_fini (&hash, hashbuf);
  if ((hval = intern (fp, strdup (hashbuf))) == NULL)
    {
      whaterr = N_("cannot intern hash");
      goto oom;
    }
  /* Populate the citers for this type's subtypes, now the hash for the type
     itself is known.  */
  whaterr = N_("error tracking citers");
  if (citer)
    {
      ctf_dynset_t *citer_hashes;
      if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
	goto oom;
      if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
	goto oom;
    }
  else if (citers)
    {
      const void *k;
      while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
	{
	  ctf_dynset_t *citer_hashes;
	  citer = (const char *) k;
	  if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
	    goto oom;
	  if (ctf_dynset_exists (citer_hashes, hval, NULL))
	    continue;
	  if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
	    goto oom;
	}
      if (err != ECTF_NEXT_END)
	goto err;
      ctf_dynset_destroy (citers);
    }
  return hval;
 iterr:
  ctf_next_destroy (i);
 err:
  ctf_sha1_fini (&hash, NULL);
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
			    "kind %i"), ctf_link_input_name (input),
		input_num, gettext (whaterr), type, kind);
  return NULL;
 oom:
  ctf_set_errno (fp, errno);
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
			    "kind %i"), ctf_link_input_name (input),
		input_num, gettext (whaterr), type, kind);
  return NULL;
}
/* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
   state is stored.  INPUT_NUM is the number of this input in the set of inputs.
   Record its hash in FP's cd_type_hashes once it is known.  PARENTS is
   described in the comment above ctf_dedup.
   (The flags argument currently accepts only the flag
   CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
   struct/union hashing in recursive traversals below the TYPE.)
   We use the CTF API rather than direct access wherever possible, because types
   that appear identical through the API should be considered identical, with
   one exception: slices should only be considered identical to other slices,
   not to the corresponding unsliced type.
   The POPULATE_FUN is a mandatory hook that populates other mappings with each
   type we see (excepting types that are recursively hashed as stubs).  The
   caller should not rely on the order of calls to this hook, though it will be
   called at least once for every non-stub reference to every type.
   Returns a hash value (an atom), or NULL on error.  */
static const char *
ctf_dedup_hash_type (ctf_file_t *fp, ctf_file_t *input,
		     ctf_file_t **inputs, uint32_t *parents,
		     int input_num, ctf_id_t type, int flags,
		     unsigned long depth,
		     int (*populate_fun) (ctf_file_t *fp,
					  ctf_file_t *input,
					  ctf_file_t **inputs,
					  int input_num,
					  ctf_id_t type,
					  void *id,
					  const char *decorated_name,
					  const char *hash))
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  const ctf_type_t *tp;
  void *type_id;
  const char *hval = NULL;
  const char *name;
  const char *whaterr;
  const char *decorated = NULL;
  uint32_t kind, fwdkind;
  depth++;
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
#endif
  /* The unimplemented type doesn't really exist, but must be noted in parent
     hashes: so it gets a fixed, arbitrary hash.  */
  if (type == 0)
    return "00000000000000000000";
  /* Possible optimization: if the input type is in the parent type space, just
     copy recursively-cited hashes from the parent's types into the output
     mapping rather than rehashing them.  */
  type_id = CTF_DEDUP_GID (fp, input_num, type);
  if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
    {
      ctf_set_errno (fp, ctf_errno (input));
      ctf_err_warn (fp, 0, 0, _("%s (%i): lookup failure for type %lx: "
				"flags %x"), ctf_link_input_name (input),
		    input_num, type, flags);
      return NULL;		/* errno is set for us.  */
    }
  kind = LCTF_INFO_KIND (input, tp->ctt_info);
  name = ctf_strraw (input, tp->ctt_name);
  if (tp->ctt_name == 0 || !name || name[0] == '\0')
    name = NULL;
  /* Treat the unknown kind just like the unimplemented type.  */
  if (kind == CTF_K_UNKNOWN)
    return "00000000000000000000";
  /* Decorate the name appropriately for the namespace it appears in: forwards
     appear in the namespace of their referent.  */
  fwdkind = kind;
  if (name)
    {
      if (kind == CTF_K_FORWARD)
	fwdkind = tp->ctt_type;
      if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
	return NULL;				/* errno is set for us.  */
    }
  /* If not hashing a stub, we can rely on various sorts of caches.
     Optimization opportunity: we may be able to avoid calling the populate_fun
     sometimes here.  */
  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
    {
      if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
	{
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
	  ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
		       type,  hval);
#endif
	  populate_fun (fp, input, inputs, input_num, type, type_id,
			decorated, hval);
	  return hval;
	}
    }
  /* We have never seen this type before, and must figure out its hash and the
     hashes of the types it cites.
     Hash this type, and call ourselves recursively.  (The hashing part is
     optional, and is disabled if overidden_hval is set.)  */
  if ((hval = ctf_dedup_rhash_type (fp, input, inputs, parents, input_num,
				    type, type_id, tp, name, decorated,
				    kind, flags, depth, populate_fun)) == NULL)
    return NULL;				/* errno is set for us.  */
  /* The hash of this type is now known: record it unless caching is unsafe
     because the hash value will change later.  This will be the final storage
     of this type's hash, so we call the population function on it.  */
  if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
    {
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
      ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
		   type_id, name ? name : "", hval);
#endif
      if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
	{
	  whaterr = N_("error hash caching");
	  goto oom;
	}
      if (populate_fun (fp, input, inputs, input_num, type, type_id,
			decorated, hval) < 0)
	{
	  whaterr = N_("error calling population function");
	  goto err;				/* errno is set for us. */
	}
    }
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
	       input_num, type, hval);
#endif
  return hval;
 oom:
  ctf_set_errno (fp, errno);
 err:
  ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing, "
			    "type %lx, kind %i"),
		ctf_link_input_name (input), input_num,
		gettext (whaterr), type, kind);
  return NULL;
}
/* Populate a number of useful mappings not directly used by the hashing
   machinery: the output mapping, the cd_name_counts mapping from name -> hash
   -> count of hashval deduplication state for a given hashed type, and the
   cd_output_first_tu mapping.  */
static int
ctf_dedup_populate_mappings (ctf_file_t *fp, ctf_file_t *input _libctf_unused_,
			     ctf_file_t **inputs _libctf_unused_,
			     int input_num _libctf_unused_,
			     ctf_id_t type _libctf_unused_, void *id,
			     const char *decorated_name,
			     const char *hval)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_dynset_t *type_ids;
  ctf_dynhash_t *name_counts;
  long int count;
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
	       hval, decorated_name ? decorated_name : "(unnamed)",
	       input_num, type, ctf_link_input_name (input));
  const char *orig_hval;
  /* Make sure we never map a single GID to multiple hash values.  */
  if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
    {
      /* We can rely on pointer identity here, since all hashes are
	 interned.  */
      if (!ctf_assert (fp, orig_hval == hval))
	return -1;
    }
  else
    if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
      return ctf_set_errno (fp, errno);
#endif
  /* Record the type in the output mapping: if this is the first time this type
