1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
/* Interface to hashtable implementations.
Copyright (C) 2006-2024 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <string.h>
#include "libiberty.h"
#include "hashtab.h"
/* We have two hashtable implementations:
- ctf_dynhash_* is an interface to a dynamically-expanding hash with
unknown size that should support addition of large numbers of items,
and removal as well, and is used only at type-insertion time and during
linking. It can be constructed with an expected initial number of
elements, but need not be.
- ctf_dynset_* is an interface to a dynamically-expanding hash that contains
only keys: no values.
These can be implemented by the same underlying hashmap if you wish. */
/* The helem is used for general key/value mappings in the ctf_dynhash: the
owner may not have space allocated for it, and will be garbage (not
NULL!) in that case. */
typedef struct ctf_helem
{
void *key; /* Either a pointer, or a coerced ctf_id_t. */
void *value; /* The value (possibly a coerced int). */
ctf_dynhash_t *owner; /* The hash that owns us. */
} ctf_helem_t;
/* Equally, the key_free and value_free may not exist. */
struct ctf_dynhash
{
struct htab *htab;
ctf_hash_free_fun key_free;
ctf_hash_free_fun value_free;
};
/* Hash and eq functions for the dynhash and hash. */
unsigned int
ctf_hash_integer (const void *ptr)
{
ctf_helem_t *hep = (ctf_helem_t *) ptr;
return htab_hash_pointer (hep->key);
}
int
ctf_hash_eq_integer (const void *a, const void *b)
{
ctf_helem_t *hep_a = (ctf_helem_t *) a;
ctf_helem_t *hep_b = (ctf_helem_t *) b;
return htab_eq_pointer (hep_a->key, hep_b->key);
}
unsigned int
ctf_hash_string (const void *ptr)
{
ctf_helem_t *hep = (ctf_helem_t *) ptr;
return htab_hash_string (hep->key);
}
int
ctf_hash_eq_string (const void *a, const void *b)
{
ctf_helem_t *hep_a = (ctf_helem_t *) a;
ctf_helem_t *hep_b = (ctf_helem_t *) b;
return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
}
/* Hash a type_key. */
unsigned int
ctf_hash_type_key (const void *ptr)
{
ctf_helem_t *hep = (ctf_helem_t *) ptr;
ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key;
return htab_hash_pointer (k->cltk_fp) + 59
* htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx);
}
int
ctf_hash_eq_type_key (const void *a, const void *b)
{
ctf_helem_t *hep_a = (ctf_helem_t *) a;
ctf_helem_t *hep_b = (ctf_helem_t *) b;
ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key;
ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key;
return (key_a->cltk_fp == key_b->cltk_fp)
&& (key_a->cltk_idx == key_b->cltk_idx);
}
/* Hash a type_id_key. */
unsigned int
ctf_hash_type_id_key (const void *ptr)
{
ctf_helem_t *hep = (ctf_helem_t *) ptr;
ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key;
return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num)
+ 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type);
}
int
ctf_hash_eq_type_id_key (const void *a, const void *b)
{
ctf_helem_t *hep_a = (ctf_helem_t *) a;
ctf_helem_t *hep_b = (ctf_helem_t *) b;
ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key;
ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key;
return (key_a->ctii_input_num == key_b->ctii_input_num)
&& (key_a->ctii_type == key_b->ctii_type);
}
/* The dynhash, used for hashes whose size is not known at creation time. */
/* Free a single ctf_helem with arbitrary key/value functions. */
static void
ctf_dynhash_item_free (void *item)
{
ctf_helem_t *helem = item;
if (helem->owner->key_free && helem->key)
helem->owner->key_free (helem->key);
if (helem->owner->value_free && helem->value)
helem->owner->value_free (helem->value);
free (helem);
}
ctf_dynhash_t *
ctf_dynhash_create_sized (unsigned long nelems, ctf_hash_fun hash_fun,
ctf_hash_eq_fun eq_fun, ctf_hash_free_fun key_free,
ctf_hash_free_fun value_free)
{
ctf_dynhash_t *dynhash;
htab_del del = ctf_dynhash_item_free;
if (key_free || value_free)
dynhash = malloc (sizeof (ctf_dynhash_t));
else
{
void *p = malloc (offsetof (ctf_dynhash_t, key_free));
dynhash = p;
}
if (!dynhash)
return NULL;
if (key_free == NULL && value_free == NULL)
del = free;
if ((dynhash->htab = htab_create_alloc (nelems, (htab_hash) hash_fun, eq_fun,
del, xcalloc, free)) == NULL)
{
free (dynhash);
return NULL;
}
