1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
|
/* Simulator for BPF.
Copyright (C) 2020-2025 Free Software Foundation, Inc.
Contributed by Oracle Inc.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This must come before any other includes. */
#include "defs.h"
#include "libiberty.h"
#include "bfd.h"
#include "opcode/bpf.h"
#include "sim/sim.h"
#include "sim-main.h"
#include "sim-core.h"
#include "sim-base.h"
#include "sim-options.h"
#include "sim-signal.h"
#include "bpf-sim.h"
#include <assert.h>
#include <stdlib.h>
/***** Emulated hardware. *****/
/* Registers are 64-bit long.
11 general purpose registers, indexed by register number.
1 program counter. */
typedef uint64_t bpf_reg;
bpf_reg bpf_pc;
bpf_reg bpf_regs[11];
#define BPF_R0 0
#define BPF_R1 1
#define BPF_R2 2
#define BPF_R3 3
#define BPF_R4 4
#define BPF_R5 5
#define BPF_R6 6
#define BPF_R7 7
#define BPF_R8 8
#define BPF_R9 9
#define BPF_R10 10
#define BPF_FP 10
/***** Emulated memory accessors. *****/
static uint8_t
bpf_read_u8 (SIM_CPU *cpu, bfd_vma address)
{
return sim_core_read_unaligned_1 (cpu, 0, read_map, address);
}
static void
bpf_write_u8 (SIM_CPU *cpu, bfd_vma address, uint8_t value)
{
sim_core_write_unaligned_1 (cpu, 0, write_map, address, value);
}
static uint16_t ATTRIBUTE_UNUSED
bpf_read_u16 (SIM_CPU *cpu, bfd_vma address)
{
uint16_t val = sim_core_read_unaligned_2 (cpu, 0, read_map, address);
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
return endian_le2h_2 (val);
else
return endian_le2h_2 (val);
}
static void
bpf_write_u16 (SIM_CPU *cpu, bfd_vma address, uint16_t value)
{
sim_core_write_unaligned_2 (cpu, 0, write_map, address, endian_h2le_2 (value));
}
static uint32_t ATTRIBUTE_UNUSED
bpf_read_u32 (SIM_CPU *cpu, bfd_vma address)
{
uint32_t val = sim_core_read_unaligned_4 (cpu, 0, read_map, address);
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
return endian_le2h_4 (val);
else
return endian_le2h_4 (val);
}
static void
bpf_write_u32 (SIM_CPU *cpu, bfd_vma address, uint32_t value)
{
sim_core_write_unaligned_4 (cpu, 0, write_map, address, endian_h2le_4 (value));
}
static uint64_t ATTRIBUTE_UNUSED
bpf_read_u64 (SIM_CPU *cpu, bfd_vma address)
{
uint64_t val = sim_core_read_unaligned_8 (cpu, 0, read_map, address);
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
return endian_le2h_8 (val);
else
return endian_le2h_8 (val);
}
static void
bpf_write_u64 (SIM_CPU *cpu, bfd_vma address, uint64_t value)
{
sim_core_write_unaligned_8 (cpu, 0, write_map, address, endian_h2le_8 (value));
}
/***** Emulation of the BPF kernel helpers. *****/
/* BPF programs rely on the existence of several helper functions,
which are provided by the kernel. This simulator provides an
implementation of the helpers, which can be customized by the
user. */
/* bpf_trace_printk is a printk-like facility for debugging.
In the kernel, it appends a line to the Linux's tracing debugging
interface.
In this simulator, it uses the simulator's tracing interface
instead.
The format tags recognized by this helper are:
%d, %i, %u, %x, %ld, %li, %lu, %lx, %lld, %lli, %llu, %llx,
%p, %s
A maximum of three tags are supported.
This helper returns the number of bytes written, or a negative
value in case of failure. */
static int
bpf_trace_printk (SIM_CPU *cpu)
{
SIM_DESC sd = CPU_STATE (cpu);
bfd_vma fmt_address;
uint32_t size, tags_processed;
size_t i, bytes_written = 0;
/* The first argument is the format string, which is passed as a
pointer in %r1. */
fmt_address = bpf_regs[BPF_R1];
/* The second argument is the length of the format string, as an
unsigned 32-bit number in %r2. */
size = bpf_regs[BPF_R2];
/* Read the format string from the memory pointed by %r2, printing
out the stuff as we go. There is a maximum of three format tags
supported, which are read from %r3, %r4 and %r5 respectively. */
for (i = 0, tags_processed = 0; i < size;)
{
uint64_t value;
uint8_t c = bpf_read_u8 (cpu, fmt_address + i);
switch (c)
{
case '%':
/* Check we are not exceeding the limit of three format
tags. */
if (tags_processed > 2)
return -1; /* XXX look for kernel error code. */
/* Depending on the kind of tag, extract the value from the
proper argument. */
if (i++ >= size)
return -1; /* XXX look for kernel error code. */