     has been seen, also record it in the cd_output_first_gid.  Because we
     traverse types in TU order and we do not merge types after the hashing
     phase, this will be the lowest TU this type ever appears in.  */
  if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
				      hval)) == NULL)
    {
      if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
	return ctf_set_errno (fp, errno);
      if ((type_ids = ctf_dynset_create (htab_hash_pointer,
					 htab_eq_pointer,
					 NULL)) == NULL)
	return ctf_set_errno (fp, errno);
      if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
			      type_ids) < 0)
	{
	  ctf_dynset_destroy (type_ids);
	  return ctf_set_errno (fp, errno);
	}
    }
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
    {
      /* Verify that all types with this hash are of the same kind, and that the
	 first TU a type was seen in never falls.  */
      int err;
      const void *one_id;
      ctf_next_t *i = NULL;
      int orig_kind = ctf_type_kind_unsliced (input, type);
      int orig_first_tu;
      orig_first_tu = CTF_DEDUP_GID_TO_INPUT
	(ctf_dynhash_lookup (d->cd_output_first_gid, hval));
      if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
	return -1;
      while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
	{
	  ctf_file_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
	  ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
	  if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
	    {
	      ctf_err_warn (fp, 1, 0, "added wrong kind to output mapping "
			    "for hash %s named %s: %p/%lx from %s is "
			    "kind %i, but newly-added %p/%lx from %s is "
			    "kind %i", hval,
			    decorated_name ? decorated_name : "(unnamed)",
			    (void *) foo, bar,
			    ctf_link_input_name (foo),
			    ctf_type_kind_unsliced (foo, bar),
			    (void *) input, type,
			    ctf_link_input_name (input), orig_kind);
	      if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
			       == orig_kind))
		return -1;
	    }
	}
      if (err != ECTF_NEXT_END)
	return ctf_set_errno (fp, err);
    }
#endif
  /* This function will be repeatedly called for the same types many times:
     don't waste time reinserting the same keys in that case.  */
  if (!ctf_dynset_exists (type_ids, id, NULL)
      && ctf_dynset_insert (type_ids, id) < 0)
    return ctf_set_errno (fp, errno);
  /* The rest only needs to happen for types with names.  */
  if (!decorated_name)
    return 0;
  /* Count the number of occurrences of the hash value for this GID.  */
  hval = ctf_dynhash_lookup (d->cd_type_hashes, id);
  /* Mapping from name -> hash(hashval, count) not already present?  */
  if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts,
					 decorated_name)) == NULL)
    {
      if ((name_counts = ctf_dynhash_create (ctf_hash_string,
					     ctf_hash_eq_string,
					     NULL, NULL)) == NULL)
	  return ctf_set_errno (fp, errno);
      if (ctf_dynhash_cinsert (d->cd_name_counts, decorated_name,
			       name_counts) < 0)
	{
	  ctf_dynhash_destroy (name_counts);
	  return ctf_set_errno (fp, errno);
	}
    }
  /* This will, conveniently, return NULL (i.e. 0) for a new entry.  */
  count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);
  if (ctf_dynhash_cinsert (name_counts, hval,
			   (const void *) (uintptr_t) (count + 1)) < 0)
    return ctf_set_errno (fp, errno);
  return 0;
}
/* Mark a single hash as corresponding to a conflicting type.  Mark all types
   that cite it as conflicting as well, terminating the recursive walk only when
   types that are already conflicted or types do not cite other types are seen.
   (Tagged structures and unions do not appear in the cd_citers graph, so the
   walk also terminates there, since any reference to a conflicting structure is
   just going to reference an unconflicting forward instead: see
   ctf_dedup_maybe_synthesize_forward.)  */
static int
ctf_dedup_mark_conflicting_hash (ctf_file_t *fp, const char *hval)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_next_t *i = NULL;
  int err;
  const void *k;
  ctf_dynset_t *citers;
  /* Mark conflicted if not already so marked.  */
  if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
    return 0;
  ctf_dprintf ("Marking %s as conflicted\n", hval);
  if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
    {
      ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
      ctf_set_errno (fp, errno);
      return -1;
    }
  /* If any types cite this type, mark them conflicted too.  */
  if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
    return 0;
  while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
    {
      const char *hv = (const char *) k;
      if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
	continue;
      if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
	{
	  ctf_next_destroy (i);
	  return -1;				/* errno is set for us.  */
	}
    }
  if (err != ECTF_NEXT_END)
    return ctf_set_errno (fp, err);
  return 0;
}
/* Look up a type kind from the output mapping, given a type hash value.  */
static int
ctf_dedup_hash_kind (ctf_file_t *fp, ctf_file_t **inputs, const char *hash)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  void *id;
  ctf_dynset_t *type_ids;
  /* Precondition: the output mapping is populated.  */
  if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
    return -1;
  /* Look up some GID from the output hash for this type.  (They are all
     identical, so we can pick any).  Don't assert if someone calls this
     function wrongly, but do assert if the output mapping knows about the hash,
     but has nothing associated with it.  */
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
  if (!type_ids)
    {
      ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
      return ctf_set_errno (fp, ECTF_INTERNAL);
    }
  id = ctf_dynset_lookup_any (type_ids);
  if (!ctf_assert (fp, id))
    return -1;
  return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
				 CTF_DEDUP_GID_TO_TYPE (id));
}
/* Used to keep a count of types: i.e. distinct type hash values.  */
typedef struct ctf_dedup_type_counter
{
  ctf_file_t *fp;
  ctf_file_t **inputs;
  int num_non_forwards;
} ctf_dedup_type_counter_t;
/* Add to the type counter for one name entry from the cd_name_counts.  */
static int
ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
{
  const char *hval = (const char *) key_;
  int kind;
  ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;
  kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);
  /* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
     smuggle errors out of here.  */
  if (kind != CTF_K_FORWARD)
    {
      arg->num_non_forwards++;
      ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
		   hval, kind, arg->num_non_forwards);
    }
  /* We only need to know if there is more than one non-forward (an ambiguous
     type): don't waste time iterating any more than needed to figure that
     out.  */
  if (arg->num_non_forwards > 1)
    return 1;
  return 0;
}
/* Detect name ambiguity and mark ambiguous names as conflicting, other than the
   most common.  */
static int
ctf_dedup_detect_name_ambiguity (ctf_file_t *fp, ctf_file_t **inputs)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  ctf_next_t *i = NULL;
  void *k;
  void *v;
  int err;
  const char *whaterr;
  /* Go through cd_name_counts for all CTF namespaces in turn.  */
  while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
    {
      const char *decorated = (const char *) k;
      ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
      ctf_next_t *j = NULL;
      /* If this is a forwardable kind or a forward (which we can tell without
	 consulting the type because its decorated name has a space as its
	 second character: see ctf_decorate_type_name), we are only interested
	 in whether this name has many hashes associated with it: any such name
	 is necessarily ambiguous, and types with that name are conflicting.