if (key_free || value_free)
{
dynhash->key_free = key_free;
dynhash->value_free = value_free;
}
return dynhash;
}
ctf_dynhash_t *
ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
{
/* 7 is arbitrary and not benchmarked yet. */
return ctf_dynhash_create_sized (7, hash_fun, eq_fun, key_free, value_free);
}
static ctf_helem_t **
ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
{
ctf_helem_t tmp = { .key = (void *) key };
return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
}
static ctf_helem_t *
ctf_hashtab_insert (struct htab *htab, void *key, void *value,
ctf_hash_free_fun key_free,
ctf_hash_free_fun value_free)
{
ctf_helem_t **slot;
slot = ctf_hashtab_lookup (htab, key, INSERT);
if (!slot)
{
errno = ENOMEM;
return NULL;
}
if (!*slot)
{
/* Only spend space on the owner if we're going to use it: if there is a
key or value freeing function. */
if (key_free || value_free)
*slot = malloc (sizeof (ctf_helem_t));
else
{
void *p = malloc (offsetof (ctf_helem_t, owner));
*slot = p;
}
if (!*slot)
return NULL;
(*slot)->key = key;
}
else
{
if (key_free)
key_free (key);
if (value_free)
value_free ((*slot)->value);
}
(*slot)->value = value;
return *slot;
}
int
ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
{
ctf_helem_t *slot;
ctf_hash_free_fun key_free = NULL, value_free = NULL;
if (hp->htab->del_f == ctf_dynhash_item_free)
{
key_free = hp->key_free;
value_free = hp->value_free;
}
slot = ctf_hashtab_insert (hp->htab, key, value,
key_free, value_free);
if (!slot)
return -errno;
/* Keep track of the owner, so that the del function can get at the key_free
and value_free functions. Only do this if one of those functions is set:
if not, the owner is not even present in the helem. */
if (key_free || value_free)
slot->owner = hp;
return 0;
}
void
ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
{
ctf_helem_t hep = { (void *) key, NULL, NULL };
htab_remove_elt (hp->htab, &hep);
}
void
ctf_dynhash_empty (ctf_dynhash_t *hp)
{
htab_empty (hp->htab);
}
size_t
ctf_dynhash_elements (ctf_dynhash_t *hp)
{
return htab_elements (hp->htab);
}
void *
ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
{
ctf_helem_t **slot;
slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
if (slot)
return (*slot)->value;
return NULL;
}
/* TRUE/FALSE return. */
int
ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
const void **orig_key, void **value)
{
ctf_helem_t **slot;
slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
if (slot)
{
if (orig_key)
*orig_key = (*slot)->key;
if (value)
*value = (*slot)->value;
return 1;
}
return 0;
}
typedef struct ctf_traverse_cb_arg
{
ctf_hash_iter_f fun;
void *arg;
} ctf_traverse_cb_arg_t;
static int
ctf_hashtab_traverse (void **slot, void *arg_)
{
ctf_helem_t *helem = *((ctf_helem_t **) slot);
ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
arg->fun (helem->key, helem->value, arg->arg);
return 1;
}
void
ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
{
ctf_traverse_cb_arg_t arg = { fun, arg_ };
htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
}
typedef struct ctf_traverse_find_cb_arg
{
ctf_hash_iter_find_f fun;
void *arg;
void *found_key;
} ctf_traverse_find_cb_arg_t;
static int
ctf_hashtab_traverse_find (void **slot, void *arg_)
{
ctf_helem_t *helem = *((ctf_helem_t **) slot);
ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;
if (arg->fun (helem->key, helem->value, arg->arg))
{
arg->found_key = helem->key;
return 0;
}
return 1;
}
void *
ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
{
ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
return arg.found_key;
}
typedef struct ctf_traverse_remove_cb_arg
{
struct htab *htab;
ctf_hash_iter_remove_f fun;
void *arg;
} ctf_traverse_remove_cb_arg_t;
static int
ctf_hashtab_traverse_remove (void **slot, void *arg_)
{
ctf_helem_t *helem = *((ctf_helem_t **) slot);
ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
if (arg->fun (helem->key, helem->value, arg->arg))
htab_clear_slot (arg->htab, slot);
return 1;
}
void
ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
void *arg_)
{
ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
}
/* Traverse a dynhash in arbitrary order, in _next iterator form.
Mutating the dynhash while iterating is not supported (just as it isn't for
htab_traverse).
