1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
|
/* CTF type deduplication.
Copyright (C) 2019-2024 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "hashtab.h"
/* (In the below, relevant functions are named in square brackets.) */
/* Type deduplication is a three-phase process:
[ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
1) come up with unambiguous hash values for all types: no two types may have
the same hash value, and any given type should have only one hash value
(for optimal deduplication).
[ctf_dedup, ctf_dedup_detect_name_ambiguity,
ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
2) mark those distinct types with names that collide (and thus cannot be
declared simultaneously in the same translation unit) as conflicting, and
recursively mark all types that cite one of those types as conflicting as
well. Possibly mark all types cited in only one TU as conflicting, if
the CTF_LINK_SHARE_DUPLICATED link mode is active.
[ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
3) emit all the types, one hash value at a time. Types not marked
conflicting are emitted once, into the shared dictionary: types marked
conflicting are emitted once per TU into a dictionary corresponding to
each TU in which they appear. Structs marked conflicting get at the very
least a forward emitted into the shared dict so that other dicts can cite
it if needed.
[id_to_packed_id]
This all works over an array of inputs (usually in the same order as the
inputs on the link line). We don't use the ctf_link_inputs hash directly
because it is convenient to be able to address specific input types as a
*global type ID* or 'GID', a pair of an array offset and a ctf_id_t. Since
both are already 32 bits or less or can easily be constrained to that range,
we can pack them both into a single 64-bit hash word for easy lookups, which
would be much more annoying to do with a ctf_dict_t * and a ctf_id_t. (On
32-bit platforms, we must do that anyway, since pointers, and thus hash keys
and values, are only 32 bits wide). We track which inputs are parents of
which other inputs so that we can correctly recognize that types we have
traversed in children may cite types in parents, and so that we can process
the parents first.)
Note that thanks to ld -r, the deduplicator can be fed its own output, so the
inputs may themselves have child dicts. Since we need to support this usage
anyway, we can use it in one other place. If the caller finds translation
units to be too small a unit ambiguous types, links can be 'cu-mapped', where
the caller provides a mapping of input TU names to output child dict names.
This mapping can fuse many child TUs into one potential child dict, so that
ambiguous types in any of those input TUs go into the same child dict.
When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
repeatedly, once for every output name that has more than one input, to fuse
all the input TUs associated with a given output dict into one, and once again
as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
together. This has much higher memory usage than otherwise, because in the
intermediate state, all the output TUs are in memory at once and cannot be
lazily opened. It also has implications for the emission code: if types
appear ambiguously in multiple input TUs that are all mapped to the same
child dict, we cannot put them in children in the cu-mapping link phase
because this output is meant to *become* a child in the next link stage and
parent/child relationships are only one level deep: so instead, we just hide
all but one of the ambiguous types.
There are a few other subtleties here that make this more complex than it
seems. Let's go over the steps above in more detail.
1) HASHING.
[ctf_dedup_hash_type, ctf_dedup_rhash_type]
Hashing proceeds recursively, mixing in the properties of each input type
(including its name, if any), and then adding the hash values of every type
cited by that type. The result is stashed in the cd_type_hashes so other
phases can find the hash values of input types given their IDs, and so that
if we encounter this type again while hashing we can just return its hash
value: it is also stashed in the *output mapping*, a mapping from hash value
to the set of GIDs corresponding to that type in all inputs. We also keep
track of the GID of the first appearance of the type in any input (in
cd_output_first_gid), and the GID of structs, unions, and forwards that only
appear in one TU (in cd_struct_origin). See below for where these things are
used.
Everything in this phase is time-critical, because it is operating over
non-deduplicated types and so may have hundreds or thousands of times the
data volume to deal with than later phases. Trace output is hidden behind
ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
from the calls to ctf_dprintf(), even with debugging switched off), and keep
down the volume of output (hundreds of gigabytes of debug output are not
uncommon on larger links).
We have to do *something* about potential cycles in the type graph. We'd
like to avoid emitting forwards in the final output if possible, because
forwards aren't much use: they have no members. We are mostly saved from
needing to worry about this at emission time by ctf_add_struct*()
automatically replacing newly-created forwards when the real struct/union
comes along. So we only have to avoid getting stuck in cycles during the
hashing phase, while also not confusing types that cite members that are
structs with each other. It is easiest to solve this problem by noting two
things:
- all cycles in C depend on the presence of tagged structs/unions
- all tagged structs/unions have a unique name they can be disambiguated by
[ctf_dedup_is_stub]
This means that we can break all cycles by ceasing to hash in cited types at
every tagged struct/union and instead hashing in a stub consisting of the
struct/union's *decorated name*, which is the name preceded by "s " or "u "
depending on the namespace (cached in cd_decorated_names). Forwards are
decorated identically (so a forward to "struct foo" would be represented as
"s foo"): this means that a citation of a forward to a type and a citation of
a concrete definition of a type with the same name ends up getting the same
hash value.
Of course, it is quite possible to have two TUs with structs with the same
name and different definitions, but that's OK because when we scan for types
with ambiguous names we will identify these and mark them conflicting.
We populate one thing to help conflictedness marking. No unconflicted type
may cite a conflicted one, but this means that conflictedness marking must
walk from types to the types that cite them, which is the opposite of the
usual order. We can make this easier to do by constructing a *citers* graph
in cd_citers, which points from types to the types that cite them: because we
emit forwards corresponding to every conflicted struct/union, we don't need
to do this for citations of structs/unions by other types. This is very
convenient for us, because that's the only type we don't traverse
recursively: so we can construct the citers graph at the same time as we
hash, rather than needing to add an extra pass. (This graph is a dynhash of
*type hash values*, so it's small: in effect it is automatically
deduplicated.)
2) COLLISIONAL MARKING.
[ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
We identify types whose names collide during the hashing process, and count
the rough number of uses of each name (caching may throw it off a bit: this
doesn't need to be accurate). We then mark the less-frequently-cited types
with each names conflicting: the most-frequently-cited one goes into the
shared type dictionary, while all others are duplicated into per-TU
dictionaries, named after the input TU, that have the shared dictionary as a
parent. For structures and unions this is not quite good enough: we'd like
to have citations of forwards to ambiguously named structures and unions
*stay* as citations of forwards, so that the user can tell that the caller
didn't actually know which structure definition was meant: but if we put one
of those structures into the shared dictionary, it would supplant and replace
the forward, leaving no sign. So structures and unions do not take part in
this popularity contest: if their names are ambiguous, they are just
duplicated, and only a forward appears in the shared dict.
[ctf_dedup_propagate_conflictedness]
The process of marking types conflicted is itself recursive: we recursively
traverse the cd_citers graph populated in the hashing pass above and mark
everything that we encounter conflicted (without wasting time re-marking
anything that is already marked). This naturally terminates just where we
want it to (at types that are cited by no other types, and at structures and
unions) and suffices to ensure that types that cite conflicted types are
always marked conflicted.
[ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
are used in only one TU to end up in a per-CU dict. The easiest way to do
that is to mark them conflicted. ctf_dedup_conflictify_unshared does this,
traversing the output mapping and using ctf_dedup_multiple_input_dicts to
check the number of input dicts each distinct type hash value came from:
types that only came from one get marked conflicted. One caveat here is that
we need to consider both structs and forwards to them: a struct that appears
in one TU and has a dozen citations to an opaque forward in other TUs should
*not* be considered to be used in only one TU, because users would find it
useful to be able to traverse into opaque structures of that sort: so we use
cd_struct_origin to check both structs/unions and the forwards corresponding
to them.
3) EMISSION.
[ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
ctf_dedup_rwalk_one_output_mapping]
Emission involves another walk of the entire output mapping, this time
traversing everything other than struct members, recursively. Types are
emitted from leaves to trunk, emitting all types a type cites before emitting
the type itself. We sort the output mapping before traversing it, for
reproducibility and also correctness: the input dicts may have parent/child
relationships, so we simply sort all types that first appear in parents
before all children, then sort types that first appear in dicts appearing
earlier on the linker command line before those that appear later, then sort
by input ctf_id_t. (This is where we use cd_output_first_gid, collected
above.)
The walking is done using a recursive traverser which arranges to not revisit
any type already visited and to call its callback once per input GID for
input GIDs corresponding to conflicted output types. The traverser only
finds input types and calls a callback for them as many times as the output
needs to appear: it doesn't try to figure out anything about where the output
might go. That's done by the callback based on whether the type is
marked conflicted or not.
[ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
Conflicted types have all necessary dictionaries created, and then we emit
the type into each dictionary in turn, working over each input CTF type
corresponding to each hash value and using ctf_dedup_id_to_target to map each
input ctf_id_t into the corresponding type in the output (dealing with input
ctf_id_t's with parents in the process by simply chasing to the parent dict
if the type we're looking up is in there). Emitting structures involves
simply noting that the members of this structure need emission later on:
because you cannot cite a single structure member from another type, we avoid
emitting the members at this stage to keep recursion depths down a bit.
At this point, if we have by some mischance decided that two different types
with child types that hash to different values have in fact got the same hash
value themselves and *not* marked it conflicting, the type walk will walk
only *one* of them and in all likelihood we'll find that we are trying to
emit a type into some child dictionary that references a type that was never
emitted into that dictionary and assertion-fail. This always indicates a bug
in the conflictedness marking machinery or the hashing code, or both.
ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
thing, alluded to above: if this is a conflicted tagged structure or union,
and the target is the shared dict (i.e., the type we're being asked to emit
is not itself conflicted so can't just point straight at the conflicted
type), we instead synthesise a forward with the same name, emit it into the
shared dict, record it in cd_output_emission_conflicted_forwards so that we
don't re-emit it, and return it. This means that cycles that contain
conflicts do not cause the entire cycle to be replicated in every child: only
that piece of the cycle which takes you back as far as the closest tagged
struct/union needs to be replicated. This trick means that no part of the
deduplicator needs a cycle detector: every recursive walk can stop at tagged
structures.
[ctf_dedup_emit_struct_members]
The final stage of emission is to walk over all structures with members
that need emission and emit all of them. Every type has been emitted at
this stage, so emission cannot fail.
[ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
Finally, we update the input -> output type ID mappings used by the ctf-link
machinery to update all the other sections. This is surprisingly expensive
and may be replaced with a scheme which lets the ctf-link machinery extract
the needed info directly from the deduplicator. */
/* Possible future optimizations are flagged with 'optimization opportunity'
below. */
/* Global optimization opportunity: a GC pass, eliminating types with no direct
or indirect citations from the other sections in the dictionary. */
/* Internal flag values for ctf_dedup_hash_type. */
/* Child call: consider forwardable types equivalent to forwards or stubs below
this point. */
#define CTF_DEDUP_HASH_INTERNAL_CHILD 0x01
/* Transform references to single ctf_id_ts in passed-in inputs into a number
that will fit in a uint64_t. Needs rethinking if CTF_MAX_TYPE is boosted.
On 32-bit platforms, we pack things together differently: see the note
above. */
#if UINTPTR_MAX < UINT64_MAX
# define IDS_NEED_ALLOCATION 1
# define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
# define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
# define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
#else
# define CTF_DEDUP_GID(fp, input, type) \
(void *) (((uint64_t) input) << 32 | (type))
# define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
# define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
#endif
#ifdef IDS_NEED_ALLOCATION
/* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
into the pool. It is notably less efficient than the 64-bit direct storage
approach, but with a smaller key, this is all we can do. */
static void *
id_to_packed_id (ctf_dict_t *fp, int input_num, ctf_id_t type)
{
const void *lookup;
ctf_type_id_key_t *dynkey = NULL;
ctf_type_id_key_t key = { input_num, type };
if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
&key, &lookup, NULL))
{
if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
goto oom;
memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));
if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_dict_t, dynkey, NULL) < 0)
goto oom;
ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
dynkey, &lookup, NULL);
}
/* We use a raw assert() here because there isn't really a way to get any sort
of error back from this routine without vastly complicating things for the
much more common case of !IDS_NEED_ALLOCATION. */
assert (lookup);
return (void *) lookup;
oom:
free (dynkey);
ctf_set_errno (fp, ENOMEM);
return NULL;
}
static int
packed_id_to_input (const void *id)
{
const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
return key->ctii_input_num;
}
static ctf_id_t
packed_id_to_type (const void *id)
{
const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
return key->ctii_type;
}
#endif
/* Make an element in a dynhash-of-dynsets, or return it if already present. */
static ctf_dynset_t *
make_set_element (ctf_dynhash_t *set, const void *key)
{
ctf_dynset_t *element;
if ((element = ctf_dynhash_lookup (set, key)) == NULL)
{
if ((element = ctf_dynset_create (htab_hash_string,
htab_eq_string,
NULL)) == NULL)
return NULL;
if (ctf_dynhash_insert (set, (void *) key, element) < 0)
{
ctf_dynset_destroy (element);
return NULL;
}
}
return element;
}
/* Initialize the dedup atoms table. */
int
ctf_dedup_atoms_init (ctf_dict_t *fp)
{
if (fp->ctf_dedup_atoms)
return 0;
if (!fp->ctf_dedup_atoms_alloc)
{
if ((fp->ctf_dedup_atoms_alloc
= ctf_dynset_create (htab_hash_string, htab_eq_string,
free)) == NULL)
return ctf_set_errno (fp, ENOMEM);
}
fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
return 0;
}
/* Intern things in the dedup atoms table. */
static const char *
intern (ctf_dict_t *fp, char *atom)
{
const void *foo;
if (atom == NULL)
return NULL;
if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
{
if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
{
ctf_set_errno (fp, ENOMEM);
return NULL;
}
foo = atom;
}
else
free (atom);
return (const char *) foo;
}
/* Add an indication of the namespace to a type name in a way that is not valid
for C identifiers. Used to maintain hashes of type names to other things
while allowing for the four C namespaces (normal, struct, union, enum).
Return a pointer into the cd_decorated_names atoms table. */
static const char *
ctf_decorate_type_name (ctf_dict_t *fp, const char *name, int kind)
{
ctf_dedup_t *d = &fp->ctf_dedup;
const char *ret;
const char *k;
char *p;
size_t i;
switch (kind)
{
case CTF_K_STRUCT:
k = "s ";
i = 0;
break;
case CTF_K_UNION:
k = "u ";
i = 1;
break;
case CTF_K_ENUM:
k = "e ";
i = 2;
break;
default:
k = "";
i = 3;
}
if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
{
char *str;
if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
goto oom;
p = stpcpy (str, k);
strcpy (p, name);
ret = intern (fp, str);
if (!ret)
goto oom;
if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
goto oom;
}
return ret;
oom:
ctf_set_errno (fp, ENOMEM);
return NULL;
}
/* Hash a type, possibly debugging-dumping something about it as well. */
static inline void
ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
const char *description _libctf_unused_,
unsigned long depth _libctf_unused_)
{
ctf_sha1_add (sha1, buf, len);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_sha1_t tmp;
char tmp_hval[CTF_SHA1_SIZE];
tmp = *sha1;
ctf_sha1_fini (&tmp, tmp_hval);
ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
tmp_hval);
#endif
}
static const char *
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
ctf_dict_t **inputs, int input_num,
ctf_id_t type, int flags, unsigned long depth,
int (*populate_fun) (ctf_dict_t *fp,
ctf_dict_t *input,
ctf_dict_t **inputs,
int input_num,
ctf_id_t type,
void *id,
const char *decorated_name,
const char *hash));
/* Determine whether this type is being hashed as a stub (in which case it is
unsafe to cache it). */
static int
ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
{
/* We can cache all types unless we are recursing to children and are hashing
in a tagged struct, union or forward, all of which are replaced with their
decorated name as a stub and will have different hash values when hashed at
the top level. */
return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
&& (kind == CTF_K_STRUCT || kind == CTF_K_UNION
|| (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
|| fwdkind == CTF_K_UNION))));
}
/* Populate struct_origin if need be (not already populated, or populated with
a different origin), in which case it must go to -1, "shared".)
Only called for forwards or forwardable types with names, when the link mode
is CTF_LINK_SHARE_DUPLICATED. */
static int
ctf_dedup_record_origin (ctf_dict_t *fp, int input_num, const char *decorated,
void *id)
{
ctf_dedup_t *d = &fp->ctf_dedup;
void *origin;
int populate_origin = 0;
if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
{
if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
&& CTF_DEDUP_GID_TO_INPUT (origin) != -1)
{
populate_origin = 1;
origin = CTF_DEDUP_GID (fp, -1, -1);
}
}
else
{
populate_origin = 1;
origin = id;
}
if (populate_origin)
if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
return ctf_set_errno (fp, errno);
return 0;
}
/* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
calls, recursively). */
static const char *
ctf_dedup_rhash_type (ctf_dict_t *fp, ctf_dict_t *input, ctf_dict_t **inputs,
int input_num, ctf_id_t type, void *type_id,
const ctf_type_t *tp, const char *name,
const char *decorated, int kind, int flags,
unsigned long depth,
int (*populate_fun) (ctf_dict_t *fp,
ctf_dict_t *input,
ctf_dict_t **inputs,
int input_num,
ctf_id_t type,
void *id,
const char *decorated_name,
const char *hash))
{
ctf_dedup_t *d = &fp->ctf_dedup;
ctf_next_t *i = NULL;
ctf_sha1_t hash;
ctf_id_t child_type;
char hashbuf[CTF_SHA1_SIZE];
const char *hval = NULL;
const char *whaterr;
int err = 0;
const char *citer = NULL;
ctf_dynset_t *citers = NULL;
/* Add a citer to the citers set. */
#define ADD_CITER(citers, hval) \
do \
{ \
whaterr = N_("error updating citers"); \
if (!citers) \
if ((citers = ctf_dynset_create (htab_hash_string, \
htab_eq_string, \
NULL)) == NULL) \
goto oom; \
if (ctf_dynset_cinsert (citers, hval) < 0) \
goto oom; \
} \
while (0)
/* If this is a named struct or union or a forward to one, and this is a child
traversal, treat this type as if it were a forward -- do not recurse to
children, ignore all content not already hashed in, and hash in the
decorated name of the type instead. */
if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
{
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
"stub with decorated name %s\n", decorated);
#endif
ctf_sha1_init (&hash);
ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
"decorated struct/union/forward name", depth);
ctf_sha1_fini (&hash, hashbuf);
if ((hval = intern (fp, strdup (hashbuf))) == NULL)
{
ctf_err_warn (fp, 0, 0, _("%s (%i): out of memory during forwarding-"
"stub hashing for type with GID %p"),
ctf_link_input_name (input), input_num, type_id);
return NULL; /* errno is set for us. */
}
/* In share-duplicated link mode, make sure the origin of this type is
recorded, even if this is a type in a parent dict which will not be
directly traversed. */
if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
&& ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
return NULL; /* errno is set for us. */
return hval;
}
/* Now ensure that subsequent recursive calls (but *not* the top-level call)
get this treatment. */
flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;
/* If this is a struct, union, or forward with a name, record the unique
originating input TU, if there is one. */
if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
&& ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
return NULL; /* errno is set for us. */
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
depth, input_num, type, kind, name ? name : "");
#endif
/* Some type kinds don't have names: the API provides no way to set the name,
so the type the deduplicator outputs will be nameless even if the input
somehow has a name, and the name should not be mixed into the hash. */
switch (kind)
{
case CTF_K_POINTER:
case CTF_K_ARRAY:
case CTF_K_FUNCTION:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
case CTF_K_SLICE:
name = NULL;
}
/* Mix in invariant stuff, transforming the type kind if needed. Note that
the vlen is *not* hashed in: the actual variable-length info is hashed in
instead, piecewise. The vlen is not part of the type, only the
variable-length data is: identical types with distinct vlens are quite