	 Once we know whether this is true, we can skip to the next name: so use
	 ctf_dynhash_iter_find for efficiency.  */
      if (decorated[0] != '\0' && decorated[1] == ' ')
	{
	  ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
	  ctf_dynhash_t *counts = (ctf_dynhash_t *) v;
	  ctf_dynhash_iter_find (counts, ctf_dedup_count_types, &counters);
	  /* Check for assertion failure and pass it up.  */
	  if (ctf_errno (fp) == ECTF_INTERNAL)
	    goto assert_err;
	  if (counters.num_non_forwards > 1)
	    {
	      const void *hval_;
	      while ((err = ctf_dynhash_cnext (counts, &j, &hval_, NULL)) == 0)
		{
		  const char *hval = (const char *) hval_;
		  ctf_dynset_t *type_ids;
		  void *id;
		  int kind;
		  /* Dig through the types in this hash to find the non-forwards
		     and mark them ambiguous.  */
		  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
		  /* Nonexistent? Must be a forward with no referent.  */
		  if (!type_ids)
		    continue;
		  id = ctf_dynset_lookup_any (type_ids);
		  kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
					CTF_DEDUP_GID_TO_TYPE (id));
		  if (kind != CTF_K_FORWARD)
		    {
		      ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
				   "of many non-forward GIDs for %s\n", id,
				   hval, (char *) k);
		      ctf_dedup_mark_conflicting_hash (fp, hval);
		    }
		}
	      if (err != ECTF_NEXT_END)
		{
		  whaterr = N_("error marking conflicting structs/unions");
		  goto iterr;
		}
	    }
	}
      else
	{
	  /* This is an ordinary type.  Find the most common type with this
	     name, and mark it unconflicting: all others are conflicting.  (We
	     cannot do this sort of popularity contest with forwardable types
	     because any forwards to that type would be immediately unified with
	     the most-popular type on insertion, and we want conflicting structs
	     et al to have all forwards left intact, so the user is notified
	     that this type is conflicting.  TODO: improve this in future by
	     setting such forwards non-root-visible.)  */
	  const void *key;
	  const void *count;
	  const char *hval;
	  long max_hcount = -1;
	  const char *max_hval = NULL;
	  if (ctf_dynhash_elements (name_counts) <= 1)
	    continue;
	  /* First find the most common.  */
	  while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
	    {
	      hval = (const char *) key;
	      if ((long int) (uintptr_t) count > max_hcount)
		{
		  max_hcount = (long int) (uintptr_t) count;
		  max_hval = hval;
		}
	    }
	  if (err != ECTF_NEXT_END)
	    {
	      whaterr = N_("error finding commonest conflicting type");
	      goto iterr;
	    }
	  /* Mark all the others as conflicting.   */
	  while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
	    {
	      hval = (const char *) key;
	      if (strcmp (max_hval, hval) == 0)
		continue;
	      ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
			   hval, (const char *) k);
	      if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
		{
		  whaterr = N_("error marking hashes as conflicting");
		  goto err;
		}
	    }
	  if (err != ECTF_NEXT_END)
	    {
	      whaterr = N_("marking uncommon conflicting types");
	      goto iterr;
	    }
	}
    }
  if (err != ECTF_NEXT_END)
    {
      whaterr = N_("scanning for ambiguous names");
      goto iterr;
    }
  return 0;
 err:
  ctf_next_destroy (i);
  ctf_err_warn (fp, 0, 0, "%s", gettext (whaterr));
  return -1;					/* errno is set for us.  */
 iterr:
  ctf_err_warn (fp, 0, err, _("iteration failed: %s"), gettext (whaterr));
  return ctf_set_errno (fp, err);
 assert_err:
  ctf_next_destroy (i);
  return -1; 					/* errno is set for us.  */
}
/* Initialize the deduplication machinery.  */
static int
ctf_dedup_init (ctf_file_t *fp)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  size_t i;
  if (ctf_dedup_atoms_init (fp) < 0)
      goto oom;
#if IDS_NEED_ALLOCATION
  if ((d->cd_id_to_file_t = ctf_dynhash_create (ctf_hash_type_id_key,
						ctf_hash_eq_type_id_key,
						free, NULL)) == NULL)
    goto oom;
#endif
  for (i = 0; i < 4; i++)
    {
      if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
							  ctf_hash_eq_string,
							  NULL, NULL)) == NULL)
	goto oom;
    }
  if ((d->cd_name_counts
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string, NULL,
			     (ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
    goto oom;
  if ((d->cd_type_hashes
       = ctf_dynhash_create (ctf_hash_integer,
			     ctf_hash_eq_integer,
			     NULL, NULL)) == NULL)
    goto oom;
  if ((d->cd_struct_origin
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string,
			     NULL, NULL)) == NULL)
    goto oom;
  if ((d->cd_citers
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string, NULL,
			     (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
    goto oom;
  if ((d->cd_output_mapping
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string, NULL,
			     (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
    goto oom;
  if ((d->cd_output_first_gid
       = ctf_dynhash_create (ctf_hash_string,
			     ctf_hash_eq_string,
			     NULL, NULL)) == NULL)
    goto oom;
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  if ((d->cd_output_mapping_guard
       = ctf_dynhash_create (ctf_hash_integer,
			     ctf_hash_eq_integer, NULL, NULL)) == NULL)
    goto oom;
#endif
  if ((d->cd_emission_struct_members
       = ctf_dynhash_create (ctf_hash_integer,
			     ctf_hash_eq_integer,
			     NULL, NULL)) == NULL)
    goto oom;
  if ((d->cd_conflicting_types
       = ctf_dynset_create (htab_hash_string,
			    ctf_dynset_eq_string, NULL)) == NULL)
    goto oom;
  return 0;
 oom:
  ctf_err_warn (fp, 0, ENOMEM, _("ctf_dedup_init: cannot initialize: "
				 "out of memory"));
  return ctf_set_errno (fp, ENOMEM);
}
void
ctf_dedup_fini (ctf_file_t *fp, ctf_file_t **outputs, uint32_t noutputs)
{
  ctf_dedup_t *d = &fp->ctf_dedup;
  size_t i;
  /* ctf_dedup_atoms is kept across links.  */
#if IDS_NEED_ALLOCATION
  ctf_dynhash_destroy (d->cd_id_to_file_t);
#endif
  for (i = 0; i < 4; i++)
    ctf_dynhash_destroy (d->cd_decorated_names[i]);
  ctf_dynhash_destroy (d->cd_name_counts);
  ctf_dynhash_destroy (d->cd_type_hashes);
  ctf_dynhash_destroy (d->cd_struct_origin);
  ctf_dynhash_destroy (d->cd_citers);
  ctf_dynhash_destroy (d->cd_output_mapping);
  ctf_dynhash_destroy (d->cd_output_first_gid);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
  ctf_dynhash_destroy (d->cd_output_mapping_guard);
#endif
  ctf_dynhash_destroy (d->cd_emission_struct_members);
  ctf_dynset_destroy (d->cd_conflicting_types);
  /* Free the per-output state.  */
  if (outputs)
    {
      for (i = 0; i < noutputs; i++)
	{
	  ctf_dedup_t *od = &outputs[i]->ctf_dedup;
	  ctf_dynhash_destroy (od->cd_output_emission_hashes);
	  ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
	  ctf_file_close (od->cd_output);
	}
    }
  memset (d, 0, sizeof (ctf_dedup_t));
}
/* Return 1 if this type is cited by multiple input dictionaries.  */
static int
ctf_dedup_multiple_input_dicts (ctf_file_t *output, ctf_file_t **inputs,
				const char *hval)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_dynset_t *type_ids;
  ctf_next_t *i = NULL;
  void *id;
  ctf_file_t *found = NULL, *relative_found = NULL;
  const char *type_id;
  ctf_file_t *input_fp;
  ctf_id_t input_id;
  const char *name;
  const char *decorated;
  int fwdkind;
  int multiple = 0;
  int err;
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
  if (!ctf_assert (output, type_ids))
    return -1;
  /* Scan across the IDs until we find proof that two disjoint dictionaries
     are referenced.  Exit as soon as possible.  Optimization opportunity, but
     possibly not worth it, given that this is only executed in
     CTF_LINK_SHARE_DUPLICATED mode.  */
  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
    {
      ctf_file_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
      if (fp == found || fp == relative_found)
	continue;
      if (!found)
	{
	  found = fp;
	  continue;
	}
      if (!relative_found
	  && (fp->ctf_parent == found || found->ctf_parent == fp))
	{
	  relative_found = fp;
	  continue;
	}
      multiple = 1;
      ctf_next_destroy (i);
      break;
    }
  if ((err != ECTF_NEXT_END) && (err != 0))
    {
      ctf_err_warn (output, 0, err, _("iteration error "
				      "propagating conflictedness"));
      return ctf_set_errno (output, err);
    }
  if (multiple)
    return multiple;
  /* This type itself does not appear in multiple input dicts: how about another
     related type with the same name (e.g. a forward if this is a struct,
     etc).  */
  type_id = ctf_dynset_lookup_any (type_ids);
  if (!ctf_assert (output, type_id))
    return -1;
  input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
  input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
  fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
  name = ctf_type_name_raw (input_fp, input_id);
  if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
      && name && name[0] != '\0')
    {
      const void *origin;
      if ((decorated = ctf_decorate_type_name (output, name,
					       fwdkind)) == NULL)
	return -1;				/* errno is set for us.  */
      origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
      if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
	multiple = 1;
    }
  return multiple;
}
/* Demote unconflicting types which reference only one input, or which reference
   two inputs where one input is the parent of the other, into conflicting
   types.  Only used if the link mode is CTF_LINK_SHARE_DUPLICATED.  */
static int
ctf_dedup_conflictify_unshared (ctf_file_t *output, ctf_file_t **inputs)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_next_t *i = NULL;
  int err;
  const void *k;
  ctf_dynset_t *to_mark = NULL;
  if ((to_mark = ctf_dynset_create (htab_hash_string, ctf_dynset_eq_string,
				    NULL)) == NULL)
    goto err_no;
  while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
    {
      const char *hval = (const char *) k;
      int conflicting;
      /* Types referenced by only one dict, with no type appearing under that
	 name elsewhere, are marked conflicting.  */
      conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);
      if (conflicting < 0)
	goto err;				/* errno is set for us.  */
      if (conflicting)
	if (ctf_dynset_cinsert (to_mark, hval) < 0)
	  goto err;
    }
  if (err != ECTF_NEXT_END)
    goto iterr;
  while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
    {
      const char *hval = (const char *) k;
      if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
	goto err;
    }
  if (err != ECTF_NEXT_END)
    goto iterr;
  ctf_dynset_destroy (to_mark);
  return 0;
 err_no:
  ctf_set_errno (output, errno);
 err:
  err = ctf_errno (output);
  ctf_next_destroy (i);
 iterr:
  ctf_dynset_destroy (to_mark);
  ctf_err_warn (output, 0, err, _("conflictifying unshared types"));
  return ctf_set_errno (output, err);
}
/* The core deduplicator.  Populate cd_output_mapping in the output ctf_dedup
   with a mapping of all types that belong in this dictionary and where they
   come from, and cd_conflicting_types with an indication of whether each type
   is conflicted or not.  OUTPUT is the top-level output: INPUTS is the array of
   input dicts; NINPUTS is the size of that array; PARENTS is an NINPUTS-element
   array with each element corresponding to a input which is a child dict set to
   the number in the INPUTS array of that input's parent.