value = bpf_regs[BPF_R3 + tags_processed];
switch ((bpf_read_u8 (cpu, fmt_address + i)))
{
case 'd':
trace_printf (sd, cpu, "%d", (int) value);
break;
case 'i':
trace_printf (sd, cpu, "%i", (int) value);
break;
case 'u':
trace_printf (sd, cpu, "%u", (unsigned int) value);
break;
case 'x':
trace_printf (sd, cpu, "%x", (unsigned int) value);
break;
case 'l':
{
if (i++ >= size)
return -1;
switch (bpf_read_u8 (cpu, fmt_address + i))
{
case 'd':
trace_printf (sd, cpu, "%ld", (long) value);
break;
case 'i':
trace_printf (sd, cpu, "%li", (long) value);
break;
case 'u':
trace_printf (sd, cpu, "%lu", (unsigned long) value);
break;
case 'x':
trace_printf (sd, cpu, "%lx", (unsigned long) value);
break;
case 'l':
{
if (i++ >= size)
return -1;
switch (bpf_read_u8 (cpu, fmt_address + i))
{
case 'd':
trace_printf (sd, cpu, "%lld", (long long) value);
break;
case 'i':
trace_printf (sd, cpu, "%lli", (long long) value);
break;
case 'u':
trace_printf (sd, cpu, "%llu", (unsigned long long) value);
break;
case 'x':
trace_printf (sd, cpu, "%llx", (unsigned long long) value);
break;
default:
assert (0);
break;
}
break;
}
default:
assert (0);
break;
}
break;
}
default:
/* XXX completeme */
assert (0);
break;
}
tags_processed++;
i++;
break;
case '\0':
i = size;
break;
default:
trace_printf (sd, cpu, "%c", c);
bytes_written++;
i++;
break;
}
}
return bytes_written;
}
/****** Accessors to install in the CPU description. ******/
static int
bpf_reg_get (SIM_CPU *cpu, int rn, void *buf, int length)
{
bpf_reg val;
unsigned char *memory = buf;
if (length != 8 || rn >= 11)
return 0;
val = bpf_regs[rn];
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
{
memory[7] = (val >> 56) & 0xff;
memory[6] = (val >> 48) & 0xff;
memory[5] = (val >> 40) & 0xff;
memory[4] = (val >> 32) & 0xff;
memory[3] = (val >> 24) & 0xff;
memory[2] = (val >> 16) & 0xff;
memory[1] = (val >> 8) & 0xff;
memory[0] = val & 0xff;
}
else
{
memory[0] = (val >> 56) & 0xff;
memory[1] = (val >> 48) & 0xff;
memory[2] = (val >> 40) & 0xff;
memory[3] = (val >> 32) & 0xff;
memory[4] = (val >> 24) & 0xff;
memory[5] = (val >> 16) & 0xff;
memory[6] = (val >> 8) & 0xff;
memory[7] = val & 0xff;
}
return 8;
}
static int
bpf_reg_set (SIM_CPU *cpu, int rn, const void *buf, int length)
{
const unsigned char *memory = buf;
if (length != 8 || rn >= 11)
return 0;
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
bpf_regs[rn] = (((uint64_t) memory[7] << 56)
| ((uint64_t) memory[6] << 48)
| ((uint64_t) memory[5] << 40)
| ((uint64_t) memory[4] << 32)
| ((uint64_t) memory[3] << 24)
| ((uint64_t) memory[2] << 16)
| ((uint64_t) memory[1] << 8)
| ((uint64_t) memory[0]));
else
bpf_regs[rn] = (((uint64_t) memory[0] << 56)
| ((uint64_t) memory[1] << 48)
| ((uint64_t) memory[2] << 40)
| ((uint64_t) memory[3] << 32)
| ((uint64_t) memory[4] << 24)
| ((uint64_t) memory[5] << 16)
| ((uint64_t) memory[6] << 8)
| ((uint64_t) memory[7]));
return 8;
}
static sim_cia
bpf_pc_get (sim_cpu *cpu)
{
return bpf_pc;
}
static void
bpf_pc_set (sim_cpu *cpu, sim_cia pc)
{
bpf_pc = pc;
}
/***** Other global state. ******/
static int64_t skb_data_offset;
/* String with the name of the section containing the BPF program to
run. */
static char *bpf_program_section = NULL;
/***** Handle BPF-specific command line options. *****/
static SIM_RC bpf_option_handler (SIM_DESC, sim_cpu *, int, char *, int);
typedef enum
{
OPTION_BPF_SET_PROGRAM = OPTION_START,
OPTION_BPF_LIST_PROGRAMS,
OPTION_BPF_VERIFY_PROGRAM,
OPTION_BPF_SKB_DATA_OFFSET,
} BPF_OPTION;
static const OPTION bpf_options[] =
{
{ {"bpf-set-program", required_argument, NULL, OPTION_BPF_SET_PROGRAM},
'\0', "SECTION_NAME", "Set the entry point",
bpf_option_handler },
{ {"bpf-list-programs", no_argument, NULL, OPTION_BPF_LIST_PROGRAMS},
'\0', "", "List loaded bpf programs",
bpf_option_handler },
{ {"bpf-verify-program", required_argument, NULL, OPTION_BPF_VERIFY_PROGRAM},
'\0', "PROGRAM", "Run the verifier on the given BPF program",
bpf_option_handler },
{ {"skb-data-offset", required_argument, NULL, OPTION_BPF_SKB_DATA_OFFSET},
'\0', "OFFSET", "Configure offsetof(struct sk_buff, data)",
bpf_option_handler },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL }
};
static SIM_RC
bpf_option_handler (SIM_DESC sd, sim_cpu *cpu ATTRIBUTE_UNUSED, int opt,