possible. Equally, we do not want to hash in the isroot flag: both the
compiler and the deduplicator set the nonroot flag to indicate clashes with
*other types in the same TU* with the same name: so two types can easily
have distinct nonroot flags, yet be exactly the same type.*/
ctf_sha1_init (&hash);
if (name)
ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);
/* Hash content of this type. */
switch (kind)
{
case CTF_K_UNKNOWN:
/* No extra state. */
break;
case CTF_K_FORWARD:
/* Add the forwarded kind, stored in the ctt_type. */
ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
"forwarded kind", depth);
break;
case CTF_K_INTEGER:
case CTF_K_FLOAT:
{
ctf_encoding_t ep;
memset (&ep, 0, sizeof (ctf_encoding_t));
ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
depth);
if (ctf_type_encoding (input, type, &ep) < 0)
{
whaterr = N_("error getting encoding");
goto input_err;
}
ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
depth);
break;
}
/* Types that reference other types. */
case CTF_K_TYPEDEF:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
case CTF_K_POINTER:
/* Hash the referenced type, if not already hashed, and mix it in. */
child_type = ctf_type_reference (input, type);
if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num, child_type,
flags, depth, populate_fun)) == NULL)
{
whaterr = N_("error doing referenced type hashing");
goto err;
}
ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
depth);
citer = hval;
break;
/* The slices of two types hash identically only if the type they overlay
also has the same encoding. This is not ideal, but in practice will work
well enough. We work directly rather than using the CTF API because
we do not want the slice's normal automatically-shine-through
semantics to kick in here. */
case CTF_K_SLICE:
{
const ctf_slice_t *slice;
const ctf_dtdef_t *dtd;
ssize_t size;
ssize_t increment;
child_type = ctf_type_reference (input, type);
ctf_get_ctt_size (input, tp, &size, &increment);
ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);
if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
child_type, flags, depth,
populate_fun)) == NULL)
{
whaterr = N_("error doing slice-referenced type hashing");
goto err;
}
ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
depth);
citer = hval;
if ((dtd = ctf_dynamic_type (input, type)) != NULL)
slice = (ctf_slice_t *) dtd->dtd_vlen;
else
slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
ctf_dedup_sha1_add (&hash, &slice->cts_offset,
sizeof (slice->cts_offset), "slice offset", depth);
ctf_dedup_sha1_add (&hash, &slice->cts_bits,
sizeof (slice->cts_bits), "slice bits", depth);
break;
}
case CTF_K_ARRAY:
{
ctf_arinfo_t ar;
if (ctf_array_info (input, type, &ar) < 0)
{
whaterr = N_("error getting array info");
goto input_err;
}
if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
ar.ctr_contents, flags, depth,
populate_fun)) == NULL)
{
whaterr = N_("error doing array contents type hashing");
goto err;
}
ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
depth);
ADD_CITER (citers, hval);
if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
ar.ctr_index, flags, depth,
populate_fun)) == NULL)
{
whaterr = N_("error doing array index type hashing");
goto err;
}
ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
depth);
ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
"element count", depth);
ADD_CITER (citers, hval);
break;
}
case CTF_K_FUNCTION:
{
ctf_funcinfo_t fi;
ctf_id_t *args;
uint32_t j;
if (ctf_func_type_info (input, type, &fi) < 0)
{
whaterr = N_("error getting func type info");
goto input_err;
}
if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
fi.ctc_return, flags, depth,
populate_fun)) == NULL)
{
whaterr = N_("error getting func return type");
goto err;
}
ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
depth);
ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
"func argc", depth);
ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
"func flags", depth);
ADD_CITER (citers, hval);
if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
{
err = ENOMEM;
whaterr = N_("error doing memory allocation");
goto err;
}
if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
{
free (args);
whaterr = N_("error getting func arg type");
goto input_err;
}
for (j = 0; j < fi.ctc_argc; j++)
{
if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
args[j], flags, depth,
populate_fun)) == NULL)
{
free (args);
whaterr = N_("error doing func arg type hashing");
goto err;
}
ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
depth);
ADD_CITER (citers, hval);
}
free (args);
break;
}
case CTF_K_ENUM:
{
int val;
const char *ename;
ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
"enum size", depth);
while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
{
ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
depth);
ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
}
if (ctf_errno (input) != ECTF_NEXT_END)
{
whaterr = N_("error doing enum member iteration");
goto input_err;
}
break;
}
/* Top-level only. */
case CTF_K_STRUCT:
case CTF_K_UNION:
{
ssize_t offset;
const char *mname;
ctf_id_t membtype;
ssize_t size;
ctf_get_ctt_size (input, tp, &size, NULL);
ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
depth);
while ((offset = ctf_member_next (input, type, &i, &mname, &membtype,
0)) >= 0)
{
if (mname == NULL)
mname = "";
ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
"member name", depth);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
#endif
if ((hval = ctf_dedup_hash_type (fp, input, inputs, input_num,
membtype, flags, depth,
populate_fun)) == NULL)
{
whaterr = N_("error doing struct/union member type hashing");
goto iterr;
}
ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
depth);
ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
depth);
ADD_CITER (citers, hval);
}
if (ctf_errno (input) != ECTF_NEXT_END)
{
whaterr = N_("error doing struct/union member iteration");
goto input_err;
}
break;
}
default:
whaterr = N_("error: unknown type kind");
goto err;
}
ctf_sha1_fini (&hash, hashbuf);
if ((hval = intern (fp, strdup (hashbuf))) == NULL)
{
whaterr = N_("cannot intern hash");
goto oom;
}
/* Populate the citers for this type's subtypes, now the hash for the type
itself is known. */
whaterr = N_("error tracking citers");
if (citer)
{
ctf_dynset_t *citer_hashes;
if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
goto oom;
if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
goto oom;
}
else if (citers)
{
const void *k;
while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
{
ctf_dynset_t *citer_hashes;
citer = (const char *) k;
if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
goto oom;
if (ctf_dynset_exists (citer_hashes, hval, NULL))
continue;
if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
goto oom;
}
if (err != ECTF_NEXT_END)
goto err;
ctf_dynset_destroy (citers);
}
return hval;
iterr:
ctf_next_destroy (i);
input_err:
err = ctf_errno (input);
err:
ctf_sha1_fini (&hash, NULL);
ctf_err_warn (fp, 0, err, _("%s (%i): %s: during type hashing for type %lx, "
"kind %i"), ctf_link_input_name (input),
input_num, gettext (whaterr), type, kind);
return NULL;
oom:
ctf_set_errno (fp, errno);
ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
"kind %i"), ctf_link_input_name (input),
input_num, gettext (whaterr), type, kind);
return NULL;
}
/* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
state is stored. INPUT_NUM is the number of this input in the set of inputs.
Record its hash in FP's cd_type_hashes once it is known.
(The flags argument currently accepts only the flag
CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
struct/union hashing in recursive traversals below the TYPE.)
We use the CTF API rather than direct access wherever possible, because types
that appear identical through the API should be considered identical, with
one exception: slices should only be considered identical to other slices,
not to the corresponding unsliced type.
The POPULATE_FUN is a mandatory hook that populates other mappings with each
type we see (excepting types that are recursively hashed as stubs). The
caller should not rely on the order of calls to this hook, though it will be
called at least once for every non-stub reference to every type.
Returns a hash value (an atom), or NULL on error. */
static const char *
ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
ctf_dict_t **inputs, int input_num, ctf_id_t type,
int flags, unsigned long depth,
int (*populate_fun) (ctf_dict_t *fp,
ctf_dict_t *input,
ctf_dict_t **inputs,
int input_num,
ctf_id_t type,
void *id,
const char *decorated_name,
const char *hash))
{
ctf_dedup_t *d = &fp->ctf_dedup;
const ctf_type_t *tp;
void *type_id;
const char *hval = NULL;
const char *name;
const char *whaterr;
const char *decorated = NULL;
uint32_t kind, fwdkind;
depth++;
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
#endif
/* The unimplemented type doesn't really exist, but must be noted in parent
hashes: so it gets a fixed, arbitrary hash. */
if (type == 0)
return "00000000000000000000";
/* Possible optimization: if the input type is in the parent type space, just
copy recursively-cited hashes from the parent's types into the output
mapping rather than rehashing them. */
type_id = CTF_DEDUP_GID (fp, input_num, type);
if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
{
ctf_set_errno (fp, ctf_errno (input));
ctf_err_warn (fp, 0, 0, _("%s (%i): lookup failure for type %lx: "
"flags %x"), ctf_link_input_name (input),
input_num, type, flags);
return NULL; /* errno is set for us. */
}
kind = LCTF_INFO_KIND (input, tp->ctt_info);
name = ctf_strraw (input, tp->ctt_name);
if (tp->ctt_name == 0 || !name || name[0] == '\0')
name = NULL;
/* Decorate the name appropriately for the namespace it appears in: forwards
appear in the namespace of their referent. */
fwdkind = kind;
if (name)
{
if (kind == CTF_K_FORWARD)
fwdkind = tp->ctt_type;
if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
return NULL; /* errno is set for us. */
}
/* If not hashing a stub, we can rely on various sorts of caches.
Optimization opportunity: we may be able to avoid calling the populate_fun
sometimes here. */
if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
{
if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
{
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
type, hval);
#endif
populate_fun (fp, input, inputs, input_num, type, type_id,
decorated, hval);
return hval;
}
}
/* We have never seen this type before, and must figure out its hash and the
hashes of the types it cites.