   If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
   mapping: only one output will result.
   Only deduplicates: does not emit the types into the output.  Call
   ctf_dedup_emit afterwards to do that.  */
int
ctf_dedup (ctf_file_t *output, ctf_file_t **inputs, uint32_t ninputs,
	   uint32_t *parents, int cu_mapped)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  size_t i;
  ctf_next_t *it = NULL;
  for (i = 0; i < ninputs; i++)
    ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
  if (ctf_dedup_init (output) < 0)
    return -1; 					/* errno is set for us.  */
  /* Some flags do not apply when CU-mapping: this is not a duplicated link,
     because there is only one output and we really don't want to end up marking
     all nonconflicting but appears-only-once types as conflicting (which in the
     CU-mapped link means we'd mark them all as non-root-visible!).  */
  d->cd_link_flags = output->ctf_link_flags;
  if (cu_mapped)
    d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);
  /* Compute hash values for all types, recursively, treating child structures
     and unions equivalent to forwards, and hashing in the name of the referent
     of each such type into structures, unions, and non-opaque forwards.
     Populate a mapping from decorated name (including an indication of
     struct/union/enum namespace) to count of type hash values in
     cd_name_counts, a mapping from and a mapping from hash values to input type
     IDs in cd_output_mapping.  */
  ctf_dprintf ("Computing type hashes\n");
  for (i = 0; i < ninputs; i++)
    {
      ctf_id_t id;
      while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
	{
	  ctf_dedup_hash_type (output, inputs[i], inputs, parents,
			       i, id, 0, 0, ctf_dedup_populate_mappings);
	}
      if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
	{
	  ctf_set_errno (output, ctf_errno (inputs[i]));
	  ctf_err_warn (output, 0, 0, _("iteration failure "
					"computing type hashes"));
	  return -1;
	}
    }
  /* Go through the cd_name_counts name->hash->count mapping for all CTF
     namespaces: any name with many hashes associated with it at this stage is
     necessarily ambiguous.  Mark all the hashes except the most common as
     conflicting in the output.  */
  ctf_dprintf ("Detecting type name ambiguity\n");
  if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
    return -1;					/* errno is set for us.  */
  /* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
     types whose output mapping references only one input dict into a
     conflicting type, so that they end up in the per-CU dictionaries.  */
  if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
    {
      ctf_dprintf ("Conflictifying unshared types\n");
      if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
	return -1;				/* errno is set for us.  */
    }
  return 0;
}
static int
ctf_dedup_rwalk_output_mapping (ctf_file_t *output, ctf_file_t **inputs,
				uint32_t ninputs, uint32_t *parents,
				ctf_dynset_t *already_visited,
				const char *hval,
				int (*visit_fun) (const char *hval,
						  ctf_file_t *output,
						  ctf_file_t **inputs,
						  uint32_t ninputs,
						  uint32_t *parents,
						  int already_visited,
						  ctf_file_t *input,
						  ctf_id_t type,
						  void *id,
						  int depth,
						  void *arg),
				void *arg, unsigned long depth);
/* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
   type and visits it.  */
static int
ctf_dedup_rwalk_one_output_mapping (ctf_file_t *output,
				    ctf_file_t **inputs, uint32_t ninputs,
				    uint32_t *parents,
				    ctf_dynset_t *already_visited,
				    int visited, void *type_id,
				    const char *hval,
				    int (*visit_fun) (const char *hval,
						      ctf_file_t *output,
						      ctf_file_t **inputs,
						      uint32_t ninputs,
						      uint32_t *parents,
						      int already_visited,
						      ctf_file_t *input,
						      ctf_id_t type,
						      void *id,
						      int depth,
						      void *arg),
				    void *arg, unsigned long depth)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_file_t *fp;
  int input_num;
  ctf_id_t type;
  int ret;
  const char *whaterr;
  input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
  fp = inputs[input_num];
  type = CTF_DEDUP_GID_TO_TYPE (type_id);
  ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
	       "kind %i\n", depth, hval, input_num, type, (void *) fp,
	       ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));
  /* Get the single call we do if this type has already been visited out of the
     way.  */
  if (visited)
    return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
		      type, type_id, depth, arg);
  /* This macro is really ugly, but the alternative is repeating this code many
     times, which is worse.  */
#define CTF_TYPE_WALK(type, errlabel, errmsg)				\
  do {									\
    void *type_id;							\
    const char *hashval;						\
    int cited_type_input_num = input_num;				\
									\
    if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
      cited_type_input_num = parents[input_num];			\
									\
    type_id = CTF_DEDUP_GID (output, cited_type_input_num, type);	\
									\
    if (type == 0)							\
      {									\
	ctf_dprintf ("Walking: unimplemented type\n");			\
	break;								\
      }									\
									\
    ctf_dprintf ("Looking up ID %i/%lx in type hashes\n",		\
		 cited_type_input_num, type);				\
    hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id);		\
    if (!ctf_assert (output, hashval))					\
      {									\
	whaterr = N_("error looking up ID in type hashes");		\
	goto errlabel;							\
      }									\
    ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type,	\
		 hashval);						\
									\
    ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
					  already_visited, hashval,	\
					  visit_fun, arg, depth);	\
    if (ret < 0)							\
      {									\
	whaterr = errmsg;						\
	goto errlabel;							\
      }									\
  } while (0)
  switch (ctf_type_kind_unsliced (fp, type))
    {
    case CTF_K_UNKNOWN:
      /* Just skip things of unknown kind.  */
      return 0;
    case CTF_K_FORWARD:
    case CTF_K_INTEGER:
    case CTF_K_FLOAT:
    case CTF_K_ENUM:
      /* No types referenced.  */
      break;
    case CTF_K_TYPEDEF:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_POINTER:
    case CTF_K_SLICE:
      CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
		     N_("error during referenced type walk"));
      break;
    case CTF_K_ARRAY:
      {
	ctf_arinfo_t ar;
	if (ctf_array_info (fp, type, &ar) < 0)
	  {
	    whaterr = N_("error during array info lookup");
	    goto err_msg;
	  }
	CTF_TYPE_WALK (ar.ctr_contents, err,
		       N_("error during array contents type walk"));
	CTF_TYPE_WALK (ar.ctr_index, err,
		       N_("error during array index type walk"));
	break;
      }
    case CTF_K_FUNCTION:
      {
	ctf_funcinfo_t fi;
	ctf_id_t *args;
	uint32_t j;
	if (ctf_func_type_info (fp, type, &fi) < 0)
	  {
	    whaterr = N_("error during func type info lookup");
	    goto err_msg;
	  }
	CTF_TYPE_WALK (fi.ctc_return, err,
		       N_("error during func return type walk"));
	if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
	  {
	    whaterr = N_("error doing memory allocation");
	    goto err_msg;
	  }
	if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
	  {
	    whaterr = N_("error doing func arg type lookup");
	    free (args);
	    goto err_msg;
	  }
	for (j = 0; j < fi.ctc_argc; j++)
	  CTF_TYPE_WALK (args[j], err_free_args,
			 N_("error during Func arg type walk"));
	free (args);
	break;
      err_free_args:
	free (args);
	goto err;
      }
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      /* We do not recursively traverse the members of structures: they are
	 emitted later, in a separate pass.  */
	break;
    default:
      whaterr = N_("CTF dict corruption: unknown type kind");
      goto err_msg;
    }
  return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
		    type_id, depth, arg);
 err_msg:
  ctf_set_errno (output, ctf_errno (fp));
  ctf_err_warn (output, 0, 0, _("%s in input file %s at type ID %lx"),
		gettext (whaterr), ctf_link_input_name (fp), type);
 err:
  return -1;
}