Note: unusually, this returns zero on success and a *positive* value on
error, because it does not take an fp, taking an error pointer would be
incredibly clunky, and nearly all error-handling ends up stuffing the result
of this into some sort of errno or ctf_errno, which is invariably
positive. So doing this simplifies essentially all callers. */
int
ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
{
ctf_next_t *i = *it;
ctf_helem_t *slot;
if (!i)
{
size_t size = htab_size (h->htab);
/* If the table has too many entries to fit in an ssize_t, just give up.
This might be spurious, but if any type-related hashtable has ever been
nearly as large as that then something very odd is going on. */
if (((ssize_t) size) < 0)
return EDOM;
if ((i = ctf_next_create ()) == NULL)
return ENOMEM;
i->u.ctn_hash_slot = h->htab->entries;
i->cu.ctn_h = h;
i->ctn_n = 0;
i->ctn_size = (ssize_t) size;
i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
*it = i;
}
if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
return ECTF_NEXT_WRONGFUN;
if (h != i->cu.ctn_h)
return ECTF_NEXT_WRONGFP;
if ((ssize_t) i->ctn_n == i->ctn_size)
goto hash_end;
while ((ssize_t) i->ctn_n < i->ctn_size
&& (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
|| *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
{
i->u.ctn_hash_slot++;
i->ctn_n++;
}
if ((ssize_t) i->ctn_n == i->ctn_size)
goto hash_end;
slot = *i->u.ctn_hash_slot;
if (key)
*key = slot->key;
if (value)
*value = slot->value;
i->u.ctn_hash_slot++;
i->ctn_n++;
return 0;
hash_end:
ctf_next_destroy (i);
*it = NULL;
return ECTF_NEXT_END;
}
int
ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
void *unused _libctf_unused_)
{
return strcmp ((char *) one->hkv_key, (char *) two->hkv_key);
}
/* Traverse a sorted dynhash, in _next iterator form.
See ctf_dynhash_next for notes on error returns, etc.
Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
If SORT_FUN is null, thunks to ctf_dynhash_next. */
int
ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
{
ctf_next_t *i = *it;
if (sort_fun == NULL)
return ctf_dynhash_next (h, it, key, value);
if (!i)
{
size_t els = ctf_dynhash_elements (h);
ctf_next_t *accum_i = NULL;
void *key, *value;
int err;
ctf_next_hkv_t *walk;
if (((ssize_t) els) < 0)
return EDOM;
if ((i = ctf_next_create ()) == NULL)
return ENOMEM;
if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
{
ctf_next_destroy (i);
return ENOMEM;
}
walk = i->u.ctn_sorted_hkv;
i->cu.ctn_h = h;
while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
{
walk->hkv_key = key;
walk->hkv_value = value;
walk++;
}
if (err != ECTF_NEXT_END)
{
ctf_next_destroy (i);
return err;
}
if (sort_fun)
ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
(int (*) (const void *, const void *, void *)) sort_fun,
sort_arg);
i->ctn_n = 0;
i->ctn_size = (ssize_t) els;
i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
*it = i;
}
if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
return ECTF_NEXT_WRONGFUN;
if (h != i->cu.ctn_h)
return ECTF_NEXT_WRONGFP;
if ((ssize_t) i->ctn_n == i->ctn_size)
{
ctf_next_destroy (i);
*it = NULL;
return ECTF_NEXT_END;
}
if (key)
*key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
if (value)
*value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
i->ctn_n++;
return 0;
}
void
ctf_dynhash_destroy (ctf_dynhash_t *hp)
{
if (hp != NULL)
htab_delete (hp->htab);
free (hp);
}
/* The dynset, used for sets of keys with no value. The implementation of this
can be much simpler, because without a value the slot can simply be the
stored key, which means we don't need to store the freeing functions and the
dynset itself is just a htab. */
ctf_dynset_t *
ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
ctf_hash_free_fun key_free)
{
/* 7 is arbitrary and untested for now. */
return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
key_free, xcalloc, free);
}
/* The dynset has one complexity: the underlying implementation reserves two
values for internal hash table implementation details (empty versus deleted
entries). These values are otherwise very useful for pointers cast to ints,
so transform the ctf_dynset_inserted value to allow for it. (This
introduces an ambiguity in that one can no longer store these two values in
the dynset, but if we pick high enough values this is very unlikely to be a
problem.)