char *arg, int is_command ATTRIBUTE_UNUSED)
{
switch ((BPF_OPTION) opt)
{
case OPTION_BPF_VERIFY_PROGRAM:
/* XXX call the verifier. */
sim_io_printf (sd, "Verifying BPF program %s...\n", arg);
break;
case OPTION_BPF_LIST_PROGRAMS:
/* XXX list programs. */
sim_io_printf (sd, "BPF programs available:\n");
break;
case OPTION_BPF_SET_PROGRAM:
/* XXX: check that the section exists and tell the user about a
new start_address. */
bpf_program_section = xstrdup (arg);
break;
case OPTION_BPF_SKB_DATA_OFFSET:
skb_data_offset = strtoul (arg, NULL, 0);
break;
default:
sim_io_eprintf (sd, "Unknown option `%s'\n", arg);
return SIM_RC_FAIL;
}
return SIM_RC_OK;
}
/***** Instruction decoding. *****/
/* Decoded BPF instruction. */
struct bpf_insn
{
enum bpf_insn_id id;
int size; /* Instruction size in bytes. */
bpf_reg dst;
bpf_reg src;
int16_t offset16;
int32_t imm32;
int64_t imm64;
};
/* Read an instruction word at the given PC. Note that we need to
return a big-endian word. */
static bpf_insn_word
bpf_read_insn_word (SIM_CPU *cpu, uint64_t pc)
{
bpf_insn_word word = sim_core_read_unaligned_8 (cpu, 0, read_map, pc);
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
word = endian_le2h_8 (word);
else
word = endian_be2h_8 (word);
return endian_h2be_8 (word);
}
/* Decode and return a BPF instruction at the given PC. Return 0 if
no valid instruction is found, 1 otherwise. */
static int ATTRIBUTE_UNUSED
decode (SIM_CPU *cpu, uint64_t pc, struct bpf_insn *insn)
{
const struct bpf_opcode *opcode;
bpf_insn_word word;
const char *p;
enum bpf_endian endian
= (current_target_byte_order == BFD_ENDIAN_LITTLE
? BPF_ENDIAN_LITTLE : BPF_ENDIAN_BIG);
/* Initialize the insn struct. */
memset (insn, 0, sizeof (struct bpf_insn));
/* Read a 64-bit instruction word at PC. */
word = bpf_read_insn_word (cpu, pc);
/* See if it is a valid instruction and get the opcodes. */
opcode = bpf_match_insn (word, endian, BPF_V4);
if (!opcode)
return 0;
insn->id = opcode->id;
insn->size = 8;
/* Extract operands using the instruction as a guide. */
for (p = opcode->normal; *p != '\0';)
{
if (*p == '%')
{
if (*(p + 1) == '%')
p += 2;
else if (strncmp (p, "%dr", 3) == 0)
{
insn->dst = bpf_extract_dst (word, endian);
p += 3;
}
else if (strncmp (p, "%sr", 3) == 0)
{
insn->src = bpf_extract_src (word, endian);
p += 3;
}
else if (strncmp (p, "%dw", 3) == 0)
{
insn->dst = bpf_extract_dst (word, endian);
p += 3;
}
else if (strncmp (p, "%sw", 3) == 0)
{
insn->src = bpf_extract_src (word, endian);
p += 3;
}
else if (strncmp (p, "%i32", 4) == 0
|| strncmp (p, "%d32", 4) == 0)
{
insn->imm32 = bpf_extract_imm32 (word, endian);
p += 4;
}
else if (strncmp (p, "%o16", 4) == 0
|| strncmp (p, "%d16", 4) == 0)
{
insn->offset16 = bpf_extract_offset16 (word, endian);
p += 4;
}
else if (strncmp (p, "%i64", 4) == 0)
{
bpf_insn_word word2;
/* XXX PC + 8 */
word2 = bpf_read_insn_word (cpu, pc + 8);
insn->imm64 = bpf_extract_imm64 (word, word2, endian);
insn->size = 16;
p += 4;
}
else if (strncmp (p, "%w", 2) == 0
|| strncmp (p, "%W", 2) == 0)
{
/* Ignore these templates. */
p += 2;
}
else
/* Malformed opcode template. */
/* XXX ignore unknown tags? */
assert (0);
}
else
p += 1;
}
return 1;
}
/***** Instruction semantics. *****/
static void
bpf_call (SIM_CPU *cpu, int32_t disp32, uint8_t src)
{
/* eBPF supports two kind of CALL instructions: the so called pseudo
calls ("bpf to bpf") and external calls ("bpf to helper").
Both kind of calls use the same instruction (CALL). However,
external calls are constructed by passing a constant argument to
the instruction, that identifies the helper, whereas pseudo calls
result from expressions involving symbols.
We distinguish calls from pseudo-calls with the later having a 1
stored in the SRC field of the instruction. */
if (src == 1)
{
/* This is a pseudo-call. */
/* XXX allocate a new stack frame and transfer control. For
that we need to analyze the target function, like the kernel
verifier does. We better populate a cache
(function_start_address -> frame_size) so we avoid
calculating this more than once. But it is easier to just
allocate the maximum stack size per stack frame? */
/* XXX note that disp32 is PC-relative in number of 64-bit
words, _minus one_. */
}
else
{
/* This is a call to a helper.