/* Recursively traverse the output mapping, and do something with each type
   visited, from leaves to root.  VISIT_FUN, called as recursion unwinds,
   returns a negative error code or zero.  Type hashes may be visited more than
   once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
   types have already been visited.  */
static int
ctf_dedup_rwalk_output_mapping (ctf_file_t *output, ctf_file_t **inputs,
				uint32_t ninputs, uint32_t *parents,
				ctf_dynset_t *already_visited,
				const char *hval,
				int (*visit_fun) (const char *hval,
						  ctf_file_t *output,
						  ctf_file_t **inputs,
						  uint32_t ninputs,
						  uint32_t *parents,
						  int already_visited,
						  ctf_file_t *input,
						  ctf_id_t type,
						  void *id,
						  int depth,
						  void *arg),
				void *arg, unsigned long depth)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_next_t *i = NULL;
  int err;
  int visited = 1;
  ctf_dynset_t *type_ids;
  void *id;
  depth++;
  type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
  if (!type_ids)
    {
      ctf_err_warn (output, 0, ECTF_INTERNAL,
		    _("looked up type kind by nonexistent hash %s"), hval);
      return ctf_set_errno (output, ECTF_INTERNAL);
    }
  /* Have we seen this type before?  */
  if (!ctf_dynset_exists (already_visited, hval, NULL))
    {
      /* Mark as already-visited immediately, to eliminate the possibility of
	 cycles: but remember we have not actually visited it yet for the
	 upcoming call to the visit_fun.  (All our callers handle cycles
	 properly themselves, so we can just abort them aggressively as soon as
	 we find ourselves in one.)  */
      visited = 0;
      if (ctf_dynset_cinsert (already_visited, hval) < 0)
	{
	  ctf_err_warn (output, 0, ENOMEM,
			_("out of memory tracking already-visited types"));
	  return ctf_set_errno (output, ENOMEM);
	}
    }
  /* If this type is marked conflicted, traverse members and call
     ctf_dedup_rwalk_output_mapping_once on all the unique ones: otherwise, just
     pick a random one and use it.  */
  if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
    {
      id = ctf_dynset_lookup_any (type_ids);
      if (!ctf_assert (output, id))
	return -1;
      return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
						 parents, already_visited,
						 visited, id, hval, visit_fun,
						 arg, depth);
    }
  while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
    {
      int ret;
      ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
						parents, already_visited,
						visited, id, hval,
						visit_fun, arg, depth);
      if (ret < 0)
	{
	  ctf_next_destroy (i);
	  return ret;				/* errno is set for us.  */
	}
    }
  if (err != ECTF_NEXT_END)
    {
      ctf_err_warn (output, 0, err, _("cannot walk conflicted type"));
      return ctf_set_errno (output, err);
    }
  return 0;
}
typedef struct ctf_sort_om_cb_arg
{
  ctf_file_t **inputs;
  uint32_t ninputs;
  ctf_dedup_t *d;
} ctf_sort_om_cb_arg_t;
/* Sort the output mapping into order: types first appearing in earlier inputs
   first, parents preceding children: if types first appear in the same input,
   sort those with earlier ctf_id_t's first.  */
static int
sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
		     void *arg_)
{
  ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
  ctf_dedup_t *d = arg->d;
  const char *one_hval = (const char *) one->hkv_key;
  const char *two_hval = (const char *) two->hkv_key;
  void *one_gid, *two_gid;
  uint32_t one_ninput;
  uint32_t two_ninput;
  ctf_file_t *one_fp;
  ctf_file_t *two_fp;
  ctf_id_t one_type;
  ctf_id_t two_type;
  one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
  two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);
  one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
  two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);
  one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
  two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);
  /* It's kind of hard to smuggle an assertion failure out of here.  */
  assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);
  one_fp = arg->inputs[one_ninput];
  two_fp = arg->inputs[two_ninput];
  /* Parents before children.  */
  if (!(one_fp->ctf_flags & LCTF_CHILD)
      && (two_fp->ctf_flags & LCTF_CHILD))
    return -1;
  else if ((one_fp->ctf_flags & LCTF_CHILD)
      && !(two_fp->ctf_flags & LCTF_CHILD))
    return 1;
  /* ninput order, types appearing in earlier TUs first.  */
  if (one_ninput < two_ninput)
    return -1;
  else if (two_ninput < one_ninput)
    return 1;
  /* Same TU.  Earliest ctf_id_t first.  They cannot be the same.  */
  assert (one_type != two_type);
  if (one_type < two_type)
    return -1;
  else
    return 1;
}
/* The public entry point to ctf_dedup_rwalk_output_mapping, above.  */
static int
ctf_dedup_walk_output_mapping (ctf_file_t *output, ctf_file_t **inputs,
			       uint32_t ninputs, uint32_t *parents,
			       int (*visit_fun) (const char *hval,
						 ctf_file_t *output,
						 ctf_file_t **inputs,
						 uint32_t ninputs,
						 uint32_t *parents,
						 int already_visited,
						 ctf_file_t *input,
						 ctf_id_t type,
						 void *id,
						 int depth,
						 void *arg),
			       void *arg)
{
  ctf_dynset_t *already_visited;
  ctf_next_t *i = NULL;
  ctf_sort_om_cb_arg_t sort_arg;
  int err;
  void *k;
  if ((already_visited = ctf_dynset_create (htab_hash_string,
					    ctf_dynset_eq_string,
					    NULL)) == NULL)
    return ctf_set_errno (output, ENOMEM);
  sort_arg.inputs = inputs;
  sort_arg.ninputs = ninputs;
  sort_arg.d = &output->ctf_dedup;
  while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
					 &i, &k, NULL, sort_output_mapping,
					 &sort_arg)) == 0)
    {
      const char *hval = (const char *) k;
      err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
					    already_visited, hval, visit_fun,
					    arg, 0);
      if (err < 0)
	{
	  ctf_next_destroy (i);
	  goto err;				/* errno is set for us.  */
	}
    }
  if (err != ECTF_NEXT_END)
    {
      ctf_err_warn (output, 0, err, _("cannot recurse over output mapping"));
      ctf_set_errno (output, err);
      goto err;
    }
  ctf_dynset_destroy (already_visited);
  return 0;
 err:
  ctf_dynset_destroy (already_visited);
  return -1;
}
/* Possibly synthesise a synthetic forward in TARGET to subsitute for a
   conflicted per-TU type ID in INPUT with hash HVAL.  Return its CTF ID, or 0
   if none was needed.  */
static ctf_id_t
ctf_dedup_maybe_synthesize_forward (ctf_file_t *output, ctf_file_t *target,
				    ctf_file_t *input, ctf_id_t id,
				    const char *hval)
{
  ctf_dedup_t *od = &output->ctf_dedup;
  ctf_dedup_t *td = &target->ctf_dedup;
  int kind;
  int fwdkind;
  const char *name;
  const char *decorated;
  void *v;
  ctf_id_t emitted_forward;
  if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
      || target->ctf_flags & LCTF_CHILD
      || !ctf_type_name_raw (input, id)
      || (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
	   && kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
    return 0;
  fwdkind = ctf_type_kind_forwarded (input, id);
  name = ctf_type_name_raw (input, id);
  ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
	       "hval %s\n", hval);
  if (!ctf_assert (output, name))
    return CTF_ERR;
  if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
    return CTF_ERR;
  if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
			      decorated, NULL, &v))
    {
      if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
					      fwdkind)) == CTF_ERR)
	{
	  ctf_set_errno (output, ctf_errno (target));
	  return CTF_ERR;
	}
      if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
			       decorated, (void *) (uintptr_t)
			       emitted_forward) < 0)
	{
	  ctf_set_errno (output, ENOMEM);
	  return CTF_ERR;
	}
    }
  else
    emitted_forward = (ctf_id_t) (uintptr_t) v;
  ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
	       emitted_forward);
  return emitted_forward;
}
/* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
   into a GID in a target output dict.  If it returns 0, this is the
   unimplemented type, and the input type must have been 0.  The OUTPUT dict is
   assumed to be the parent of the TARGET, if it is not the TARGET itself.
