1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
Copyright (C) 1994 Advanced RISC Machines Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "armdefs.h"
#include "armemu.h"
/***************************************************************************\
* Definitions for the support routines *
\***************************************************************************/
ARMword ARMul_GetReg(ARMul_State *state, unsigned mode, unsigned reg) ;
void ARMul_SetReg(ARMul_State *state, unsigned mode, unsigned reg, ARMword value) ;
ARMword ARMul_GetPC(ARMul_State *state) ;
ARMword ARMul_GetNextPC(ARMul_State *state) ;
void ARMul_SetPC(ARMul_State *state, ARMword value) ;
ARMword ARMul_GetR15(ARMul_State *state) ;
void ARMul_SetR15(ARMul_State *state, ARMword value) ;
ARMword ARMul_GetCPSR(ARMul_State *state) ;
void ARMul_SetCPSR(ARMul_State *state, ARMword value) ;
void ARMul_FixCPSR(ARMul_State *state, ARMword instr, ARMword rhs) ;
ARMword ARMul_GetSPSR(ARMul_State *state, ARMword mode) ;
void ARMul_SetSPSR(ARMul_State *state, ARMword mode, ARMword value) ;
void ARMul_FixSPSR(ARMul_State *state, ARMword instr, ARMword rhs) ;
void ARMul_CPSRAltered(ARMul_State *state) ;
void ARMul_R15Altered(ARMul_State *state) ;
ARMword ARMul_SwitchMode(ARMul_State *state,ARMword oldmode, ARMword newmode) ;
static ARMword ModeToBank(ARMul_State *state,ARMword mode) ;
unsigned ARMul_NthReg(ARMword instr, unsigned number) ;
void ARMul_NegZero(ARMul_State *state, ARMword result) ;
void ARMul_AddCarry(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_AddOverflow(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_SubCarry(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_SubOverflow(ARMul_State *state, ARMword a, ARMword b, ARMword result) ;
void ARMul_LDC(ARMul_State *state,ARMword instr,ARMword address) ;
void ARMul_STC(ARMul_State *state,ARMword instr,ARMword address) ;
void ARMul_MCR(ARMul_State *state,ARMword instr, ARMword source) ;
ARMword ARMul_MRC(ARMul_State *state,ARMword instr) ;
void ARMul_CDP(ARMul_State *state,ARMword instr) ;
void ARMul_UndefInstr(ARMul_State *state,ARMword instr) ;
unsigned IntPending(ARMul_State *state) ;
ARMword ARMul_Align(ARMul_State *state, ARMword address, ARMword data) ;
void ARMul_ScheduleEvent(ARMul_State *state, unsigned long delay,
unsigned (*what)()) ;
void ARMul_EnvokeEvent(ARMul_State *state) ;
unsigned long ARMul_Time(ARMul_State *state) ;
static void EnvokeList(ARMul_State *state, unsigned long from, unsigned long to) ;
struct EventNode { /* An event list node */
unsigned (*func)() ; /* The function to call */
struct EventNode *next ;
} ;
/***************************************************************************\
* This routine returns the value of a register from a mode. *
\***************************************************************************/
ARMword ARMul_GetReg(ARMul_State *state, unsigned mode, unsigned reg)
{mode &= MODEBITS ;
if (mode != state->Mode)
return(state->RegBank[ModeToBank(state,(ARMword)mode)][reg]) ;
else
return(state->Reg[reg]) ;
}
/***************************************************************************\
* This routine sets the value of a register for a mode. *
\***************************************************************************/
void ARMul_SetReg(ARMul_State *state, unsigned mode, unsigned reg, ARMword value)
{mode &= MODEBITS ;
if (mode != state->Mode)
state->RegBank[ModeToBank(state,(ARMword)mode)][reg] = value ;
else
state->Reg[reg] = value ;
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword ARMul_GetPC(ARMul_State *state)
{if (state->Mode > SVC26MODE)
return(state->Reg[15]) ;
else
return(R15PC) ;
}
/***************************************************************************\