DISP32 contains the helper number. */
switch (disp32) {
/* case TRACE_PRINTK: */
case 7:
bpf_trace_printk (cpu);
break;
default:;
}
}
}
static int
execute (SIM_CPU *cpu, struct bpf_insn *insn)
{
uint64_t next_pc = bpf_pc + insn->size;
/* Displacements in instructions are encoded in number of 64-bit
words _minus one_, and not in bytes. */
#define DISP(OFFSET) (((OFFSET) + 1) * 8)
/* For debugging. */
#define BPF_TRACE(STR) \
do \
{ \
if (0) \
printf ("%s", (STR)); \
} \
while (0)
switch (insn->id)
{
/* Instruction to trap to GDB. */
case BPF_INSN_BRKPT:
BPF_TRACE ("BPF_INSN_BRKPT\n");
sim_engine_halt (CPU_STATE (cpu), cpu,
NULL, bpf_pc, sim_stopped, SIM_SIGTRAP);
break;
/* ALU instructions. */
case BPF_INSN_ADDR:
BPF_TRACE ("BPF_INSN_ADDR\n");
bpf_regs[insn->dst] += bpf_regs[insn->src];
break;
case BPF_INSN_ADDI:
BPF_TRACE ("BPF_INSN_ADDI\n");
bpf_regs[insn->dst] += insn->imm32;
break;
case BPF_INSN_SUBR:
BPF_TRACE ("BPF_INSN_SUBR\n");
bpf_regs[insn->dst] -= bpf_regs[insn->src];
break;
case BPF_INSN_SUBI:
BPF_TRACE ("BPF_INSN_SUBI\n");
bpf_regs[insn->dst] -= insn->imm32;
break;
case BPF_INSN_MULR:
BPF_TRACE ("BPF_INSN_MULR\n");
bpf_regs[insn->dst] *= bpf_regs[insn->src];
break;
case BPF_INSN_MULI:
BPF_TRACE ("BPF_INSN_MULI\n");
bpf_regs[insn->dst] *= insn->imm32;
break;
case BPF_INSN_DIVR:
BPF_TRACE ("BPF_INSN_DIVR\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] /= bpf_regs[insn->src];
break;
case BPF_INSN_DIVI:
BPF_TRACE ("BPF_INSN_DIVI\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] /= insn->imm32;
break;
case BPF_INSN_MODR:
BPF_TRACE ("BPF_INSN_MODR\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] %= bpf_regs[insn->src];
break;
case BPF_INSN_MODI:
BPF_TRACE ("BPF_INSN_MODI\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] %= insn->imm32;
break;
case BPF_INSN_ORR:
BPF_TRACE ("BPF_INSN_ORR\n");
bpf_regs[insn->dst] |= bpf_regs[insn->src];
break;
case BPF_INSN_ORI:
BPF_TRACE ("BPF_INSN_ORI\n");
bpf_regs[insn->dst] |= insn->imm32;
break;
case BPF_INSN_ANDR:
BPF_TRACE ("BPF_INSN_ANDR\n");
bpf_regs[insn->dst] &= bpf_regs[insn->src];
break;
case BPF_INSN_ANDI:
BPF_TRACE ("BPF_INSN_ANDI\n");
bpf_regs[insn->dst] &= insn->imm32;
break;
case BPF_INSN_XORR:
BPF_TRACE ("BPF_INSN_XORR\n");
bpf_regs[insn->dst] ^= bpf_regs[insn->src];
break;
case BPF_INSN_XORI:
BPF_TRACE ("BPF_INSN_XORI\n");
bpf_regs[insn->dst] ^= insn->imm32;
break;
case BPF_INSN_SDIVR:
BPF_TRACE ("BPF_INSN_SDIVR\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] / (int64_t) bpf_regs[insn->src];
break;
case BPF_INSN_SDIVI:
BPF_TRACE ("BPF_INSN_SDIVI\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] / (int64_t) insn->imm32;
break;
case BPF_INSN_SMODR:
BPF_TRACE ("BPF_INSN_SMODR\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] % (int64_t) bpf_regs[insn->src];
break;
case BPF_INSN_SMODI:
BPF_TRACE ("BPF_INSN_SMODI\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] % (int64_t) insn->imm32;
break;
case BPF_INSN_NEGR:
BPF_TRACE ("BPF_INSN_NEGR\n");
bpf_regs[insn->dst] = - (int64_t) bpf_regs[insn->dst];
break;
case BPF_INSN_LSHR:
BPF_TRACE ("BPF_INSN_LSHR\n");
bpf_regs[insn->dst] <<= bpf_regs[insn->src];
break;
case BPF_INSN_LSHI:
BPF_TRACE ("BPF_INSN_LSHI\n");
bpf_regs[insn->dst] <<= insn->imm32;
break;
case BPF_INSN_RSHR:
BPF_TRACE ("BPF_INSN_RSHR\n");
bpf_regs[insn->dst] >>= bpf_regs[insn->src];
break;
case BPF_INSN_RSHI:
BPF_TRACE ("BPF_INSN_RSHI\n");
bpf_regs[insn->dst] >>= insn->imm32;
break;
case BPF_INSN_ARSHR:
BPF_TRACE ("BPF_INSN_ARSHR\n");
bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] >> bpf_regs[insn->src];
break;
case BPF_INSN_ARSHI:
BPF_TRACE ("BPF_INSN_ARSHI\n");
bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] >> insn->imm32;
break;
case BPF_INSN_MOVR:
BPF_TRACE ("BPF_INSN_MOVR\n");
bpf_regs[insn->dst] = bpf_regs[insn->src];
break;
case BPF_INSN_MOVI:
BPF_TRACE ("BPF_INSN_MOVI\n");
bpf_regs[insn->dst] = insn->imm32;
break;
/* ALU32 instructions. */
case BPF_INSN_ADD32R:
BPF_TRACE ("BPF_INSN_ADD32R\n");
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] + (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_ADD32I:
BPF_TRACE ("BPF_INSN_ADD32I\n");
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] + insn->imm32;
break;
case BPF_INSN_SUB32R:
BPF_TRACE ("BPF_INSN_SUB32R\n");
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] - (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_SUB32I:
BPF_TRACE ("BPF_INSN_SUB32I\n");
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] - insn->imm32;
break;
case BPF_INSN_MUL32R:
BPF_TRACE ("BPF_INSN_MUL32R\n");
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] * (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_MUL32I:
BPF_TRACE ("BPF_INSN_MUL32I\n");
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] * (int32_t) insn->imm32;
break;
case BPF_INSN_DIV32R:
BPF_TRACE ("BPF_INSN_DIV32R\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] / (uint32_t) bpf_regs[insn->src];
break;
case BPF_INSN_DIV32I:
BPF_TRACE ("BPF_INSN_DIV32I\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] / (uint32_t) insn->imm32;
break;
case BPF_INSN_MOD32R:
BPF_TRACE ("BPF_INSN_MOD32R\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] % (uint32_t) bpf_regs[insn->src];
break;
case BPF_INSN_MOD32I:
BPF_TRACE ("BPF_INSN_MOD32I\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] % (uint32_t) insn->imm32;
break;
case BPF_INSN_OR32R:
BPF_TRACE ("BPF_INSN_OR32R\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] | (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_OR32I:
BPF_TRACE ("BPF_INSN_OR32I\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] | (int32_t) insn->imm32;
break;
case BPF_INSN_AND32R:
BPF_TRACE ("BPF_INSN_AND32R\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] & (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_AND32I:
BPF_TRACE ("BPF_INSN_AND32I\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] & (int32_t) insn->imm32;
break;
case BPF_INSN_XOR32R:
BPF_TRACE ("BPF_INSN_XOR32R\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] ^ (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_XOR32I:
BPF_TRACE ("BPF_INSN_XOR32I\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] ^ (int32_t) insn->imm32;
break;
case BPF_INSN_SDIV32R:
BPF_TRACE ("BPF_INSN_SDIV32R\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] / (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_SDIV32I:
BPF_TRACE ("BPF_INSN_SDIV32I\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] / (int32_t) insn->imm32;
break;
case BPF_INSN_SMOD32R:
BPF_TRACE ("BPF_INSN_SMOD32R\n");
if (bpf_regs[insn->src] == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] % (int32_t) bpf_regs[insn->src];
break;
case BPF_INSN_SMOD32I:
BPF_TRACE ("BPF_INSN_SMOD32I\n");
if (insn->imm32 == 0)
sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] % (int32_t) insn->imm32;
break;
case BPF_INSN_NEG32R:
BPF_TRACE ("BPF_INSN_NEG32R\n");
bpf_regs[insn->dst] = (uint32_t) (- (int32_t) bpf_regs[insn->dst]);
break;
case BPF_INSN_LSH32R:
BPF_TRACE ("BPF_INSN_LSH32R\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] << bpf_regs[insn->src];
break;
case BPF_INSN_LSH32I:
BPF_TRACE ("BPF_INSN_LSH32I\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] << insn->imm32;
break;
case BPF_INSN_RSH32R:
BPF_TRACE ("BPF_INSN_RSH32R\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] >> bpf_regs[insn->src];
break;
case BPF_INSN_RSH32I:
BPF_TRACE ("BPF_INSN_RSH32I\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] >> insn->imm32;
break;
case BPF_INSN_ARSH32R:
BPF_TRACE ("BPF_INSN_ARSH32R\n");
bpf_regs[insn->dst] = (uint32_t)((int32_t)(uint32_t) bpf_regs[insn->dst] >> bpf_regs[insn->src]);
break;
case BPF_INSN_ARSH32I:
BPF_TRACE ("BPF_INSN_ARSH32I\n");
bpf_regs[insn->dst] = (uint32_t)((int32_t)(uint32_t) bpf_regs[insn->dst] >> insn->imm32);
break;
case BPF_INSN_MOV32R:
BPF_TRACE ("BPF_INSN_MOV32R\n");
bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->src];
break;
case BPF_INSN_MOV32I:
BPF_TRACE ("BPF_INSN_MOV32I\n");
bpf_regs[insn->dst] = (uint32_t) insn->imm32;
break;
/* Endianness conversion instructions. */
case BPF_INSN_ENDLE16:
BPF_TRACE ("BPF_INSN_ENDLE16\n");
bpf_regs[insn->dst] = endian_h2le_2 (endian_t2h_2 (bpf_regs[insn->dst]));
break;
case BPF_INSN_ENDLE32:
BPF_TRACE ("BPF_INSN_ENDLE32\n");
bpf_regs[insn->dst] = endian_h2le_4 (endian_t2h_4 (bpf_regs[insn->dst]));
break;
case BPF_INSN_ENDLE64:
BPF_TRACE ("BPF_INSN_ENDLE64\n");
bpf_regs[insn->dst] = endian_h2le_8 (endian_t2h_8 (bpf_regs[insn->dst]));
break;
case BPF_INSN_ENDBE16:
BPF_TRACE ("BPF_INSN_ENDBE16\n");
bpf_regs[insn->dst] = endian_h2be_2 (endian_t2h_2 (bpf_regs[insn->dst]));
break;
case BPF_INSN_ENDBE32:
BPF_TRACE ("BPF_INSN_ENDBE32\n");