   Returns CTF_ERR on failure.  Responds to an incoming CTF_ERR as an 'id' by
   returning CTF_ERR, to simplify callers.  Errors are always propagated to the
   input, even if they relate to the target, for the same reason.  (Target
   errors are expected to be very rare.)
   If the type in question is a citation of a conflicted type in a different TU,
   emit a forward of the right type in its place (if not already emitted), and
   record that forward in cd_output_emission_conflicted_forwards.  This avoids
   the need to replicate the entire type graph below this point in the current
   TU (an appalling waste of space).
   TODO: maybe replace forwards in the same TU with their referents?  Might
   make usability a bit better.  */
static ctf_id_t
ctf_dedup_id_to_target (ctf_file_t *output, ctf_file_t *target,
			ctf_file_t **inputs, uint32_t ninputs,
			uint32_t *parents, ctf_file_t *input, int input_num,
			ctf_id_t id)
{
  ctf_dedup_t *od = &output->ctf_dedup;
  ctf_dedup_t *td = &target->ctf_dedup;
  ctf_file_t *err_fp = input;
  const char *hval;
  void *target_id;
  ctf_id_t emitted_forward;
  /* The target type of an error is an error.  */
  if (id == CTF_ERR)
    return CTF_ERR;
  /* The unimplemented type's ID never changes.  */
  if (!id)
    {
      ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
      return 0;
    }
  ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
	       id, (void *) target, ctf_link_input_name (target));
  /* If the input type is in the parent type space, and this is a child, reset
     the input to the parent (which must already have been emitted, since
     emission of parent dicts happens before children).  */
  if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
    {
      if (!ctf_assert (output, parents[input_num] <= ninputs))
	return -1;
      input = inputs[parents[input_num]];
      input_num = parents[input_num];
    }
  hval = ctf_dynhash_lookup (od->cd_type_hashes,
			     CTF_DEDUP_GID (output, input_num, id));
  if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
    return -1;
  /* If this type is a conflicted tagged structure, union, or forward,
     substitute a synthetic forward instead, emitting it if need be.  Only do
     this if the target is in the parent dict: if it's in the child dict, we can
     just point straight at the thing itself.  Of course, we might be looking in
     the child dict right now and not find it and have to look in the parent, so
     we have to do this check twice.  */
  emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
							input, id, hval);
  switch (emitted_forward)
    {
    case 0: /* No forward needed.  */
      break;
    case -1:
      ctf_set_errno (err_fp, ctf_errno (output));
      ctf_err_warn (err_fp, 0, 0, _("cannot add synthetic forward for type "
				    "%i/%lx"), input_num, id);
      return -1;
    default:
      return emitted_forward;
    }
  ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);
  target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
  if (!target_id)
    {
      /* Must be in the parent, so this must be a child, and they must not be
	 the same dict.  */
      ctf_dprintf ("Checking shared parent for target\n");
      if (!ctf_assert (output, (target != output)
		       && (target->ctf_flags & LCTF_CHILD)))
	return -1;
      target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);
      emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
							    input, id, hval);
      switch (emitted_forward)
	{
	case 0: /* No forward needed.  */
	  break;
	case -1:
	  ctf_err_warn (err_fp, 0, ctf_errno (output),
			_("cannot add synthetic forward for type %i/%lx"),
			input_num, id);
	  return ctf_set_errno (err_fp, ctf_errno (output));
	default:
	  return emitted_forward;
	}
    }
  if (!ctf_assert (output, target_id))
    return -1;
  return (ctf_id_t) (uintptr_t) target_id;
}
/* Emit a single deduplicated TYPE with the given HVAL, located in a given
   INPUT, with the given (G)ID, into the shared OUTPUT or a
   possibly-newly-created per-CU dict.  All the types this type depends upon
   have already been emitted.  (This type itself may also have been emitted.)
   If the ARG is 1, this is a CU-mapped deduplication round mapping many
   ctf_file_t's into precisely one: conflicting types should be marked
   non-root-visible.  If the ARG is 0, conflicting types go into per-CU
   dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
   is emitted directly into the output.  No struct/union members are emitted.
   Optimization opportunity: trace the ancestry of non-root-visible types and
   elide all that neither have a root-visible type somewhere towards their root,
   nor have the type visible via any other route (the function info section,
   data object section, backtrace section etc).  */
static int
ctf_dedup_emit_type (const char *hval, ctf_file_t *output, ctf_file_t **inputs,
		     uint32_t ninputs, uint32_t *parents, int already_visited,
		     ctf_file_t *input, ctf_id_t type, void *id, int depth,
		     void *arg)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  int kind = ctf_type_kind_unsliced (input, type);
  const char *name;
  ctf_file_t *target = output;
  ctf_file_t *real_input;
  const ctf_type_t *tp;
  int input_num = CTF_DEDUP_GID_TO_INPUT (id);
  int output_num = (uint32_t) -1;		/* 'shared' */
  int cu_mapped = *(int *)arg;
  int isroot = 1;
  int is_conflicting;
  ctf_next_t *i = NULL;
  ctf_id_t new_type;
  ctf_id_t ref;
  ctf_id_t maybe_dup = 0;
  ctf_encoding_t ep;
  const char *errtype;
  int emission_hashed = 0;
  /* We don't want to re-emit something we've already emitted.  */
  if (already_visited)
    return 0;
  ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
	       depth, hval, ctf_link_input_name (input));
  /* Conflicting types go into a per-CU output dictionary, unless this is a
     CU-mapped run.  The import is not refcounted, since it goes into the
     ctf_link_outputs dict of the output that is its parent.  */
  is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);
  if (is_conflicting && !cu_mapped)
    {
      ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
		   "inserting into per-CU target.\n",
		   depth, hval, input_num, type);
      if (input->ctf_dedup.cd_output)
	target = input->ctf_dedup.cd_output;
      else
	{
	  int err;
	  if ((target = ctf_create (&err)) == NULL)
	    {
	      ctf_err_warn (output, 0, err,
			    _("cannot create per-CU CTF archive for CU %s"),
			    ctf_link_input_name (input));
	      return ctf_set_errno (output, err);
	    }
	  ctf_import_unref (target, output);
	  if (ctf_cuname (input) != NULL)
	    ctf_cuname_set (target, ctf_cuname (input));
	  else
	    ctf_cuname_set (target, "unnamed-CU");
	  ctf_parent_name_set (target, _CTF_SECTION);
	  input->ctf_dedup.cd_output = target;
	}
      output_num = input_num;
    }
  real_input = input;
  if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
    {
      ctf_err_warn (output, 0, ctf_errno (input),
		    _("%s: lookup failure for type %lx"),
		    ctf_link_input_name (real_input), type);
      return ctf_set_errno (output, ctf_errno (input));
    }
  name = ctf_strraw (real_input, tp->ctt_name);
  /* Hide conflicting types, if we were asked to: also hide if a type with this
     name already exists and is not a forward.  */
  if (cu_mapped && is_conflicting)
    isroot = 0;
  else if (name
	   && (maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0)
    {
      if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
	isroot = 0;
    }
  ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
	       depth, hval, name ? name : "", input_num, (void *) target);
  if (!target->ctf_dedup.cd_output_emission_hashes)
    if ((target->ctf_dedup.cd_output_emission_hashes
	 = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL)) == NULL)
      goto oom_hash;
  if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
    if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
	 = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL)) == NULL)
      goto oom_hash;
  switch (kind)
    {
    case CTF_K_UNKNOWN:
      /* These are types that CTF cannot encode, marked as such by the compile.