Hash this type, and call ourselves recursively. (The hashing part is
optional, and is disabled if overidden_hval is set.) */
if ((hval = ctf_dedup_rhash_type (fp, input, inputs, input_num,
type, type_id, tp, name, decorated,
kind, flags, depth, populate_fun)) == NULL)
return NULL; /* errno is set for us. */
/* The hash of this type is now known: record it unless caching is unsafe
because the hash value will change later. This will be the final storage
of this type's hash, so we call the population function on it. */
if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
{
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
type_id, name ? name : "", hval);
#endif
if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
{
whaterr = N_("error hash caching");
goto oom;
}
if (populate_fun (fp, input, inputs, input_num, type, type_id,
decorated, hval) < 0)
{
whaterr = N_("error calling population function");
goto err; /* errno is set for us. */
}
}
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
input_num, type, hval);
#endif
return hval;
oom:
ctf_set_errno (fp, errno);
err:
ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing, "
"type %lx, kind %i"),
ctf_link_input_name (input), input_num,
gettext (whaterr), type, kind);
return NULL;
}
static int
ctf_dedup_count_name (ctf_dict_t *fp, const char *name, void *id);
/* Populate a number of useful mappings not directly used by the hashing
machinery: the output mapping, the cd_name_counts mapping from name -> hash
-> count of hashval deduplication state for a given hashed type, and the
cd_output_first_tu mapping. */
static int
ctf_dedup_populate_mappings (ctf_dict_t *fp, ctf_dict_t *input _libctf_unused_,
ctf_dict_t **inputs _libctf_unused_,
int input_num _libctf_unused_,
ctf_id_t type _libctf_unused_, void *id,
const char *decorated_name,
const char *hval)
{
ctf_dedup_t *d = &fp->ctf_dedup;
ctf_dynset_t *type_ids;
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
hval, decorated_name ? decorated_name : "(unnamed)",
input_num, type, ctf_link_input_name (input));
const char *orig_hval;
/* Make sure we never map a single GID to multiple hash values. */
if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
{
/* We can rely on pointer identity here, since all hashes are
interned. */
if (!ctf_assert (fp, orig_hval == hval))
return -1;
}
else
if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
return ctf_set_errno (fp, errno);
#endif
/* Record the type in the output mapping: if this is the first time this type
has been seen, also record it in the cd_output_first_gid. Because we
traverse types in TU order and we do not merge types after the hashing
phase, this will be the lowest TU this type ever appears in. */
if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
hval)) == NULL)
{
if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
return ctf_set_errno (fp, errno);
if ((type_ids = ctf_dynset_create (htab_hash_pointer,
htab_eq_pointer,
NULL)) == NULL)
return ctf_set_errno (fp, errno);
if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
type_ids) < 0)
{
ctf_dynset_destroy (type_ids);
return ctf_set_errno (fp, errno);
}
}
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
{
/* Verify that all types with this hash are of the same kind, and that the
first TU a type was seen in never falls. */
int err;
const void *one_id;
ctf_next_t *i = NULL;
int orig_kind = ctf_type_kind_unsliced (input, type);
int orig_first_tu;
orig_first_tu = CTF_DEDUP_GID_TO_INPUT
(ctf_dynhash_lookup (d->cd_output_first_gid, hval));
if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
return -1;
while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
{
ctf_dict_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
{
ctf_err_warn (fp, 1, 0, "added wrong kind to output mapping "
"for hash %s named %s: %p/%lx from %s is "
"kind %i, but newly-added %p/%lx from %s is "
"kind %i", hval,
decorated_name ? decorated_name : "(unnamed)",
(void *) foo, bar,
ctf_link_input_name (foo),
ctf_type_kind_unsliced (foo, bar),
(void *) input, type,
ctf_link_input_name (input), orig_kind);
if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
== orig_kind))
return -1;
}
}
if (err != ECTF_NEXT_END)
return ctf_set_errno (fp, err);
}
#endif
/* This function will be repeatedly called for the same types many times:
don't waste time reinserting the same keys in that case. */
if (!ctf_dynset_exists (type_ids, id, NULL)
&& ctf_dynset_insert (type_ids, id) < 0)
return ctf_set_errno (fp, errno);
if (ctf_type_kind_unsliced (input, type) == CTF_K_ENUM)
{
ctf_next_t *i = NULL;
const char *enumerator;
while ((enumerator = ctf_enum_next (input, type, &i, NULL)) != NULL)
{
if (ctf_dedup_count_name (fp, enumerator, id) < 0)
{
ctf_next_destroy (i);
return -1;
}
}
if (ctf_errno (input) != ECTF_NEXT_END)
return ctf_set_errno (fp, ctf_errno (input));
}
/* The rest only needs to happen for types with names. */
if (!decorated_name)
return 0;
if (ctf_dedup_count_name (fp, decorated_name, id) < 0)
return -1; /* errno is set for us. */
return 0;
}
static int
ctf_dedup_count_name (ctf_dict_t *fp, const char *name, void *id)
{
ctf_dedup_t *d = &fp->ctf_dedup;
ctf_dynhash_t *name_counts;
long int count;
const char *hval;
/* Count the number of occurrences of the hash value for this GID. */
hval = ctf_dynhash_lookup (d->cd_type_hashes, id);
/* Mapping from name -> hash(hashval, count) not already present? */
if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts, name)) == NULL)
{
if ((name_counts = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL)) == NULL)
return ctf_set_errno (fp, errno);
if (ctf_dynhash_cinsert (d->cd_name_counts, name, name_counts) < 0)
{
ctf_dynhash_destroy (name_counts);
return ctf_set_errno (fp, errno);
}
}
/* This will, conveniently, return NULL (i.e. 0) for a new entry. */
count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);
if (ctf_dynhash_cinsert (name_counts, hval,
(const void *) (uintptr_t) (count + 1)) < 0)
return ctf_set_errno (fp, errno);
return 0;
}
/* Mark a single hash as corresponding to a conflicting type. Mark all types
that cite it as conflicting as well, terminating the recursive walk only when
types that are already conflicted or types do not cite other types are seen.
(Tagged structures and unions do not appear in the cd_citers graph, so the
walk also terminates there, since any reference to a conflicting structure is
just going to reference an unconflicting forward instead: see
ctf_dedup_maybe_synthesize_forward.) */
static int
ctf_dedup_mark_conflicting_hash (ctf_dict_t *fp, const char *hval)
{
ctf_dedup_t *d = &fp->ctf_dedup;
ctf_next_t *i = NULL;
int err;
const void *k;
ctf_dynset_t *citers;
/* Mark conflicted if not already so marked. */
if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
return 0;
ctf_dprintf ("Marking %s as conflicted\n", hval);
if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
{
ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
return ctf_set_errno (fp, errno);
}
/* If any types cite this type, mark them conflicted too. */
if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
return 0;
while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
{
const char *hv = (const char *) k;
if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
continue;
if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
{
ctf_next_destroy (i);
return -1; /* errno is set for us. */
}
}
if (err != ECTF_NEXT_END)
return ctf_set_errno (fp, err);
return 0;
}
/* Look up a type kind from the output mapping, given a type hash value. */
static int
ctf_dedup_hash_kind (ctf_dict_t *fp, ctf_dict_t **inputs, const char *hash)
{
ctf_dedup_t *d = &fp->ctf_dedup;
void *id;
ctf_dynset_t *type_ids;
/* Precondition: the output mapping is populated. */
if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
return -1;
/* Look up some GID from the output hash for this type. (They are all
identical, so we can pick any). Don't assert if someone calls this
function wrongly, but do assert if the output mapping knows about the hash,
but has nothing associated with it. */
type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
if (!type_ids)
{
ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
return ctf_set_errno (fp, ECTF_INTERNAL);
}
id = ctf_dynset_lookup_any (type_ids);
if (!ctf_assert (fp, id))
return -1;
return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
CTF_DEDUP_GID_TO_TYPE (id));
}
/* Used to keep a count of types: i.e. distinct type hash values. */
typedef struct ctf_dedup_type_counter
{
ctf_dict_t *fp;
ctf_dict_t **inputs;
int num_non_forwards;
} ctf_dedup_type_counter_t;
/* Add to the type counter for one name entry from the cd_name_counts. */
static int
ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
{
const char *hval = (const char *) key_;
int kind;
ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;
kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);
/* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
smuggle errors out of here. */
if (kind != CTF_K_FORWARD)
{
arg->num_non_forwards++;
ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
hval, kind, arg->num_non_forwards);
}
/* We only need to know if there is more than one non-forward (an ambiguous
type): don't waste time iterating any more than needed to figure that
out. */
if (arg->num_non_forwards > 1)
return 1;
return 0;
}
/* Detect name ambiguity and mark ambiguous names as conflicting, other than the
most common. */
static int
ctf_dedup_detect_name_ambiguity (ctf_dict_t *fp, ctf_dict_t **inputs)
{
ctf_dedup_t *d = &fp->ctf_dedup;
ctf_next_t *i = NULL;
void *k;
void *v;
int err;
const char *whaterr;
/* Go through cd_name_counts for all CTF namespaces in turn. */
while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
{
const char *decorated = (const char *) k;
ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
ctf_next_t *j = NULL;
/* If this is a forwardable kind or a forward (which we can tell without
consulting the type because its decorated name has a space as its
second character: see ctf_decorate_type_name), we are only interested
in whether this name has many hashes associated with it: any such name
is necessarily ambiguous, and types with that name are conflicting.
Once we know whether this is true, we can skip to the next name: so use
ctf_dynhash_iter_find for efficiency. */
if (decorated[0] != '\0' && decorated[1] == ' ')
{
ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
ctf_dynhash_iter_find (name_counts, ctf_dedup_count_types, &counters);
/* Check for assertion failure and pass it up. */
if (ctf_errno (fp) == ECTF_INTERNAL)
goto assert_err;
if (counters.num_non_forwards > 1)
{
const void *hval_;
while ((err = ctf_dynhash_cnext (name_counts, &j, &hval_, NULL)) == 0)
{
const char *hval = (const char *) hval_;
ctf_dynset_t *type_ids;
void *id;
int kind;
/* Dig through the types in this hash to find the non-forwards
and mark them ambiguous. */
type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
/* Nonexistent? Must be a forward with no referent. */
if (!type_ids)
continue;
id = ctf_dynset_lookup_any (type_ids);
kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
CTF_DEDUP_GID_TO_TYPE (id));
if (kind != CTF_K_FORWARD)
{
ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
"of many non-forward GIDs for %s\n", id,
hval, (char *) k);
ctf_dedup_mark_conflicting_hash (fp, hval);
}
}
if (err != ECTF_NEXT_END)
{
whaterr = N_("error marking conflicting structs/unions");
goto iterr;
}
}
}
else
{
/* This is an ordinary type. Find the most common type with this
name, and mark it unconflicting: all others are conflicting. (We
cannot do this sort of popularity contest with forwardable types
because any forwards to that type would be immediately unified with
the most-popular type on insertion, and we want conflicting structs
et al to have all forwards left intact, so the user is notified
that this type is conflicting. TODO: improve this in future by
setting such forwards non-root-visible.)