bpf_regs[insn->dst] = endian_h2be_4 (endian_t2h_4 (bpf_regs[insn->dst]));
break;
case BPF_INSN_ENDBE64:
BPF_TRACE ("BPF_INSN_ENDBE64\n");
bpf_regs[insn->dst] = endian_h2be_8 (endian_t2h_8 (bpf_regs[insn->dst]));
break;
/* 64-bit load instruction. */
case BPF_INSN_LDDW:
BPF_TRACE ("BPF_INSN_LDDW\n");
bpf_regs[insn->dst] = insn->imm64;
break;
/* Indirect load instructions. */
case BPF_INSN_LDINDB:
BPF_TRACE ("BPF_INSN_LDINDB\n");
bpf_regs[BPF_R0] = bpf_read_u8 (cpu,
bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
+ bpf_regs[insn->src] + insn->imm32);
break;
case BPF_INSN_LDINDH:
BPF_TRACE ("BPF_INSN_LDINDH\n");
bpf_regs[BPF_R0] = bpf_read_u16 (cpu,
bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
+ bpf_regs[insn->src] + insn->imm32);
break;
case BPF_INSN_LDINDW:
BPF_TRACE ("BPF_INSN_LDINDW\n");
bpf_regs[BPF_R0] = bpf_read_u32 (cpu,
bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
+ bpf_regs[insn->src] + insn->imm32);
break;
case BPF_INSN_LDABSB:
BPF_TRACE ("BPF_INSN_LDABSB\n");
bpf_regs[BPF_R0] = bpf_read_u8 (cpu,
bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
+ insn->imm32);
break;
case BPF_INSN_LDABSH:
BPF_TRACE ("BPF_INSN_LDABSH\n");
bpf_regs[BPF_R0] = bpf_read_u16 (cpu,
bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
+ insn->imm32);
break;
case BPF_INSN_LDABSW:
BPF_TRACE ("BPF_INSN_LDABSW\n");
bpf_regs[BPF_R0] = bpf_read_u32 (cpu,
bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
+ insn->imm32);
break;
/* Generic load instructions (to register.) */
case BPF_INSN_LDXB:
BPF_TRACE ("BPF_INSN_LDXB\n");
bpf_regs[insn->dst] = (int8_t) bpf_read_u8 (cpu,
bpf_regs[insn->src] + insn->offset16);
break;
case BPF_INSN_LDXH:
BPF_TRACE ("BPF_INSN_LDXH\n");
bpf_regs[insn->dst] = (int16_t) bpf_read_u16 (cpu,
bpf_regs[insn->src] + insn->offset16);
break;
case BPF_INSN_LDXW:
BPF_TRACE ("BPF_INSN_LDXW\n");
bpf_regs[insn->dst] = (int32_t) bpf_read_u32 (cpu,
bpf_regs[insn->src] + insn->offset16);
break;
case BPF_INSN_LDXDW:
BPF_TRACE ("BPF_INSN_LDXDW\n");
bpf_regs[insn->dst] = bpf_read_u64 (cpu,
bpf_regs[insn->src] + insn->offset16);
break;
/* Generic store instructions (from register.) */
case BPF_INSN_STXBR:
BPF_TRACE ("BPF_INSN_STXBR\n");
bpf_write_u8 (cpu,
bpf_regs[insn->dst] + insn->offset16,
bpf_regs[insn->src]);
break;
case BPF_INSN_STXHR:
BPF_TRACE ("BPF_INSN_STXHR\n");
bpf_write_u16 (cpu,
bpf_regs[insn->dst] + insn->offset16,
bpf_regs[insn->src]);
break;
case BPF_INSN_STXWR:
BPF_TRACE ("BPF_INSN_STXWR\n");
bpf_write_u32 (cpu,
bpf_regs[insn->dst] + insn->offset16,
bpf_regs[insn->src]);
break;
case BPF_INSN_STXDWR:
BPF_TRACE ("BPF_INSN_STXDWR\n");
bpf_write_u64 (cpu,
bpf_regs[insn->dst] + insn->offset16,
bpf_regs[insn->src]);
break;
/* Generic store instructions (from 32-bit immediate.) */
case BPF_INSN_STXBI:
BPF_TRACE ("BPF_INSN_STXBI\n");
bpf_write_u8 (cpu,
bpf_regs[insn->dst] + insn->offset16,
insn->imm32);
break;
case BPF_INSN_STXHI:
BPF_TRACE ("BPF_INSN_STXHI\n");
bpf_write_u16 (cpu,
bpf_regs[insn->dst] + insn->offset16,
insn->imm32);
break;
case BPF_INSN_STXWI:
BPF_TRACE ("BPF_INSN_STXWI\n");
bpf_write_u32 (cpu,
bpf_regs[insn->dst] + insn->offset16,
insn->imm32);
break;
case BPF_INSN_STXDWI:
BPF_TRACE ("BPF_INSN_STXDWI\n");
bpf_write_u64 (cpu,
bpf_regs[insn->dst] + insn->offset16,
insn->imm32);
break;
/* Compare-and-jump instructions (reg OP reg). */
case BPF_INSN_JAR:
BPF_TRACE ("BPF_INSN_JAR\n");
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JEQR:
BPF_TRACE ("BPF_INSN_JEQR\n");
if (bpf_regs[insn->dst] == bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGTR:
BPF_TRACE ("BPF_INSN_JGTR\n");
if (bpf_regs[insn->dst] > bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGTR:
BPF_TRACE ("BPF_INSN_JSGTR\n");
if ((int64_t) bpf_regs[insn->dst] > (int64_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGER:
BPF_TRACE ("BPF_INSN_JGER\n");
if (bpf_regs[insn->dst] >= bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGER:
BPF_TRACE ("BPF_INSN_JSGER\n");
if ((int64_t) bpf_regs[insn->dst] >= (int64_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLTR:
BPF_TRACE ("BPF_INSN_JLTR\n");
if (bpf_regs[insn->dst] < bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLTR:
BPF_TRACE ("BPF_INSN_JSLTR\n");
if ((int64_t) bpf_regs[insn->dst] < (int64_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLER:
BPF_TRACE ("BPF_INSN_JLER\n");