	 We intentionally do not re-emit these.  */
      new_type = 0;
      break;
    case CTF_K_FORWARD:
      /* This will do nothing if the type to which this forwards already exists,
	 and will be replaced with such a type if it appears later.  */
      errtype = _("forward");
      if ((new_type = ctf_add_forward (target, isroot, name,
				       ctf_type_kind_forwarded (input, type)))
	  == CTF_ERR)
	goto err_target;
      break;
    case CTF_K_FLOAT:
    case CTF_K_INTEGER:
      errtype = _("float/int");
      if (ctf_type_encoding (input, type, &ep) < 0)
	goto err_input;				/* errno is set for us.  */
      if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
	  == CTF_ERR)
	goto err_target;
      break;
    case CTF_K_ENUM:
      {
	int val;
	errtype = _("enum");
	if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
	  goto err_input;				/* errno is set for us.  */
	while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
	  {
	    if (ctf_add_enumerator (target, new_type, name, val) < 0)
	      {
		ctf_err_warn (target, 0, ctf_errno (target),
			      _("%s (%i): cannot add enumeration value %s "
				"from input type %lx"),
			      ctf_link_input_name (input), input_num, name,
			      type);
		ctf_next_destroy (i);
		return ctf_set_errno (output, ctf_errno (target));
	      }
	  }
	if (ctf_errno (input) != ECTF_NEXT_END)
	  goto err_input;
	break;
      }
    case CTF_K_TYPEDEF:
      errtype = _("typedef");
      ref = ctf_type_reference (input, type);
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					 parents, input, input_num,
					 ref)) == CTF_ERR)
	goto err_input;				/* errno is set for us.  */
      if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
	goto err_target;			/* errno is set for us.  */
      break;
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_POINTER:
      errtype = _("pointer or cvr-qual");
      ref = ctf_type_reference (input, type);
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					 parents, input, input_num,
					 ref)) == CTF_ERR)
	goto err_input;				/* errno is set for us.  */
      if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
	goto err_target;			/* errno is set for us.  */
      break;
    case CTF_K_SLICE:
      errtype = _("slice");
      if (ctf_type_encoding (input, type, &ep) < 0)
	goto err_input;				/* errno is set for us.  */
      ref = ctf_type_reference (input, type);
      if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					 parents, input, input_num,
					 ref)) == CTF_ERR)
	goto err_input;
      if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
	goto err_target;
      break;
    case CTF_K_ARRAY:
      {
	ctf_arinfo_t ar;
	errtype = _("array info");
	if (ctf_array_info (input, type, &ar) < 0)
	  goto err_input;
	ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
						  ninputs, parents, input,
						  input_num, ar.ctr_contents);
	ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					       parents, input, input_num,
					       ar.ctr_index);
	if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
	  goto err_input;
	if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
	  goto err_target;
	break;
      }
    case CTF_K_FUNCTION:
      {
	ctf_funcinfo_t fi;
	ctf_id_t *args;
	uint32_t j;
	errtype = _("function");
	if (ctf_func_type_info (input, type, &fi) < 0)
	  goto err_input;
	fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
						parents, input, input_num,
						fi.ctc_return);
	if (fi.ctc_return == CTF_ERR)
	  goto err_input;
	if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
	  {
	    ctf_set_errno (input, ENOMEM);
	    goto err_input;
	  }
	errtype = _("function args");
	if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
	  {
	    free (args);
	    goto err_input;
	  }
	for (j = 0; j < fi.ctc_argc; j++)
	  {
	    args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
					      parents, input, input_num,
					      args[j]);
	    if (args[j] == CTF_ERR)
	      goto err_input;
	  }
	if ((new_type = ctf_add_function (target, isroot,
					  &fi, args)) == CTF_ERR)
	  {
	    free (args);
	    goto err_target;
	  }
	free (args);
	break;
      }
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      {
	size_t size = ctf_type_size (input, type);
	void *out_id;
	/* Insert the structure itself, so other types can refer to it.  */
	errtype = _("structure/union");
	if (kind == CTF_K_STRUCT)
	  new_type = ctf_add_struct_sized (target, isroot, name, size);
	else
	  new_type = ctf_add_union_sized (target, isroot, name, size);
	if (new_type == CTF_ERR)
	  goto err_target;
	out_id = CTF_DEDUP_GID (output, output_num, new_type);
	ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
		     id, out_id);
	/* Record the need to emit the members of this structure later.  */
	if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
	  goto err_target;
	break;
      }
    default:
      ctf_err_warn (output, 0, ECTF_CORRUPT, _("%s: unknown type kind for "
					       "input type %lx"),
		    ctf_link_input_name (input), type);
      return ctf_set_errno (output, ECTF_CORRUPT);
    }
  if (!emission_hashed
      && new_type != 0
      && ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
			      hval, (void *) (uintptr_t) new_type) < 0)
    {
      ctf_err_warn (output, 0, ENOMEM, _("out of memory tracking deduplicated "
					 "global type IDs"));
	return ctf_set_errno (output, ENOMEM);
    }
  if (!emission_hashed && new_type != 0)
    ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
		 "target %p (%s)\n", depth, hval, input_num, type, new_type,
		 (void *) target, ctf_link_input_name (target));
  return 0;
 oom_hash:
  ctf_err_warn (output, 0, ENOMEM, _("out of memory creating emission-tracking "
				     "hashes"));
  return ctf_set_errno (output, ENOMEM);
 err_input:
  ctf_err_warn (output, 0, ctf_errno (input),
		_("%s (%i): while emitting deduplicated %s, error getting "
		  "input type %lx"), ctf_link_input_name (input),
		input_num, errtype, type);
  return ctf_set_errno (output, ctf_errno (input));
 err_target:
  ctf_err_warn (output, 0, ctf_errno (target),
		_("%s (%i): while emitting deduplicated %s, error emitting "
		  "target type from input type %lx"),
		ctf_link_input_name (input), input_num,
		errtype, type);
  return ctf_set_errno (output, ctf_errno (target));
}
/* Traverse the cd_emission_struct_members and emit the members of all
   structures and unions.  All other types are emitted and complete by this
   point.  */
static int
ctf_dedup_emit_struct_members (ctf_file_t *output, ctf_file_t **inputs,
			       uint32_t ninputs, uint32_t *parents)
{
  ctf_dedup_t *d = &output->ctf_dedup;
  ctf_next_t *i = NULL;
  void *input_id, *target_id;
  int err;
  ctf_file_t *err_fp, *input_fp;
  int input_num;
  ctf_id_t err_type;
  while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
				  &input_id, &target_id)) == 0)
    {