* This routine returns the value of the PC, mode independently. *
\***************************************************************************/
ARMword ARMul_GetNextPC(ARMul_State *state)
{if (state->Mode > SVC26MODE)
return(state->Reg[15] + isize) ;
else
return((state->Reg[15] + isize) & R15PCBITS) ;
}
/***************************************************************************\
* This routine sets the value of the PC. *
\***************************************************************************/
void ARMul_SetPC(ARMul_State *state, ARMword value)
{if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS ;
else
state->Reg[15] = R15CCINTMODE | (value & R15PCBITS) ;
FLUSHPIPE ;
}
/***************************************************************************\
* This routine returns the value of register 15, mode independently. *
\***************************************************************************/
ARMword ARMul_GetR15(ARMul_State *state)
{if (state->Mode > SVC26MODE)
return(state->Reg[15]) ;
else
return(R15PC | ECC | ER15INT | EMODE) ;
}
/***************************************************************************\
* This routine sets the value of Register 15. *
\***************************************************************************/
void ARMul_SetR15(ARMul_State *state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS ;
else {
state->Reg[15] = value ;
ARMul_R15Altered(state) ;
}
FLUSHPIPE ;
}
/***************************************************************************\
* This routine returns the value of the CPSR *
\***************************************************************************/
ARMword ARMul_GetCPSR(ARMul_State *state)
{
return(CPSR) ;
}
/***************************************************************************\
* This routine sets the value of the CPSR *
\***************************************************************************/
void ARMul_SetCPSR(ARMul_State *state, ARMword value)
{state->Cpsr = CPSR ;
SETPSR(state->Cpsr,value) ;
ARMul_CPSRAltered(state) ;
}
/***************************************************************************\
* This routine does all the nasty bits involved in a write to the CPSR, *
* including updating the register bank, given a MSR instruction. *
\***************************************************************************/
void ARMul_FixCPSR(ARMul_State *state, ARMword instr, ARMword rhs)
{state->Cpsr = CPSR ;
if (state->Bank==USERBANK) { /* Only write flags in user mode */
if (BIT(19)) {
SETCC(state->Cpsr,rhs) ;
}
}
else { /* Not a user mode */
if (BITS(16,19)==9) SETPSR(state->Cpsr,rhs) ;
else if (BIT(16)) SETINTMODE(state->Cpsr,rhs) ;
else if (BIT(19)) SETCC(state->Cpsr,rhs) ;
}
ARMul_CPSRAltered(state) ;
}
/***************************************************************************\
* Get an SPSR from the specified mode *
\***************************************************************************/
ARMword ARMul_GetSPSR(ARMul_State *state, ARMword mode)
{ARMword bank = ModeToBank(state,mode & MODEBITS) ;
if (bank == USERBANK || bank == DUMMYBANK)
return(CPSR) ;
else
return(state->Spsr[bank]) ;
}
/***************************************************************************\
* This routine does a write to an SPSR *
\***************************************************************************/
void ARMul_SetSPSR(ARMul_State *state, ARMword mode, ARMword value)
{ARMword bank = ModeToBank(state,mode & MODEBITS) ;
if (bank != USERBANK && bank !=DUMMYBANK)
state->Spsr[bank] = value ;
}
/***************************************************************************\
* This routine does a write to the current SPSR, given an MSR instruction *
\***************************************************************************/