if (bpf_regs[insn->dst] <= bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLER:
BPF_TRACE ("BPF_INSN_JSLER\n");
if ((int64_t) bpf_regs[insn->dst] <= (int64_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSETR:
BPF_TRACE ("BPF_INSN_JSETR\n");
if (bpf_regs[insn->dst] & bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JNER:
BPF_TRACE ("BPF_INSN_JNER\n");
if (bpf_regs[insn->dst] != bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_CALLR:
BPF_TRACE ("BPF_INSN_CALLR\n");
bpf_call (cpu, DISP (bpf_regs[insn->dst]), insn->src);
break;
case BPF_INSN_CALL:
BPF_TRACE ("BPF_INSN_CALL\n");
bpf_call (cpu, insn->imm32, insn->src);
break;
case BPF_INSN_EXIT:
BPF_TRACE ("BPF_INSN_EXIT\n");
{
SIM_DESC sd = CPU_STATE (cpu);
printf ("exit %" PRId64 " (0x%" PRIx64 ")\n",
bpf_regs[BPF_R0], bpf_regs[BPF_R0]);
sim_engine_halt (sd, cpu, NULL, bpf_pc,
sim_exited, 0 /* sigrc */);
break;
}
/* Compare-and-jump instructions (reg OP imm). */
case BPF_INSN_JEQI:
BPF_TRACE ("BPF_INSN_JEQI\n");
if (bpf_regs[insn->dst] == insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGTI:
BPF_TRACE ("BPF_INSN_JGTI\n");
if (bpf_regs[insn->dst] > insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGTI:
BPF_TRACE ("BPF_INSN_JSGTI\n");
if ((int64_t) bpf_regs[insn->dst] > insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGEI:
BPF_TRACE ("BPF_INSN_JGEI\n");
if (bpf_regs[insn->dst] >= insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGEI:
BPF_TRACE ("BPF_INSN_JSGEI\n");
if ((int64_t) bpf_regs[insn->dst] >= (int64_t) insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLTI:
BPF_TRACE ("BPF_INSN_JLTI\n");
if (bpf_regs[insn->dst] < insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLTI:
BPF_TRACE ("BPF_INSN_JSLTI\n");
if ((int64_t) bpf_regs[insn->dst] < (int64_t) insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLEI:
BPF_TRACE ("BPF_INSN_JLEI\n");
if (bpf_regs[insn->dst] <= insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLEI:
BPF_TRACE ("BPF_INSN_JSLEI\n");
if ((int64_t) bpf_regs[insn->dst] <= (int64_t) insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSETI:
BPF_TRACE ("BPF_INSN_JSETI\n");
if (bpf_regs[insn->dst] & insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JNEI:
BPF_TRACE ("BPF_INSN_JNEI\n");
if (bpf_regs[insn->dst] != insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
/* 32-bit compare-and-jump instructions (reg OP reg). */
case BPF_INSN_JEQ32R:
BPF_TRACE ("BPF_INSN_JEQ32R\n");
if ((uint32_t) bpf_regs[insn->dst] == (uint32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGT32R:
BPF_TRACE ("BPF_INSN_JGT32R\n");
if ((uint32_t) bpf_regs[insn->dst] > (uint32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGT32R:
BPF_TRACE ("BPF_INSN_JSGT32R\n");
if ((int32_t) bpf_regs[insn->dst] > (int32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGE32R:
BPF_TRACE ("BPF_INSN_JGE32R\n");
if ((uint32_t) bpf_regs[insn->dst] >= (uint32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGE32R:
BPF_TRACE ("BPF_INSN_JSGE32R\n");
if ((int32_t) bpf_regs[insn->dst] >= (int32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLT32R:
BPF_TRACE ("BPF_INSN_JLT32R\n");
if ((uint32_t) bpf_regs[insn->dst] < (uint32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLT32R:
BPF_TRACE ("BPF_INSN_JSLT32R\n");
if ((int32_t) bpf_regs[insn->dst] < (int32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLE32R:
BPF_TRACE ("BPF_INSN_JLE32R\n");
if ((uint32_t) bpf_regs[insn->dst] <= (uint32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLE32R:
BPF_TRACE ("BPF_INSN_JSLE32R\n");
if ((int32_t) bpf_regs[insn->dst] <= (int32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSET32R:
BPF_TRACE ("BPF_INSN_JSET32R\n");
if ((uint32_t) bpf_regs[insn->dst] & (uint32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JNE32R:
BPF_TRACE ("BPF_INSN_JNE32R\n");
if ((uint32_t) bpf_regs[insn->dst] != (uint32_t) bpf_regs[insn->src])
next_pc = bpf_pc + DISP (insn->offset16);
break;
/* 32-bit compare-and-jump instructions (reg OP imm). */
case BPF_INSN_JEQ32I:
BPF_TRACE ("BPF_INSN_JEQ32I\n");
if ((uint32_t) bpf_regs[insn->dst] == insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGT32I:
BPF_TRACE ("BPF_INSN_JGT32I\n");
if ((uint32_t) bpf_regs[insn->dst] > insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGT32I:
BPF_TRACE ("BPF_INSN_JSGT32I\n");