If multiple distinct types are "most common", pick the one that
appears first on the link line, and within that, the one with the
lowest type ID. (See sort_output_mapping.) */
const void *key;
const void *count;
const char *hval;
long max_hcount = -1;
void *max_gid = NULL;
const char *max_hval = NULL;
if (ctf_dynhash_elements (name_counts) <= 1)
continue;
/* First find the most common. */
while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
{
hval = (const char *) key;
if ((long int) (uintptr_t) count > max_hcount)
{
max_hcount = (long int) (uintptr_t) count;
max_hval = hval;
max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
}
else if ((long int) (uintptr_t) count == max_hcount)
{
void *gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
if (CTF_DEDUP_GID_TO_INPUT(gid) < CTF_DEDUP_GID_TO_INPUT(max_gid)
|| (CTF_DEDUP_GID_TO_INPUT(gid) == CTF_DEDUP_GID_TO_INPUT(max_gid)
&& CTF_DEDUP_GID_TO_TYPE(gid) < CTF_DEDUP_GID_TO_TYPE(max_gid)))
{
max_hval = hval;
max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
}
}
}
if (err != ECTF_NEXT_END)
{
whaterr = N_("error finding commonest conflicting type");
goto iterr;
}
/* Mark all the others as conflicting. */
while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
{
hval = (const char *) key;
if (strcmp (max_hval, hval) == 0)
continue;
ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
hval, (const char *) k);
if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
{
whaterr = N_("error marking hashes as conflicting");
goto err;
}
}
if (err != ECTF_NEXT_END)
{
whaterr = N_("marking uncommon conflicting types");
goto iterr;
}
}
}
if (err != ECTF_NEXT_END)
{
whaterr = N_("scanning for ambiguous names");
goto iterr;
}
return 0;
err:
ctf_next_destroy (i);
ctf_err_warn (fp, 0, 0, "%s", gettext (whaterr));
return -1; /* errno is set for us. */
iterr:
ctf_err_warn (fp, 0, err, _("iteration failed: %s"), gettext (whaterr));
return ctf_set_errno (fp, err);
assert_err:
ctf_next_destroy (i);
return -1; /* errno is set for us. */
}
/* Initialize the deduplication machinery. */
static int
ctf_dedup_init (ctf_dict_t *fp)
{
ctf_dedup_t *d = &fp->ctf_dedup;
size_t i;
if (ctf_dedup_atoms_init (fp) < 0)
goto oom;
#if IDS_NEED_ALLOCATION
if ((d->cd_id_to_dict_t = ctf_dynhash_create (ctf_hash_type_id_key,
ctf_hash_eq_type_id_key,
free, NULL)) == NULL)
goto oom;
#endif
for (i = 0; i < 4; i++)
{
if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL)) == NULL)
goto oom;
}
if ((d->cd_name_counts
= ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string, NULL,
(ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
goto oom;
if ((d->cd_type_hashes
= ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL)) == NULL)
goto oom;
if ((d->cd_struct_origin
= ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL)) == NULL)
goto oom;
if ((d->cd_citers
= ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string, NULL,
(ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
goto oom;
if ((d->cd_output_mapping
= ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string, NULL,
(ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
goto oom;
if ((d->cd_output_first_gid
= ctf_dynhash_create (ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL)) == NULL)
goto oom;
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
if ((d->cd_output_mapping_guard
= ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer, NULL, NULL)) == NULL)
goto oom;
#endif
if ((d->cd_input_nums
= ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL)) == NULL)
goto oom;
if ((d->cd_emission_struct_members
= ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL)) == NULL)
goto oom;
if ((d->cd_conflicting_types
= ctf_dynset_create (htab_hash_string,
htab_eq_string, NULL)) == NULL)
goto oom;
return 0;
oom:
ctf_err_warn (fp, 0, ENOMEM, _("ctf_dedup_init: cannot initialize: "
"out of memory"));
return ctf_set_errno (fp, ENOMEM);
}
/* No ctf_dedup calls are allowed after this call other than starting a new
deduplication via ctf_dedup (not even ctf_dedup_type_mapping lookups). */
void
ctf_dedup_fini (ctf_dict_t *fp, ctf_dict_t **outputs, uint32_t noutputs)
{
ctf_dedup_t *d = &fp->ctf_dedup;
size_t i;
/* ctf_dedup_atoms is kept across links. */
#if IDS_NEED_ALLOCATION
ctf_dynhash_destroy (d->cd_id_to_dict_t);
#endif
for (i = 0; i < 4; i++)
ctf_dynhash_destroy (d->cd_decorated_names[i]);
ctf_dynhash_destroy (d->cd_name_counts);
ctf_dynhash_destroy (d->cd_type_hashes);
ctf_dynhash_destroy (d->cd_struct_origin);
ctf_dynhash_destroy (d->cd_citers);
ctf_dynhash_destroy (d->cd_output_mapping);
ctf_dynhash_destroy (d->cd_output_first_gid);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dynhash_destroy (d->cd_output_mapping_guard);
#endif
ctf_dynhash_destroy (d->cd_input_nums);
ctf_dynhash_destroy (d->cd_emission_struct_members);
ctf_dynset_destroy (d->cd_conflicting_types);
/* Free the per-output state. */
if (outputs)
{
for (i = 0; i < noutputs; i++)
{
ctf_dedup_t *od = &outputs[i]->ctf_dedup;
ctf_dynhash_destroy (od->cd_output_emission_hashes);
ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
ctf_dict_close (od->cd_output);
}
}
memset (d, 0, sizeof (ctf_dedup_t));
}
/* Return 1 if this type is cited by multiple input dictionaries. */
static int
ctf_dedup_multiple_input_dicts (ctf_dict_t *output, ctf_dict_t **inputs,
const char *hval)
{
ctf_dedup_t *d = &output->ctf_dedup;
ctf_dynset_t *type_ids;
ctf_next_t *i = NULL;
void *id;
ctf_dict_t *found = NULL, *relative_found = NULL;
const char *type_id;
ctf_dict_t *input_fp;
ctf_id_t input_id;
const char *name;
const char *decorated;
int fwdkind;
int multiple = 0;
int err;
type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
if (!ctf_assert (output, type_ids))
return -1;
/* Scan across the IDs until we find proof that two disjoint dictionaries
are referenced. Exit as soon as possible. Optimization opportunity, but
possibly not worth it, given that this is only executed in
CTF_LINK_SHARE_DUPLICATED mode. */
while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
{
ctf_dict_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
if (fp == found || fp == relative_found)
continue;
if (!found)
{
found = fp;
continue;
}
if (!relative_found
&& (fp->ctf_parent == found || found->ctf_parent == fp))
{
relative_found = fp;
continue;
}
multiple = 1;
ctf_next_destroy (i);
break;
}
if ((err != ECTF_NEXT_END) && (err != 0))
{
ctf_err_warn (output, 0, err, _("iteration error "
"propagating conflictedness"));
return ctf_set_errno (output, err);
}
if (multiple)
return multiple;
/* This type itself does not appear in multiple input dicts: how about another
related type with the same name (e.g. a forward if this is a struct,
etc). */
type_id = ctf_dynset_lookup_any (type_ids);
if (!ctf_assert (output, type_id))
return -1;
input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
name = ctf_type_name_raw (input_fp, input_id);
if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
&& name[0] != '\0')
{
const void *origin;
if ((decorated = ctf_decorate_type_name (output, name,
fwdkind)) == NULL)
return -1; /* errno is set for us. */
origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
multiple = 1;
}
return multiple;
}
/* Demote unconflicting types which reference only one input, or which reference
two inputs where one input is the parent of the other, into conflicting
types. Only used if the link mode is CTF_LINK_SHARE_DUPLICATED. */
static int
ctf_dedup_conflictify_unshared (ctf_dict_t *output, ctf_dict_t **inputs)
{
ctf_dedup_t *d = &output->ctf_dedup;
ctf_next_t *i = NULL;
int err;
const void *k;
ctf_dynset_t *to_mark = NULL;
if ((to_mark = ctf_dynset_create (htab_hash_string, htab_eq_string,
NULL)) == NULL)
goto err_no;
while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
{
const char *hval = (const char *) k;
int conflicting;
/* Types referenced by only one dict, with no type appearing under that
name elsewhere, are marked conflicting. */
conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);
if (conflicting < 0)
goto err; /* errno is set for us. */
if (conflicting)
if (ctf_dynset_cinsert (to_mark, hval) < 0)
goto err;
}
if (err != ECTF_NEXT_END)
goto iterr;
while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
{
const char *hval = (const char *) k;
if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
goto err;
}
if (err != ECTF_NEXT_END)
goto iterr;
ctf_dynset_destroy (to_mark);
return 0;
err_no:
ctf_set_errno (output, errno);
err:
err = ctf_errno (output);
ctf_next_destroy (i);
iterr:
ctf_dynset_destroy (to_mark);
ctf_err_warn (output, 0, err, _("conflictifying unshared types"));
return ctf_set_errno (output, err);
}
/* The core deduplicator. Populate cd_output_mapping in the output ctf_dedup with a
mapping of all types that belong in this dictionary and where they come from, and
cd_conflicting_types with an indication of whether each type is conflicted or not.
OUTPUT is the top-level output: INPUTS is the array of input dicts; NINPUTS is the
size of that array.
If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
mapping: only one output will result.
Only deduplicates: does not emit the types into the output. Call
ctf_dedup_emit afterwards to do that. */
int
ctf_dedup (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
int cu_mapped)
{
ctf_dedup_t *d = &output->ctf_dedup;
size_t i;
ctf_next_t *it = NULL;
if (ctf_dedup_init (output) < 0)
return -1; /* errno is set for us. */
for (i = 0; i < ninputs; i++)
{
ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
if (ctf_dynhash_insert (d->cd_input_nums, inputs[i],
(void *) (uintptr_t) i) < 0)
{
ctf_set_errno (output, errno);
ctf_err_warn (output, 0, errno, _("ctf_dedup: cannot initialize: %s\n"),
ctf_errmsg (errno));
goto err;
}
}
/* Some flags do not apply when CU-mapping: this is not a duplicated link,
because there is only one output and we really don't want to end up marking
all nonconflicting but appears-only-once types as conflicting (which in the
CU-mapped link means we'd mark them all as non-root-visible!). */
d->cd_link_flags = output->ctf_link_flags;
if (cu_mapped)
d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);
/* Compute hash values for all types, recursively, treating child structures
and unions equivalent to forwards, and hashing in the name of the referent
of each such type into structures, unions, and non-opaque forwards.