void ARMul_FixSPSR(ARMul_State *state, ARMword instr, ARMword rhs)
{if (state->Bank != USERBANK && state->Bank !=DUMMYBANK) {
if (BITS(16,19)==9) SETPSR(state->Spsr[state->Bank],rhs) ;
else if (BIT(16)) SETINTMODE(state->Spsr[state->Bank],rhs) ;
else if (BIT(19)) SETCC(state->Spsr[state->Bank],rhs) ;
}
}
/***************************************************************************\
* This routine updates the state of the emulator after the Cpsr has been *
* changed. Both the processor flags and register bank are updated. *
\***************************************************************************/
void ARMul_CPSRAltered(ARMul_State *state)
{ARMword oldmode ;
if (state->prog32Sig == LOW)
state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS) ;
oldmode = state->Mode ;
if (state->Mode != (state->Cpsr & MODEBITS)) {
state->Mode = ARMul_SwitchMode(state,state->Mode,state->Cpsr & MODEBITS) ;
state->NtransSig = (state->Mode & 3)?HIGH:LOW ;
}
ASSIGNINT(state->Cpsr & INTBITS) ;
ASSIGNN((state->Cpsr & NBIT) != 0) ;
ASSIGNZ((state->Cpsr & ZBIT) != 0) ;
ASSIGNC((state->Cpsr & CBIT) != 0) ;
ASSIGNV((state->Cpsr & VBIT) != 0) ;
#ifdef MODET
ASSIGNT((state->Cpsr & TBIT) != 0);
#endif
if (oldmode > SVC26MODE) {
if (state->Mode <= SVC26MODE) {
state->Emulate = CHANGEMODE ;
state->Reg[15] = ECC | ER15INT | EMODE | R15PC ;
}
}
else {
if (state->Mode > SVC26MODE) {
state->Emulate = CHANGEMODE ;
state->Reg[15] = R15PC ;
}
else
state->Reg[15] = ECC | ER15INT | EMODE | R15PC ;
}
}
/***************************************************************************\
* This routine updates the state of the emulator after register 15 has *
* been changed. Both the processor flags and register bank are updated. *
* This routine should only be called from a 26 bit mode. *
\***************************************************************************/
void ARMul_R15Altered(ARMul_State *state)
{
if (state->Mode != R15MODE) {
state->Mode = ARMul_SwitchMode(state,state->Mode,R15MODE) ;
state->NtransSig = (state->Mode & 3)?HIGH:LOW ;
}
if (state->Mode > SVC26MODE)
state->Emulate = CHANGEMODE ;
ASSIGNR15INT(R15INT) ;
ASSIGNN((state->Reg[15] & NBIT) != 0) ;
ASSIGNZ((state->Reg[15] & ZBIT) != 0) ;
ASSIGNC((state->Reg[15] & CBIT) != 0) ;
ASSIGNV((state->Reg[15] & VBIT) != 0) ;
}
/***************************************************************************\
* This routine controls the saving and restoring of registers across mode *
* changes. The regbank matrix is largely unused, only rows 13 and 14 are *
* used across all modes, 8 to 14 are used for FIQ, all others use the USER *
* column. It's easier this way. old and new parameter are modes numbers. *
* Notice the side effect of changing the Bank variable. *
\***************************************************************************/
ARMword ARMul_SwitchMode(ARMul_State *state,ARMword oldmode, ARMword newmode)
{unsigned i ;
oldmode = ModeToBank(state,oldmode) ;
state->Bank = ModeToBank(state,newmode) ;
if (oldmode != state->Bank) { /* really need to do it */
switch (oldmode) { /* save away the old registers */
case USERBANK :
case IRQBANK :
case SVCBANK :
case ABORTBANK :
case UNDEFBANK : if (state->Bank == FIQBANK)
for (i = 8 ; i < 13 ; i++)
state->RegBank[USERBANK][i] = state->Reg[i] ;
state->RegBank[oldmode][13] = state->Reg[13] ;
state->RegBank[oldmode][14] = state->Reg[14] ;
break ;
case FIQBANK : for (i = 8 ; i < 15 ; i++)
state->RegBank[FIQBANK][i] = state->Reg[i] ;
break ;
case DUMMYBANK : for (i = 8 ; i < 15 ; i++)
state->RegBank[DUMMYBANK][i] = 0 ;
break ;
}
switch (state->Bank) { /* restore the new registers */
case USERBANK :
case IRQBANK :
case SVCBANK :
case ABORTBANK :
case UNDEFBANK : if (oldmode == FIQBANK)
for (i = 8 ; i < 13 ; i++)