if ((int32_t) bpf_regs[insn->dst] > insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JGE32I:
BPF_TRACE ("BPF_INSN_JGE32I\n");
if ((uint32_t) bpf_regs[insn->dst] >= insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSGE32I:
BPF_TRACE ("BPF_INSN_JSGE32I\n");
if ((int32_t) bpf_regs[insn->dst] >= (int32_t) insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLT32I:
BPF_TRACE ("BPF_INSN_JLT32I\n");
if ((uint32_t) bpf_regs[insn->dst] < insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLT32I:
BPF_TRACE ("BPF_INSN_JSLT32I\n");
if ((int32_t) bpf_regs[insn->dst] < (int32_t) insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JLE32I:
BPF_TRACE ("BPF_INSN_JLE32I\n");
if ((uint32_t) bpf_regs[insn->dst] <= insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSLE32I:
BPF_TRACE ("BPF_INSN_JSLE32I\n");
if ((int32_t) bpf_regs[insn->dst] <= (int32_t) insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JSET32I:
BPF_TRACE ("BPF_INSN_JSET32I\n");
if ((uint32_t) bpf_regs[insn->dst] & insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
case BPF_INSN_JNE32I:
BPF_TRACE ("BPF_INSN_JNE32I\n");
if ((uint32_t) bpf_regs[insn->dst] != insn->imm32)
next_pc = bpf_pc + DISP (insn->offset16);
break;
/* Atomic instructions. */
case BPF_INSN_AADD:
BPF_TRACE ("BPF_INSN_AADD\n");
bpf_write_u64 (cpu,
bpf_regs[insn->dst] + insn->offset16,
bpf_read_u64 (cpu, bpf_regs[insn->dst] + insn->offset16)
+ bpf_regs[insn->src]);
break;
case BPF_INSN_AADD32:
BPF_TRACE ("BPF_INSN_AADD32\n");
bpf_write_u32 (cpu,
bpf_regs[insn->dst] + insn->offset16,
(int32_t) bpf_read_u32 (cpu, bpf_regs[insn->dst] + insn->offset16)
+ bpf_regs[insn->src]);
break;
/* XXX Atomic instructions with fetching. */
default: /* XXX */
case BPF_NOINSN:
BPF_TRACE ("BPF_NOINSN\n");
return 0;
break;
}
/* Set new PC. */
bpf_pc = next_pc;
return 1;
}
/* Entry points. */
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
char * const *argv, char * const *env)
{
SIM_CPU *cpu = STATE_CPU (sd, 0);
bfd_vma addr;
/* Determine the start address.
XXX acknowledge bpf_program_section. If it is NULL, emit a
warning explaining that we are using the ELF file start address,
which often is not what is actually wanted. */
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
else
addr = 0;
sim_pc_set (cpu, addr);
return SIM_RC_OK;
}
/* Like sim_state_free, but free the cpu buffers as well. */
static void
bpf_free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
/* Create an instance of the simulator. */
SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb,
struct bfd *abfd, char * const *argv)
{
SIM_DESC sd = sim_state_alloc_extra (kind, cb, sizeof (struct bpf_sim_state));
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* Set default options before parsing user options. */
current_target_byte_order = BFD_ENDIAN_LITTLE;
if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct bpf_sim_state)) != SIM_RC_OK)
goto error;
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
goto error;
/* Add the BPF-specific option list to the simulator. */
if (sim_add_option_table (sd, NULL, bpf_options) != SIM_RC_OK)
{
bpf_free_state (sd);
return 0;
}
/* The parser will print an error message for us, so we silently return. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
goto error;
/* Check for/establish the a reference program image. */
if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
goto error;
/* Configure/verify the target byte order and other runtime
configuration options. */
if (sim_config (sd) != SIM_RC_OK)
goto error;
if (sim_post_argv_init (sd) != SIM_RC_OK)
goto error;
/* Initialize properties of the simulated CPU. */
assert (MAX_NR_PROCESSORS == 1);
{
SIM_CPU *cpu = STATE_CPU (sd, i);
cpu = STATE_CPU (sd, 0);
CPU_PC_FETCH (cpu) = bpf_pc_get;
CPU_PC_STORE (cpu) = bpf_pc_set;
CPU_REG_FETCH (cpu) = bpf_reg_get;
CPU_REG_STORE (cpu) = bpf_reg_set;
}
return sd;
error:
bpf_free_state (sd);
return NULL;
}
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr ATTRIBUTE_UNUSED,
int nr_cpus ATTRIBUTE_UNUSED,
int siggnal ATTRIBUTE_UNUSED)
{
SIM_CPU *cpu = STATE_CPU (sd, 0);
struct bpf_insn insn;
while (1)
{
if (!decode (cpu, bpf_pc, &insn))
{
sim_io_eprintf (sd, "couldn't decode instruction at PC 0x%" PRIx64 "\n",
bpf_pc);
break;
}
if (!execute (cpu, &insn))
{
sim_io_eprintf (sd, "couldn' execute instruction at PC 0x%" PRIx64 "\n",
bpf_pc);
break;
}
}
}
|