Populate a mapping from decorated name (including an indication of
struct/union/enum namespace) to count of type hash values in
cd_name_counts, a mapping from and a mapping from hash values to input type
IDs in cd_output_mapping. */
ctf_dprintf ("Computing type hashes\n");
for (i = 0; i < ninputs; i++)
{
ctf_id_t id;
while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
{
if (ctf_dedup_hash_type (output, inputs[i], inputs,
i, id, 0, 0,
ctf_dedup_populate_mappings) == NULL)
goto err; /* errno is set for us. */
}
if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
{
ctf_set_errno (output, ctf_errno (inputs[i]));
ctf_err_warn (output, 0, 0, _("iteration failure "
"computing type hashes"));
goto err;
}
}
/* Go through the cd_name_counts name->hash->count mapping for all CTF
namespaces: any name with many hashes associated with it at this stage is
necessarily ambiguous. Mark all the hashes except the most common as
conflicting in the output. */
ctf_dprintf ("Detecting type name ambiguity\n");
if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
goto err; /* errno is set for us. */
/* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
types whose output mapping references only one input dict into a
conflicting type, so that they end up in the per-CU dictionaries. */
if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
{
ctf_dprintf ("Conflictifying unshared types\n");
if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
goto err; /* errno is set for us. */
}
return 0;
err:
ctf_dedup_fini (output, NULL, 0);
return -1;
}
static int
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
uint32_t ninputs, uint32_t *parents,
ctf_dynset_t *already_visited,
const char *hval,
int (*visit_fun) (const char *hval,
ctf_dict_t *output,
ctf_dict_t **inputs,
uint32_t ninputs,
uint32_t *parents,
int already_visited,
ctf_dict_t *input,
ctf_id_t type,
void *id,
int depth,
void *arg),
void *arg, unsigned long depth);
/* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
type and visits it. */
static int
ctf_dedup_rwalk_one_output_mapping (ctf_dict_t *output,
ctf_dict_t **inputs, uint32_t ninputs,
uint32_t *parents,
ctf_dynset_t *already_visited,
int visited, void *type_id,
const char *hval,
int (*visit_fun) (const char *hval,
ctf_dict_t *output,
ctf_dict_t **inputs,
uint32_t ninputs,
uint32_t *parents,
int already_visited,
ctf_dict_t *input,
ctf_id_t type,
void *id,
int depth,
void *arg),
void *arg, unsigned long depth)
{
ctf_dedup_t *d = &output->ctf_dedup;
ctf_dict_t *fp;
int input_num;
ctf_id_t type;
int ret;
const char *whaterr;
input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
fp = inputs[input_num];
type = CTF_DEDUP_GID_TO_TYPE (type_id);
ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
"kind %i\n", depth, hval, input_num, type, (void *) fp,
ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));
/* Get the single call we do if this type has already been visited out of the
way. */
if (visited)
return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
type, type_id, depth, arg);
/* This macro is really ugly, but the alternative is repeating this code many
times, which is worse. */
#define CTF_TYPE_WALK(type, errlabel, errmsg) \
do \
{ \
void *type_id; \
const char *hashval; \
int cited_type_input_num = input_num; \
\
if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
cited_type_input_num = parents[input_num]; \
\
type_id = CTF_DEDUP_GID (output, cited_type_input_num, type); \
\
if (type == 0) \
{ \
ctf_dprintf ("Walking: unimplemented type\n"); \
break; \
} \
\
ctf_dprintf ("Looking up ID %i/%lx in type hashes\n", \
cited_type_input_num, type); \
hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id); \
if (!ctf_assert (output, hashval)) \
{ \
whaterr = N_("error looking up ID in type hashes"); \
goto errlabel; \
} \
ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type, \
hashval); \
\
ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
already_visited, hashval, \
visit_fun, arg, depth); \
if (ret < 0) \
{ \
whaterr = errmsg; \
goto errlabel; \
} \
} \
while (0)
switch (ctf_type_kind_unsliced (fp, type))
{
case CTF_K_UNKNOWN:
case CTF_K_FORWARD:
case CTF_K_INTEGER:
case CTF_K_FLOAT:
case CTF_K_ENUM:
/* No types referenced. */
break;
case CTF_K_TYPEDEF:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
case CTF_K_POINTER:
case CTF_K_SLICE:
CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
N_("error during referenced type walk"));
break;
case CTF_K_ARRAY:
{
ctf_arinfo_t ar;
if (ctf_array_info (fp, type, &ar) < 0)
{
whaterr = N_("error during array info lookup");
goto err_msg;
}
CTF_TYPE_WALK (ar.ctr_contents, err,
N_("error during array contents type walk"));
CTF_TYPE_WALK (ar.ctr_index, err,
N_("error during array index type walk"));
break;
}
case CTF_K_FUNCTION:
{
ctf_funcinfo_t fi;
ctf_id_t *args;
uint32_t j;
if (ctf_func_type_info (fp, type, &fi) < 0)
{
whaterr = N_("error during func type info lookup");
goto err_msg;
}
CTF_TYPE_WALK (fi.ctc_return, err,
N_("error during func return type walk"));
if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
{
whaterr = N_("error doing memory allocation");
goto err_msg;
}
if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
{
whaterr = N_("error doing func arg type lookup");
free (args);
goto err_msg;
}
for (j = 0; j < fi.ctc_argc; j++)
CTF_TYPE_WALK (args[j], err_free_args,
N_("error during Func arg type walk"));
free (args);
break;
err_free_args:
free (args);
goto err;
}
case CTF_K_STRUCT:
case CTF_K_UNION:
/* We do not recursively traverse the members of structures: they are
emitted later, in a separate pass. */
break;
default:
whaterr = N_("CTF dict corruption: unknown type kind");
goto err_msg;
}
return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
type_id, depth, arg);
err_msg:
ctf_set_errno (output, ctf_errno (fp));
ctf_err_warn (output, 0, 0, _("%s in input file %s at type ID %lx"),
gettext (whaterr), ctf_link_input_name (fp), type);
err:
return -1;
}
/* Recursively traverse the output mapping, and do something with each type
visited, from leaves to root. VISIT_FUN, called as recursion unwinds,
returns a negative error code or zero. Type hashes may be visited more than
once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
types have already been visited. */
static int
ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
uint32_t ninputs, uint32_t *parents,
ctf_dynset_t *already_visited,
const char *hval,
int (*visit_fun) (const char *hval,
ctf_dict_t *output,
ctf_dict_t **inputs,
uint32_t ninputs,
uint32_t *parents,
int already_visited,
ctf_dict_t *input,
ctf_id_t type,
void *id,
int depth,
void *arg),
void *arg, unsigned long depth)
{
ctf_dedup_t *d = &output->ctf_dedup;
ctf_next_t *i = NULL;
int err;
int visited = 1;
ctf_dynset_t *type_ids;
void *id;
depth++;
type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
if (!type_ids)
{
ctf_err_warn (output, 0, ECTF_INTERNAL,
_("looked up type kind by nonexistent hash %s"), hval);
return ctf_set_errno (output, ECTF_INTERNAL);
}
/* Have we seen this type before? */
if (!ctf_dynset_exists (already_visited, hval, NULL))
{
/* Mark as already-visited immediately, to eliminate the possibility of
cycles: but remember we have not actually visited it yet for the
upcoming call to the visit_fun. (All our callers handle cycles
properly themselves, so we can just abort them aggressively as soon as
we find ourselves in one.) */
visited = 0;
if (ctf_dynset_cinsert (already_visited, hval) < 0)
{
ctf_err_warn (output, 0, ENOMEM,
_("out of memory tracking already-visited types"));
return ctf_set_errno (output, ENOMEM);
}
}
/* If this type is marked conflicted, traverse members and call
ctf_dedup_rwalk_one_output_mapping on all the unique ones: otherwise, just
pick a random one and use it. */
if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
{
id = ctf_dynset_lookup_any (type_ids);
if (!ctf_assert (output, id))
return -1;
return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
parents, already_visited,
visited, id, hval, visit_fun,
arg, depth);
}
while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
{
int ret;
ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
parents, already_visited,
visited, id, hval,
visit_fun, arg, depth);
if (ret < 0)
{
ctf_next_destroy (i);
return ret; /* errno is set for us. */
}
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (output, 0, err, _("cannot walk conflicted type"));
return ctf_set_errno (output, err);
}
return 0;
}
typedef struct ctf_sort_om_cb_arg
{
ctf_dict_t **inputs;
uint32_t ninputs;
ctf_dedup_t *d;
} ctf_sort_om_cb_arg_t;
/* Sort the output mapping into order: types first appearing in earlier inputs
first, parents preceding children: if types first appear in the same input,
sort those with earlier ctf_id_t's first. */
static int
sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
void *arg_)
{
ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
ctf_dedup_t *d = arg->d;
const char *one_hval = (const char *) one->hkv_key;
const char *two_hval = (const char *) two->hkv_key;
void *one_gid, *two_gid;
uint32_t one_ninput;
uint32_t two_ninput;
ctf_dict_t *one_fp;
ctf_dict_t *two_fp;
ctf_id_t one_type;
ctf_id_t two_type;
/* Inputs are always equal to themselves. */
if (one == two)
return 0;
one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);
one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);
one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);
/* It's kind of hard to smuggle an assertion failure out of here. */
assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);
one_fp = arg->inputs[one_ninput];
two_fp = arg->inputs[two_ninput];
/* Parents before children. */
if (!(one_fp->ctf_flags & LCTF_CHILD)
&& (two_fp->ctf_flags & LCTF_CHILD))
return -1;
else if ((one_fp->ctf_flags & LCTF_CHILD)
&& !(two_fp->ctf_flags & LCTF_CHILD))
return 1;
/* ninput order, types appearing in earlier TUs first. */
if (one_ninput < two_ninput)
return -1;
else if (two_ninput < one_ninput)
return 1;
/* Same TU. Earliest ctf_id_t first. They cannot be the same. */
assert (one_type != two_type);
if (one_type < two_type)
return -1;
else
return 1;
}
/* The public entry point to ctf_dedup_rwalk_output_mapping, above. */
static int
ctf_dedup_walk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
uint32_t ninputs, uint32_t *parents,
int (*visit_fun) (const char *hval,
ctf_dict_t *output,
ctf_dict_t **inputs,
uint32_t ninputs,
uint32_t *parents,
int already_visited,
ctf_dict_t *input,
ctf_id_t type,
void *id,
int depth,
void *arg),
void *arg)
{
ctf_dynset_t *already_visited;
ctf_next_t *i = NULL;
ctf_sort_om_cb_arg_t sort_arg;
int err;
void *k;
if ((already_visited = ctf_dynset_create (htab_hash_string,
htab_eq_string,
NULL)) == NULL)
return ctf_set_errno (output, ENOMEM);
sort_arg.inputs = inputs;
sort_arg.ninputs = ninputs;
sort_arg.d = &output->ctf_dedup;
while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
&i, &k, NULL, sort_output_mapping,
&sort_arg)) == 0)
{
const char *hval = (const char *) k;
err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
already_visited, hval, visit_fun,
arg, 0);
if (err < 0)
{
ctf_next_destroy (i);
goto err; /* errno is set for us. */
}
}
if (err != ECTF_NEXT_END)
{
ctf_set_errno (output, err);
ctf_err_warn (output, 0, 0, _("cannot recurse over output mapping"));
goto err;
}
ctf_dynset_destroy (already_visited);
return 0;
err:
ctf_dynset_destroy (already_visited);
return -1;
}
/* Possibly synthesise a synthetic forward in TARGET to subsitute for a
conflicted per-TU type ID in INPUT with hash HVAL. Return its CTF ID, or 0
if none was needed. */
static ctf_id_t
ctf_dedup_maybe_synthesize_forward (ctf_dict_t *output, ctf_dict_t *target,
ctf_dict_t *input, ctf_id_t id,
const char *hval)
{
ctf_dedup_t *od = &output->ctf_dedup;
ctf_dedup_t *td = &target->ctf_dedup;
int kind;
int fwdkind;
const char *name = ctf_type_name_raw (input, id);
const char *decorated;
void *v;
ctf_id_t emitted_forward;
if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
|| target->ctf_flags & LCTF_CHILD
|| name[0] == '\0'
|| (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
&& kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
return 0;
fwdkind = ctf_type_kind_forwarded (input, id);
ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
"hval %s\n", hval);
if (!ctf_assert (output, name))
return CTF_ERR;
if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
return CTF_ERR;
if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
decorated, NULL, &v))
{
if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
fwdkind)) == CTF_ERR)
return ctf_set_typed_errno (output, ctf_errno (target));
if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
decorated, (void *) (uintptr_t)
emitted_forward) < 0)
return ctf_set_typed_errno (output, ENOMEM);
}
else
emitted_forward = (ctf_id_t) (uintptr_t) v;
ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
emitted_forward);
return emitted_forward;
}
/* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
into a GID in a target output dict. If it returns 0, this is the
unimplemented type, and the input type must have been 0. The OUTPUT dict is
assumed to be the parent of the TARGET, if it is not the TARGET itself.