state->Reg[i] = state->RegBank[USERBANK][i] ;
state->Reg[13] = state->RegBank[state->Bank][13] ;
state->Reg[14] = state->RegBank[state->Bank][14] ;
break ;
case FIQBANK : for (i = 8 ; i < 15 ; i++)
state->Reg[i] = state->RegBank[FIQBANK][i] ;
break ;
case DUMMYBANK : for (i = 8 ; i < 15 ; i++)
state->Reg[i] = 0 ;
break ;
} /* switch */
} /* if */
return(newmode) ;
}
/***************************************************************************\
* Given a processor mode, this routine returns the register bank that *
* will be accessed in that mode. *
\***************************************************************************/
static ARMword ModeToBank(ARMul_State *state, ARMword mode)
{static ARMword bankofmode[] = {USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK
} ;
if (mode > UNDEF32MODE)
return(DUMMYBANK) ;
else
return(bankofmode[mode]) ;
}
/***************************************************************************\
* Returns the register number of the nth register in a reg list. *
\***************************************************************************/
unsigned ARMul_NthReg(ARMword instr, unsigned number)
{unsigned bit, upto ;
for (bit = 0, upto = 0 ; upto <= number ; bit++)
if (BIT(bit)) upto++ ;
return(bit - 1) ;
}
/***************************************************************************\
* Assigns the N and Z flags depending on the value of result *
\***************************************************************************/
void ARMul_NegZero(ARMul_State *state, ARMword result)
{
if (NEG(result)) { SETN ; CLEARZ ; }
else if (result == 0) { CLEARN ; SETZ ; }
else { CLEARN ; CLEARZ ; } ;
}
/***************************************************************************\
* Assigns the C flag after an addition of a and b to give result *
\***************************************************************************/
void ARMul_AddCarry(ARMul_State *state, ARMword a,ARMword b,ARMword result)
{
ASSIGNC( (NEG(a) && NEG(b)) ||
(NEG(a) && POS(result)) ||
(NEG(b) && POS(result)) ) ;
}
/***************************************************************************\
* Assigns the V flag after an addition of a and b to give result *
\***************************************************************************/
void ARMul_AddOverflow(ARMul_State *state, ARMword a,ARMword b,ARMword result)
{
ASSIGNV( (NEG(a) && NEG(b) && POS(result)) ||
(POS(a) && POS(b) && NEG(result)) ) ;
}
/***************************************************************************\
* Assigns the C flag after an subtraction of a and b to give result *
\***************************************************************************/
void ARMul_SubCarry(ARMul_State *state, ARMword a,ARMword b,ARMword result)
{
ASSIGNC( (NEG(a) && POS(b)) ||
(NEG(a) && POS(result)) ||
(POS(b) && POS(result)) ) ;
}
/***************************************************************************\
* Assigns the V flag after an subtraction of a and b to give result *
\***************************************************************************/
void ARMul_SubOverflow(ARMul_State *state,ARMword a,ARMword b,ARMword result)
{
ASSIGNV( (NEG(a) && POS(b) && POS(result)) ||
(POS(a) && NEG(b) && NEG(result)) ) ;
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* LDC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void ARMul_LDC(ARMul_State *state,ARMword instr,ARMword address)
{unsigned cpab ;
ARMword data ;
UNDEF_LSCPCBaseWb ;
if (ADDREXCEPT(address)) {
INTERNALABORT(address) ;
}
cpab = (state->LDC[CPNum])(state,ARMul_FIRST,instr,0) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->LDC[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return ;
}
else
cpab = (state->LDC[CPNum])(state,ARMul_BUSY,instr,0) ;
}
if (cpab == ARMul_CANT) {