      ctf_next_t *j = NULL;
      ctf_file_t *target;
      uint32_t target_num;
      ctf_id_t input_type, target_type;
      ssize_t offset;
      ctf_id_t membtype;
      const char *name;
      input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
      input_fp = inputs[input_num];
      input_type = CTF_DEDUP_GID_TO_TYPE (input_id);
      /* The output is either -1 (for the shared, parent output dict) or the
	 number of the corresponding input.  */
      target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
      if (target_num == (uint32_t) -1)
	target = output;
      else
	{
	  target = inputs[target_num]->ctf_dedup.cd_output;
	  if (!ctf_assert (output, target))
	    {
	      err_fp = output;
	      err_type = input_type;
	      goto err_target;
	    }
	}
      target_type = CTF_DEDUP_GID_TO_TYPE (target_id);
      while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
					&membtype)) >= 0)
	{
	  err_fp = target;
	  err_type = target_type;
	  if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
						  ninputs, parents, input_fp,
						  input_num,
						  membtype)) == CTF_ERR)
	    {
	      ctf_next_destroy (j);
	      goto err_target;
	    }
	  if (name == NULL)
	    name = "";
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
	  ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
#endif
	  if (ctf_add_member_offset (target, target_type, name,
				     membtype, offset) < 0)
	    {
	      ctf_next_destroy (j);
	      goto err_target;
	    }
	}
      if (ctf_errno (input_fp) != ECTF_NEXT_END)
	{
	  err = ctf_errno (input_fp);
	  ctf_next_destroy (i);
	  goto iterr;
	}
    }
  if (err != ECTF_NEXT_END)
    goto iterr;
  return 0;
 err_target:
  ctf_next_destroy (i);
  ctf_err_warn (output, 0, ctf_errno (err_fp),
		_("%s (%i): error emitting members for structure type %lx"),
		ctf_link_input_name (input_fp), input_num, err_type);
  return ctf_set_errno (output, ctf_errno (err_fp));
 iterr:
  ctf_err_warn (output, 0, err, _("iteration failure emitting "
				  "structure members"));
  return ctf_set_errno (output, err);
}
/* Populate the type mapping used by the types in one FP (which must be an input
   dict containing a non-null cd_output resulting from a ctf_dedup_emit_type
   walk).  */
static int
ctf_dedup_populate_type_mapping (ctf_file_t *shared, ctf_file_t *fp,
				 ctf_file_t **inputs)
{
  ctf_dedup_t *d = &shared->ctf_dedup;
  ctf_file_t *output = fp->ctf_dedup.cd_output;
  const void *k, *v;
  ctf_next_t *i = NULL;
  int err;
  /* The shared dict (the output) stores its types in the fp itself, not in a
     separate cd_output dict.  */
  if (shared == fp)
    output = fp;
  /* There may be no types to emit at all, or all the types in this TU may be
     shared.  */
  if (!output || !output->ctf_dedup.cd_output_emission_hashes)
    return 0;
  while ((err = ctf_dynhash_cnext (output->ctf_dedup.cd_output_emission_hashes,
				  &i, &k, &v)) == 0)
    {
      const char *hval = (const char *) k;
      ctf_id_t id_out = (ctf_id_t) (uintptr_t) v;
      ctf_next_t *j = NULL;
      ctf_dynset_t *type_ids;
      const void *id;
      type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
      if (!ctf_assert (shared, type_ids))
	return -1;
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
      ctf_dprintf ("Traversing emission hash: hval %s\n", hval);
#endif
      while ((err = ctf_dynset_cnext (type_ids, &j, &id)) == 0)
	{
	  ctf_file_t *input = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
	  ctf_id_t id_in = CTF_DEDUP_GID_TO_TYPE (id);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
	  ctf_dprintf ("Adding mapping from %i/%lx to %lx\n",
		       CTF_DEDUP_GID_TO_INPUT (id), id_in, id_out);
#endif
	  ctf_add_type_mapping (input, id_in, output, id_out);
	}
      if (err != ECTF_NEXT_END)
	{
	  ctf_next_destroy (i);
	  goto err;
	}
    }
  if (err != ECTF_NEXT_END)
    goto err;
  return 0;
 err:
  ctf_err_warn (shared, 0, err, _("iteration error populating the type mapping"));
  return ctf_set_errno (shared, err);
}
/* Populate the type mapping machinery used by the rest of the linker,
   by ctf_add_type, etc.  */
static int
ctf_dedup_populate_type_mappings (ctf_file_t *output, ctf_file_t **inputs,
				  uint32_t ninputs)
{
  size_t i;
  if (ctf_dedup_populate_type_mapping (output, output, inputs) < 0)
    {
      ctf_err_warn (output, 0, 0, _("cannot populate type mappings for shared "
				    "CTF dict"));
      return -1;				/* errno is set for us.  */
    }
  for (i = 0; i < ninputs; i++)
    {
      if (ctf_dedup_populate_type_mapping (output, inputs[i], inputs) < 0)
	{
	  ctf_err_warn (output, 0, ctf_errno (inputs[i]),
			_("cannot populate type mappings for per-CU CTF dict"));
	  return ctf_set_errno (output, ctf_errno (inputs[i]));
	}
    }
  return 0;
}
/* Emit deduplicated types into the outputs.  The shared type repository is
   OUTPUT, on which the ctf_dedup function must have already been called.  The
   PARENTS array contains the INPUTS index of the parent dict for every child
   dict at the corresponding index in the INPUTS (for non-child dicts, the value
   is undefined).
   Return an array of fps with content emitted into them (starting with OUTPUT,
   which is the parent of all others, then all the newly-generated outputs).
   If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
   mapping: only one output will result.  */
ctf_file_t **
ctf_dedup_emit (ctf_file_t *output, ctf_file_t **inputs, uint32_t ninputs,
		uint32_t *parents, uint32_t *noutputs, int cu_mapped)
{
  size_t num_outputs = 1;		/* Always at least one output: us.  */
  ctf_file_t **outputs;
  ctf_file_t **walk;
  size_t i;
  ctf_dprintf ("Triggering emission.\n");
  if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
				     ctf_dedup_emit_type, &cu_mapped) < 0)
    return NULL;				/* errno is set for us.  */
  ctf_dprintf ("Populating struct members.\n");
  if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
    return NULL;				/* errno is set for us.  */
  if (ctf_dedup_populate_type_mappings (output, inputs, ninputs) < 0)
    return NULL;				/* errno is set for us.  */
  for (i = 0; i < ninputs; i++)
    {
      if (inputs[i]->ctf_dedup.cd_output)
	num_outputs++;
    }
  if (!ctf_assert (output, !cu_mapped || (cu_mapped && num_outputs == 1)))
    return NULL;
  if ((outputs = calloc (num_outputs, sizeof (ctf_file_t *))) == NULL)
    {
      ctf_err_warn (output, 0, ENOMEM,
		    _("out of memory allocating link outputs array"));
      ctf_set_errno (output, ENOMEM);
      return NULL;
    }
  *noutputs = num_outputs;
  walk = outputs;
  *walk = output;
  output->ctf_refcnt++;
  walk++;
  for (i = 0; i < ninputs; i++)
    {
      if (inputs[i]->ctf_dedup.cd_output)
	{
	  *walk = inputs[i]->ctf_dedup.cd_output;
	  inputs[i]->ctf_dedup.cd_output = NULL;
	  walk++;
	}
    }
  ctf_dedup_fini (output, outputs, num_outputs);
  return outputs;
}
 |