Returns CTF_ERR on failure. Responds to an incoming CTF_ERR as an 'id' by
returning CTF_ERR, to simplify callers. Errors are always propagated to the
input, even if they relate to the target, for the same reason. (Target
errors are expected to be very rare.)
If the type in question is a citation of a conflicted type in a different TU,
emit a forward of the right type in its place (if not already emitted), and
record that forward in cd_output_emission_conflicted_forwards. This avoids
the need to replicate the entire type graph below this point in the current
TU (an appalling waste of space).
TODO: maybe replace forwards in the same TU with their referents? Might
make usability a bit better. */
static ctf_id_t
ctf_dedup_id_to_target (ctf_dict_t *output, ctf_dict_t *target,
ctf_dict_t **inputs, uint32_t ninputs,
uint32_t *parents, ctf_dict_t *input, int input_num,
ctf_id_t id)
{
ctf_dedup_t *od = &output->ctf_dedup;
ctf_dedup_t *td = &target->ctf_dedup;
ctf_dict_t *err_fp = input;
const char *hval;
void *target_id;
ctf_id_t emitted_forward;
/* The target type of an error is an error. */
if (id == CTF_ERR)
return CTF_ERR;
/* The unimplemented type's ID never changes. */
if (!id)
{
ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
return 0;
}
ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
id, (void *) target, ctf_link_input_name (target));
/* If the input type is in the parent type space, and this is a child, reset
the input to the parent (which must already have been emitted, since
emission of parent dicts happens before children). */
if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
{
if (!ctf_assert (output, parents[input_num] <= ninputs))
return CTF_ERR;
input = inputs[parents[input_num]];
input_num = parents[input_num];
}
hval = ctf_dynhash_lookup (od->cd_type_hashes,
CTF_DEDUP_GID (output, input_num, id));
if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
return CTF_ERR;
/* If this type is a conflicted tagged structure, union, or forward,
substitute a synthetic forward instead, emitting it if need be. Only do
this if the target is in the parent dict: if it's in the child dict, we can
just point straight at the thing itself. Of course, we might be looking in
the child dict right now and not find it and have to look in the parent, so
we have to do this check twice. */
emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
input, id, hval);
switch (emitted_forward)
{
case 0: /* No forward needed. */
break;
case -1:
ctf_set_errno (err_fp, ctf_errno (output));
ctf_err_warn (err_fp, 0, 0, _("cannot add synthetic forward for type "
"%i/%lx"), input_num, id);
return CTF_ERR;
default:
return emitted_forward;
}
ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);
target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
if (!target_id)
{
/* Must be in the parent, so this must be a child, and they must not be
the same dict. */
ctf_dprintf ("Checking shared parent for target\n");
if (!ctf_assert (output, (target != output)
&& (target->ctf_flags & LCTF_CHILD)))
return CTF_ERR;
target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);
emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
input, id, hval);
switch (emitted_forward)
{
case 0: /* No forward needed. */
break;
case -1:
ctf_err_warn (err_fp, 0, ctf_errno (output),
_("cannot add synthetic forward for type %i/%lx"),
input_num, id);
return ctf_set_typed_errno (err_fp, ctf_errno (output));
default:
return emitted_forward;
}
}
if (!ctf_assert (output, target_id))
return CTF_ERR;
return (ctf_id_t) (uintptr_t) target_id;
}
/* Emit a single deduplicated TYPE with the given HVAL, located in a given
INPUT, with the given (G)ID, into the shared OUTPUT or a
possibly-newly-created per-CU dict. All the types this type depends upon
have already been emitted. (This type itself may also have been emitted.)
If the ARG is 1, this is a CU-mapped deduplication round mapping many
ctf_dict_t's into precisely one: conflicting types should be marked
non-root-visible. If the ARG is 0, conflicting types go into per-CU
dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
is emitted directly into the output. No struct/union members are emitted.
Optimization opportunity: trace the ancestry of non-root-visible types and
elide all that neither have a root-visible type somewhere towards their root,
nor have the type visible via any other route (the function info section,
data object section, backtrace section etc). */
static int
ctf_dedup_emit_type (const char *hval, ctf_dict_t *output, ctf_dict_t **inputs,
uint32_t ninputs, uint32_t *parents, int already_visited,
ctf_dict_t *input, ctf_id_t type, void *id, int depth,
void *arg)
{
ctf_dedup_t *d = &output->ctf_dedup;
int kind = ctf_type_kind_unsliced (input, type);
const char *name;
ctf_dict_t *target = output;
ctf_dict_t *real_input;
const ctf_type_t *tp;
int input_num = CTF_DEDUP_GID_TO_INPUT (id);
int output_num = (uint32_t) -1; /* 'shared' */
int cu_mapped = *(int *)arg;
int isroot;
int is_conflicting;
ctf_next_t *i = NULL;
ctf_id_t new_type;
ctf_id_t ref;
ctf_id_t maybe_dup = 0;
ctf_encoding_t ep;
const char *errtype;
int emission_hashed = 0;
/* We don't want to re-emit something we've already emitted. */
if (already_visited)
return 0;
ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
depth, hval, ctf_link_input_name (input));
/* Conflicting types go into a per-CU output dictionary, unless this is a
CU-mapped run. The import is not refcounted, since it goes into the
ctf_link_outputs dict of the output that is its parent. */
is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);
if (is_conflicting && !cu_mapped)
{
ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
"inserting into per-CU target.\n",
depth, hval, input_num, type);
if (input->ctf_dedup.cd_output)
target = input->ctf_dedup.cd_output;
else
{
int err;
if ((target = ctf_create (&err)) == NULL)
{
ctf_err_warn (output, 0, err,
_("cannot create per-CU CTF archive for CU %s"),
ctf_link_input_name (input));
return ctf_set_errno (output, err);
}
target->ctf_flags |= LCTF_STRICT_NO_DUP_ENUMERATORS;
ctf_import_unref (target, output);
if (ctf_cuname (input) != NULL)
ctf_cuname_set (target, ctf_cuname (input));
else
ctf_cuname_set (target, "unnamed-CU");
ctf_parent_name_set (target, _CTF_SECTION);
input->ctf_dedup.cd_output = target;
input->ctf_link_in_out = target;
target->ctf_link_in_out = input;
}
output_num = input_num;
}
real_input = input;
if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
{
ctf_err_warn (output, 0, ctf_errno (input),
_("%s: lookup failure for type %lx"),
ctf_link_input_name (real_input), type);
return ctf_set_errno (output, ctf_errno (input));
}
name = ctf_strraw (real_input, tp->ctt_name);
isroot = LCTF_INFO_ISROOT (real_input, tp->ctt_info);
/* Hide conflicting types, if we were asked to: also hide if a type with this
name already exists and is not a forward, or if this type is hidden on the
input. */
if (cu_mapped && is_conflicting)
isroot = 0;
else if (name
&& (maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0)
{
if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
isroot = 0;
}
ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
depth, hval, name ? name : "", input_num, (void *) target);
if (!target->ctf_dedup.cd_output_emission_hashes)
if ((target->ctf_dedup.cd_output_emission_hashes
= ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
NULL, NULL)) == NULL)
goto oom_hash;
if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
= ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
NULL, NULL)) == NULL)
goto oom_hash;
switch (kind)
{
case CTF_K_UNKNOWN:
/* These are types that CTF cannot encode, marked as such by the
compiler. */
errtype = _("unknown type");
if ((new_type = ctf_add_unknown (target, isroot, name)) == CTF_ERR)
goto err_target;
break;
case CTF_K_FORWARD:
/* This will do nothing if the type to which this forwards already exists,
and will be replaced with such a type if it appears later. */
errtype = _("forward");
if ((new_type = ctf_add_forward (target, isroot, name,
ctf_type_kind_forwarded (input, type)))
== CTF_ERR)
goto err_target;
break;
case CTF_K_FLOAT:
case CTF_K_INTEGER:
errtype = _("float/int");
if (ctf_type_encoding (input, type, &ep) < 0)
goto err_input; /* errno is set for us. */
if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
== CTF_ERR)
goto err_target;
break;
case CTF_K_ENUM:
{
int val;
errtype = _("enum");
if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
goto err_input; /* errno is set for us. */
while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
{
if (ctf_add_enumerator (target, new_type, name, val) < 0)
{
ctf_err_warn (target, 0, ctf_errno (target),
_("%s (%i): cannot add enumeration value %s "
"from input type %lx"),
ctf_link_input_name (input), input_num, name,
type);
ctf_next_destroy (i);
return ctf_set_errno (output, ctf_errno (target));
}
}
if (ctf_errno (input) != ECTF_NEXT_END)
goto err_input;
break;
}
case CTF_K_TYPEDEF:
errtype = _("typedef");
ref = ctf_type_reference (input, type);
if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
parents, input, input_num,
ref)) == CTF_ERR)
goto err_input; /* errno is set for us. */
if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
goto err_target; /* errno is set for us. */
break;
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
case CTF_K_POINTER:
errtype = _("pointer or cvr-qual");
ref = ctf_type_reference (input, type);
if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
parents, input, input_num,
ref)) == CTF_ERR)
goto err_input; /* errno is set for us. */
if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
goto err_target; /* errno is set for us. */
break;
case CTF_K_SLICE:
errtype = _("slice");
if (ctf_type_encoding (input, type, &ep) < 0)
goto err_input; /* errno is set for us. */
ref = ctf_type_reference (input, type);