We leak this implementation detail to the freeing functions on the grounds
that any use of these functions is overwhelmingly likely to be in sets using
real pointers, which will be unaffected. */
#define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
#define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
static void *
key_to_internal (const void *key)
{
if (key == HTAB_EMPTY_ENTRY)
return DYNSET_EMPTY_ENTRY_REPLACEMENT;
else if (key == HTAB_DELETED_ENTRY)
return DYNSET_DELETED_ENTRY_REPLACEMENT;
return (void *) key;
}
static void *
internal_to_key (const void *internal)
{
if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
return HTAB_EMPTY_ENTRY;
else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
return HTAB_DELETED_ENTRY;
return (void *) internal;
}
int
ctf_dynset_insert (ctf_dynset_t *hp, void *key)
{
struct htab *htab = (struct htab *) hp;
void **slot;
slot = htab_find_slot (htab, key_to_internal (key), INSERT);
if (!slot)
{
errno = ENOMEM;
return -errno;
}
if (*slot)
{
if (htab->del_f)
(*htab->del_f) (*slot);
}
*slot = key_to_internal (key);
return 0;
}
void
ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
{
htab_remove_elt ((struct htab *) hp, key_to_internal (key));
}
size_t
ctf_dynset_elements (ctf_dynset_t *hp)
{
return htab_elements ((struct htab *) hp);
}
void
ctf_dynset_destroy (ctf_dynset_t *hp)
{
if (hp != NULL)
htab_delete ((struct htab *) hp);
}
void *
ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
{
void **slot = htab_find_slot ((struct htab *) hp,
key_to_internal (key), NO_INSERT);
if (slot)
return internal_to_key (*slot);
return NULL;
}
/* TRUE/FALSE return. */
int
ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
{
void **slot = htab_find_slot ((struct htab *) hp,
key_to_internal (key), NO_INSERT);
if (orig_key && slot)
*orig_key = internal_to_key (*slot);
return (slot != NULL);
}
/* Look up a completely random value from the set, if any exist.
Keys with value zero cannot be distinguished from a nonexistent key. */
void *
ctf_dynset_lookup_any (ctf_dynset_t *hp)
{
struct htab *htab = (struct htab *) hp;
void **slot = htab->entries;
void **limit = slot + htab_size (htab);
while (slot < limit
&& (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
slot++;
if (slot < limit)
return internal_to_key (*slot);
return NULL;
}
/* Traverse a dynset in arbitrary order, in _next iterator form.
Otherwise, just like ctf_dynhash_next. */
int
ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
{
struct htab *htab = (struct htab *) hp;
ctf_next_t *i = *it;
void *slot;
if (!i)
{
size_t size = htab_size (htab);
/* If the table has too many entries to fit in an ssize_t, just give up.
This might be spurious, but if any type-related hashtable has ever been
nearly as large as that then somthing very odd is going on. */
if (((ssize_t) size) < 0)
return EDOM;
if ((i = ctf_next_create ()) == NULL)
return ENOMEM;
i->u.ctn_hash_slot = htab->entries;
i->cu.ctn_s = hp;
i->ctn_n = 0;
i->ctn_size = (ssize_t) size;
i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
*it = i;
}
if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
return ECTF_NEXT_WRONGFUN;
if (hp != i->cu.ctn_s)
return ECTF_NEXT_WRONGFP;
if ((ssize_t) i->ctn_n == i->ctn_size)
goto set_end;
while ((ssize_t) i->ctn_n < i->ctn_size
&& (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
|| *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
{
i->u.ctn_hash_slot++;
i->ctn_n++;
}
if ((ssize_t) i->ctn_n == i->ctn_size)
goto set_end;
slot = *i->u.ctn_hash_slot;
if (key)
*key = internal_to_key (slot);
i->u.ctn_hash_slot++;
i->ctn_n++;
return 0;
set_end:
ctf_next_destroy (i);
*it = NULL;
return ECTF_NEXT_END;
}
/* Helper functions for insertion/removal of types. */
int
ctf_dynhash_insert_type (ctf_dict_t *fp, ctf_dynhash_t *hp, uint32_t type,
uint32_t name)
{
const char *str;
int err;
if (type == 0)
return EINVAL;
if ((str = ctf_strptr_validate (fp, name)) == NULL)
return ctf_errno (fp) * -1;
if (str[0] == '\0')
return 0; /* Just ignore empty strings on behalf of caller. */
if ((err = ctf_dynhash_insert (hp, (char *) str,
(void *) (ptrdiff_t) type)) == 0)
return 0;
/* ctf_dynhash_insert returns a negative error value: negate it for
ctf_set_errno. */
ctf_set_errno (fp, err * -1);
return err;
}
ctf_id_t
ctf_dynhash_lookup_type (ctf_dynhash_t *hp, const char *key)
{
void *value;
if (ctf_dynhash_lookup_kv (hp, key, NULL, &value))
return (ctf_id_t) (uintptr_t) value;
return 0;
}
|