CPTAKEABORT ;
return ;
}
cpab = (state->LDC[CPNum])(state,ARMul_TRANSFER,instr,0) ;
data = ARMul_LoadWordN(state,address) ;
BUSUSEDINCPCN ;
if (BIT(21))
LSBase = state->Base ;
cpab = (state->LDC[CPNum])(state,ARMul_DATA,instr,data) ;
while (cpab == ARMul_INC) {
address += 4 ;
data = ARMul_LoadWordN(state,address) ;
cpab = (state->LDC[CPNum])(state,ARMul_DATA,instr,data) ;
}
if (state->abortSig || state->Aborted) {
TAKEABORT ;
}
}
/***************************************************************************\
* This function does the work of generating the addresses used in an *
* STC instruction. The code here is always post-indexed, it's up to the *
* caller to get the input address correct and to handle base register *
* modification. It also handles the Busy-Waiting. *
\***************************************************************************/
void ARMul_STC(ARMul_State *state,ARMword instr,ARMword address)
{unsigned cpab ;
ARMword data ;
UNDEF_LSCPCBaseWb ;
if (ADDREXCEPT(address) || VECTORACCESS(address)) {
INTERNALABORT(address) ;
}
cpab = (state->STC[CPNum])(state,ARMul_FIRST,instr,&data) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->STC[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return ;
}
else
cpab = (state->STC[CPNum])(state,ARMul_BUSY,instr,&data) ;
}
if (cpab == ARMul_CANT) {
CPTAKEABORT ;
return ;
}
#ifndef MODE32
if (ADDREXCEPT(address) || VECTORACCESS(address)) {
INTERNALABORT(address) ;
}
#endif
BUSUSEDINCPCN ;
if (BIT(21))
LSBase = state->Base ;
cpab = (state->STC[CPNum])(state,ARMul_DATA,instr,&data) ;
ARMul_StoreWordN(state,address,data) ;
while (cpab == ARMul_INC) {
address += 4 ;
cpab = (state->STC[CPNum])(state,ARMul_DATA,instr,&data) ;
ARMul_StoreWordN(state,address,data) ;
}
if (state->abortSig || state->Aborted) {
TAKEABORT ;
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MCR instruction. *
\***************************************************************************/
void ARMul_MCR(ARMul_State *state,ARMword instr, ARMword source)
{unsigned cpab ;
cpab = (state->MCR[CPNum])(state,ARMul_FIRST,instr,source) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->MCR[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return ;
}
else
cpab = (state->MCR[CPNum])(state,ARMul_BUSY,instr,source) ;
}
if (cpab == ARMul_CANT)
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
else {
BUSUSEDINCPCN ;
ARMul_Ccycles(state,1,0) ;
}
}
/***************************************************************************\
* This function does the Busy-Waiting for an MRC instruction. *
\***************************************************************************/
ARMword ARMul_MRC(ARMul_State *state,ARMword instr)
{unsigned cpab ;
ARMword result = 0 ;
cpab = (state->MRC[CPNum])(state,ARMul_FIRST,instr,&result) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->MRC[CPNum])(state,ARMul_INTERRUPT,instr,0) ;
return(0) ;
}
else
cpab = (state->MRC[CPNum])(state,ARMul_BUSY,instr,&result) ;
}
if (cpab == ARMul_CANT) {
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
result = ECC ; /* Parent will destroy the flags otherwise */
}
else {
BUSUSEDINCPCN ;
ARMul_Ccycles(state,1,0) ;
ARMul_Icycles(state,1,0) ;
}
return(result) ;
}
/***************************************************************************\
* This function does the Busy-Waiting for an CDP instruction. *
\***************************************************************************/
void ARMul_CDP(ARMul_State *state,ARMword instr)
{unsigned cpab ;
cpab = (state->CDP[CPNum])(state,ARMul_FIRST,instr) ;
while (cpab == ARMul_BUSY) {
ARMul_Icycles(state,1,0) ;
if (IntPending(state)) {
cpab = (state->CDP[CPNum])(state,ARMul_INTERRUPT,instr) ;
return ;
}
else
cpab = (state->CDP[CPNum])(state,ARMul_BUSY,instr) ;