if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
parents, input, input_num,
ref)) == CTF_ERR)
goto err_input;
if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
goto err_target;
break;
case CTF_K_ARRAY:
{
ctf_arinfo_t ar;
errtype = _("array info");
if (ctf_array_info (input, type, &ar) < 0)
goto err_input;
ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
ninputs, parents, input,
input_num, ar.ctr_contents);
ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
parents, input, input_num,
ar.ctr_index);
if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
goto err_input;
if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
goto err_target;
break;
}
case CTF_K_FUNCTION:
{
ctf_funcinfo_t fi;
ctf_id_t *args;
uint32_t j;
errtype = _("function");
if (ctf_func_type_info (input, type, &fi) < 0)
goto err_input;
fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
parents, input, input_num,
fi.ctc_return);
if (fi.ctc_return == CTF_ERR)
goto err_input;
if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
{
ctf_set_errno (input, ENOMEM);
goto err_input;
}
errtype = _("function args");
if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
{
free (args);
goto err_input;
}
for (j = 0; j < fi.ctc_argc; j++)
{
args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
parents, input, input_num,
args[j]);
if (args[j] == CTF_ERR)
goto err_input;
}
if ((new_type = ctf_add_function (target, isroot,
&fi, args)) == CTF_ERR)
{
free (args);
goto err_target;
}
free (args);
break;
}
case CTF_K_STRUCT:
case CTF_K_UNION:
{
size_t size = ctf_type_size (input, type);
void *out_id;
/* Insert the structure itself, so other types can refer to it. */
errtype = _("structure/union");
if (kind == CTF_K_STRUCT)
new_type = ctf_add_struct_sized (target, isroot, name, size);
else
new_type = ctf_add_union_sized (target, isroot, name, size);
if (new_type == CTF_ERR)
goto err_target;
out_id = CTF_DEDUP_GID (output, output_num, new_type);
ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
id, out_id);
/* Record the need to emit the members of this structure later. */
if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
{
ctf_set_errno (target, errno);
goto err_target;
}
break;
}
default:
ctf_err_warn (output, 0, ECTF_CORRUPT, _("%s: unknown type kind for "
"input type %lx"),
ctf_link_input_name (input), type);
return ctf_set_errno (output, ECTF_CORRUPT);
}
if (!emission_hashed
&& new_type != 0
&& ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
hval, (void *) (uintptr_t) new_type) < 0)
{
ctf_err_warn (output, 0, ENOMEM, _("out of memory tracking deduplicated "
"global type IDs"));
return ctf_set_errno (output, ENOMEM);
}
if (!emission_hashed && new_type != 0)
ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
"target %p (%s)\n", depth, hval, input_num, type, new_type,
(void *) target, ctf_link_input_name (target));
return 0;
oom_hash:
ctf_err_warn (output, 0, ENOMEM, _("out of memory creating emission-tracking "
"hashes"));
return ctf_set_errno (output, ENOMEM);
err_input:
ctf_err_warn (output, 0, ctf_errno (input),
_("%s (%i): while emitting deduplicated %s, error getting "
"input type %lx"), ctf_link_input_name (input),
input_num, errtype, type);
return ctf_set_errno (output, ctf_errno (input));
err_target:
ctf_err_warn (output, 0, ctf_errno (target),
_("%s (%i): while emitting deduplicated %s, error emitting "
"target type from input type %lx"),
ctf_link_input_name (input), input_num,
errtype, type);
return ctf_set_errno (output, ctf_errno (target));
}
/* Traverse the cd_emission_struct_members and emit the members of all
structures and unions. All other types are emitted and complete by this
point. */
static int
ctf_dedup_emit_struct_members (ctf_dict_t *output, ctf_dict_t **inputs,
uint32_t ninputs, uint32_t *parents)
{
ctf_dedup_t *d = &output->ctf_dedup;
ctf_next_t *i = NULL;
void *input_id, *target_id;
int err;
ctf_dict_t *err_fp, *input_fp;
int input_num;
ctf_id_t err_type;
while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
&input_id, &target_id)) == 0)
{
ctf_next_t *j = NULL;
ctf_dict_t *target;
uint32_t target_num;
ctf_id_t input_type, target_type;
ssize_t offset;
ctf_id_t membtype;
const char *name;
input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
input_fp = inputs[input_num];
input_type = CTF_DEDUP_GID_TO_TYPE (input_id);
/* The output is either -1 (for the shared, parent output dict) or the
number of the corresponding input. */
target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
if (target_num == (uint32_t) -1)
target = output;
else
{
target = inputs[target_num]->ctf_dedup.cd_output;
if (!ctf_assert (output, target))
{
err_fp = output;
err_type = input_type;
goto err_target;
}
}
target_type = CTF_DEDUP_GID_TO_TYPE (target_id);
while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
&membtype, 0)) >= 0)
{
err_fp = target;
err_type = target_type;
if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
ninputs, parents, input_fp,
input_num,
membtype)) == CTF_ERR)
{
ctf_next_destroy (j);
goto err_target;
}
if (name == NULL)
name = "";
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
#endif
if (ctf_add_member_offset (target, target_type, name,
membtype, offset) < 0)
{
ctf_next_destroy (j);
goto err_target;
}
}
if (ctf_errno (input_fp) != ECTF_NEXT_END)
{
err = ctf_errno (input_fp);
ctf_next_destroy (i);
goto iterr;
}
}
if (err != ECTF_NEXT_END)
goto iterr;
return 0;
err_target:
ctf_next_destroy (i);
ctf_err_warn (output, 0, ctf_errno (err_fp),
_("%s (%i): error emitting members for structure type %lx"),
ctf_link_input_name (input_fp), input_num, err_type);
return ctf_set_errno (output, ctf_errno (err_fp));
iterr:
ctf_err_warn (output, 0, err, _("iteration failure emitting "
"structure members"));
return ctf_set_errno (output, err);
}
/* Emit deduplicated types into the outputs. The shared type repository is
OUTPUT, on which the ctf_dedup function must have already been called. The
PARENTS array contains the INPUTS index of the parent dict for every child
dict at the corresponding index in the INPUTS (for non-child dicts, the value
is undefined and can just be left at zero).
Return an array of fps with content emitted into them (starting with OUTPUT,
which is the parent of all others, then all the newly-generated outputs).
If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
mapping: only one output will result. */
ctf_dict_t **
ctf_dedup_emit (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
uint32_t *parents, uint32_t *noutputs, int cu_mapped)
{
size_t num_outputs = 1; /* Always at least one output: us. */
ctf_dict_t **outputs;
ctf_dict_t **walk;
size_t i;
ctf_dprintf ("Triggering emission.\n");
if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
ctf_dedup_emit_type, &cu_mapped) < 0)
return NULL; /* errno is set for us. */
ctf_dprintf ("Populating struct members.\n");
if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
return NULL; /* errno is set for us. */
for (i = 0; i < ninputs; i++)
{
if (inputs[i]->ctf_dedup.cd_output)
num_outputs++;
}
if (!ctf_assert (output, !cu_mapped || (cu_mapped && num_outputs == 1)))
return NULL;
if ((outputs = calloc (num_outputs, sizeof (ctf_dict_t *))) == NULL)
{
ctf_set_errno (output, ENOMEM);
ctf_err_warn (output, 0, 0,
_("out of memory allocating link outputs array"));
return NULL;
}
*noutputs = num_outputs;
walk = outputs;
*walk = output;
output->ctf_refcnt++;
walk++;
for (i = 0; i < ninputs; i++)
{
if (inputs[i]->ctf_dedup.cd_output)
{
*walk = inputs[i]->ctf_dedup.cd_output;
inputs[i]->ctf_dedup.cd_output = NULL;
walk++;
}
}
return outputs;
}
/* Determine what type SRC_FP / SRC_TYPE was emitted as in the FP, which
must be the shared dict or have it as a parent: return 0 if none. The SRC_FP
must be a past input to ctf_dedup. */
ctf_id_t
ctf_dedup_type_mapping (ctf_dict_t *fp, ctf_dict_t *src_fp, ctf_id_t src_type)
{
ctf_dict_t *output = NULL;
ctf_dedup_t *d;
int input_num;
void *num_ptr;
void *type_ptr;
int found;
const char *hval;
/* It is an error (an internal error in the caller, in ctf-link.c) to call
this with an FP that is not a per-CU output or shared output dict, or with
a SRC_FP that was not passed to ctf_dedup as an input; it is an internal
error in ctf-dedup for the type passed not to have been hashed, though if
the src_fp is a child dict and the type is not a child type, it will have
been hashed under the GID corresponding to the parent. */
if (fp->ctf_dedup.cd_type_hashes != NULL)
output = fp;
else if (fp->ctf_parent && fp->ctf_parent->ctf_dedup.cd_type_hashes != NULL)
output = fp->ctf_parent;
else
{
ctf_set_errno (fp, ECTF_INTERNAL);
ctf_err_warn (fp, 0, 0,
_("dict %p passed to ctf_dedup_type_mapping is not a "
"deduplicated output"), (void *) fp);
return CTF_ERR;
}
if (src_fp->ctf_parent && ctf_type_isparent (src_fp, src_type))
src_fp = src_fp->ctf_parent;
d = &output->ctf_dedup;
found = ctf_dynhash_lookup_kv (d->cd_input_nums, src_fp, NULL, &num_ptr);
if (!ctf_assert (output, found != 0))
return CTF_ERR; /* errno is set for us. */
input_num = (uintptr_t) num_ptr;
hval = ctf_dynhash_lookup (d->cd_type_hashes,
CTF_DEDUP_GID (output, input_num, src_type));
if (!ctf_assert (output, hval != NULL))
return CTF_ERR; /* errno is set for us. */
/* The emission hashes may be unset if this dict was created after
deduplication to house variables or other things that would conflict if
stored in the shared dict. */
if (fp->ctf_dedup.cd_output_emission_hashes)
if (ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_output_emission_hashes, hval,
NULL, &type_ptr))
return (ctf_id_t) (uintptr_t) type_ptr;
if (fp->ctf_parent)
{
ctf_dict_t *pfp = fp->ctf_parent;
if (pfp->ctf_dedup.cd_output_emission_hashes)
if (ctf_dynhash_lookup_kv (pfp->ctf_dedup.cd_output_emission_hashes,
hval, NULL, &type_ptr))
return (ctf_id_t) (uintptr_t) type_ptr;
}
return 0;
}
|