}
if (cpab == ARMul_CANT)
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
else
BUSUSEDN ;
}
/***************************************************************************\
* This function handles Undefined instructions, as CP isntruction *
\***************************************************************************/
void ARMul_UndefInstr(ARMul_State *state,ARMword instr)
{
ARMul_Abort(state,ARMul_UndefinedInstrV) ;
}
/***************************************************************************\
* Return TRUE if an interrupt is pending, FALSE otherwise. *
\***************************************************************************/
unsigned IntPending(ARMul_State *state)
{
if (state->Exception) { /* Any exceptions */
if (state->NresetSig == LOW) {
ARMul_Abort(state,ARMul_ResetV) ;
return(TRUE) ;
}
else if (!state->NfiqSig && !FFLAG) {
ARMul_Abort(state,ARMul_FIQV) ;
return(TRUE) ;
}
else if (!state->NirqSig && !IFLAG) {
ARMul_Abort(state,ARMul_IRQV) ;
return(TRUE) ;
}
}
return(FALSE) ;
}
/***************************************************************************\
* Align a word access to a non word boundary *
\***************************************************************************/
ARMword ARMul_Align(ARMul_State *state, ARMword address, ARMword data)
{/* this code assumes the address is really unaligned,
as a shift by 32 is undefined in C */
address = (address & 3) << 3 ; /* get the word address */
return( ( data >> address) | (data << (32 - address)) ) ; /* rot right */
}
/***************************************************************************\
* This routine is used to call another routine after a certain number of *
* cycles have been executed. The first parameter is the number of cycles *
* delay before the function is called, the second argument is a pointer *
* to the function. A delay of zero doesn't work, just call the function. *
\***************************************************************************/
void ARMul_ScheduleEvent(ARMul_State *state, unsigned long delay, unsigned (*what)())
{unsigned long when ;
struct EventNode *event ;
if (state->EventSet++ == 0)
state->Now = ARMul_Time(state) ;
when = (state->Now + delay) % EVENTLISTSIZE ;
event = (struct EventNode *)malloc(sizeof(struct EventNode)) ;
event->func = what ;
event->next = *(state->EventPtr + when) ;
*(state->EventPtr + when) = event ;
}
/***************************************************************************\
* This routine is called at the beginning of every cycle, to envoke *
* scheduled events. *
\***************************************************************************/
void ARMul_EnvokeEvent(ARMul_State *state)
{static unsigned long then ;
then = state->Now ;
state->Now = ARMul_Time(state) % EVENTLISTSIZE ;
if (then < state->Now) /* schedule events */
EnvokeList(state,then,state->Now) ;
else if (then > state->Now) { /* need to wrap around the list */
EnvokeList(state,then,EVENTLISTSIZE-1L) ;
EnvokeList(state,0L,state->Now) ;
}
}
static void EnvokeList(ARMul_State *state, unsigned long from, unsigned long to)
/* envokes all the entries in a range */
{struct EventNode *anevent ;
for (; from <= to ; from++) {
anevent = *(state->EventPtr + from) ;
while (anevent) {
(anevent->func)(state) ;
state->EventSet-- ;
anevent = anevent->next ;
}
*(state->EventPtr + from) = NULL ;
}
}
/***************************************************************************\
* This routine is returns the number of clock ticks since the last reset. *
\***************************************************************************/
unsigned long ARMul_Time(ARMul_State *state)
{return(state->NumScycles + state->NumNcycles +
state->NumIcycles + state->NumCcycles + state->NumFcycles) ;
}
|