1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
/* m32r simulator support code
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#define WANT_CPU
#define WANT_CPU_M32R
#include "sim-main.h"
#include <signal.h>
#include "libiberty.h"
#include "bfd.h"
#include "targ-vals.h"
/* The contents of BUF are in target byte order. */
void
m32r_fetch_register (sd, rn, buf)
SIM_DESC sd;
int rn;
unsigned char *buf;
{
SIM_CPU *current_cpu = STATE_CPU (sd, 0);
if (rn < 16)
SETTWI (buf, GET_H_GR (rn));
else if (rn < 21)
SETTWI (buf, GET_H_CR (rn - 16));
else switch (rn) {
case PC_REGNUM:
SETTWI (buf, GET_H_PC ());
break;
case ACCL_REGNUM:
SETTWI (buf, GETLODI (GET_H_ACCUM ()));
break;
case ACCH_REGNUM:
SETTWI (buf, GETHIDI (GET_H_ACCUM ()));
break;
#if 0
case 23: *reg = STATE_CPU_CPU (sd, 0)->h_cond; break;
case 24: *reg = STATE_CPU_CPU (sd, 0)->h_sm; break;
case 25: *reg = STATE_CPU_CPU (sd, 0)->h_bsm; break;
case 26: *reg = STATE_CPU_CPU (sd, 0)->h_ie; break;
case 27: *reg = STATE_CPU_CPU (sd, 0)->h_bie; break;
case 28: *reg = STATE_CPU_CPU (sd, 0)->h_bcarry; break; /* rename: bc */
case 29: memcpy (buf, &STATE_CPU_CPU (sd, 0)->h_bpc, sizeof(WI)); break; /* duplicate */
#endif
default: abort ();
}
}
/* The contents of BUF are in target byte order. */
void
m32r_store_register (sd, rn, buf)
SIM_DESC sd;
int rn;
unsigned char *buf;
{
SIM_CPU *current_cpu = STATE_CPU (sd, 0);
if (rn < 16)
SET_H_GR (rn, GETTWI (buf));
else if (rn < 21)
SET_H_CR (rn - 16, GETTWI (buf));
else switch (rn) {
case PC_REGNUM:
SET_H_PC (GETTWI (buf));
break;
case ACCL_REGNUM:
SETLODI (CPU (h_accum), GETTWI (buf));
break;
case ACCH_REGNUM:
SETHIDI (CPU (h_accum), GETTWI (buf));
break;
#if 0
case 23: STATE_CPU_CPU (sd, 0)->h_cond = *reg; break;
case 24: STATE_CPU_CPU (sd, 0)->h_sm = *reg; break;
case 25: STATE_CPU_CPU (sd, 0)->h_bsm = *reg; break;
case 26: STATE_CPU_CPU (sd, 0)->h_ie = *reg; break;
case 27: STATE_CPU_CPU (sd, 0)->h_bie = *reg; break;
case 28: STATE_CPU_CPU (sd, 0)->h_bcarry = *reg; break; /* rename: bc */
case 29: memcpy (&STATE_CPU_CPU (sd, 0)->h_bpc, buf, sizeof(DI)); break; /* duplicate */
#endif
}
}
/* Handling the MSPR register is done by creating a device in the core
mapping that winds up here. */
device m32r_mspr_device;
int
device_io_read_buffer (device *me, const void *source, int space,
address_word addr, unsigned nr_bytes,
SIM_CPU *cpu, sim_cia cia)
{
abort ();
}
int
device_io_write_buffer (device *me, const void *source, int space,
address_word addr, unsigned nr_bytes,
SIM_CPU *cpu, sim_cia cia)
{
#if WITH_SCACHE
if (addr == MSPR_ADDR
&& (*(char *) source & 1) != 0)
scache_flush (CPU_STATE (cpu));
#endif
return nr_bytes;
}
void device_error () {}
#if WITH_PROFILE_MODEL_P
void
m32r_model_mark_get_h_gr (SIM_CPU *cpu, ARGBUF *abuf)
{
if ((CPU_CGEN_PROFILE (cpu)->h_gr & abuf->h_gr_get) != 0)
{
PROFILE_MODEL_LOAD_STALL_COUNT (CPU_PROFILE_DATA (cpu)) += 2;
if (TRACE_INSN_P (cpu))
cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
}
}
void
m32r_model_mark_set_h_gr (SIM_CPU *cpu, ARGBUF *abuf)
{
}
void
m32r_model_mark_busy_reg (SIM_CPU *cpu, ARGBUF *abuf)
{
CPU_CGEN_PROFILE (cpu)->h_gr = abuf->h_gr_set;
}
void
m32r_model_mark_unbusy_reg (SIM_CPU *cpu, ARGBUF *abuf)
{
CPU_CGEN_PROFILE (cpu)->h_gr = 0;
}
#endif /* WITH_PROFILE_MODEL_P */
USI
m32r_h_cr_get (SIM_CPU *current_cpu, UINT cr)
{
/* FIXME: Create enums H_CR_FOO, etc. */
switch (cr)
{
case 0 : /* psw */
return ((CPU (h_bsm) << 15)
| (CPU (h_bie) << 14)
| (CPU (h_bcond) << 8)
| (CPU (h_sm) << 7)
| (CPU (h_ie) << 6)
| (CPU (h_cond) << 0));
case 1 : /* condition bit */
return CPU (h_cond);
case 2 : /* interrupt stack pointer */
if (! CPU (h_sm))
return CPU (h_gr[15]);
else
return CPU (h_cr[2]);
case 3 : /* user stack pointer */
if (CPU (h_sm))
return CPU (h_gr[15]);
else
return CPU (h_cr[3]);
case 6 : /* backup pc */
/* ??? We don't really support this yet. */
case 4 : /* unused */
case 5 : /* unused */
return CPU (h_cr[cr]);
default :
return 0;
}
}
void
m32r_h_cr_set (SIM_CPU *current_cpu, UINT cr, USI newval)
{
/* FIXME: Create enums H_CR_FOO, etc. */
switch (cr)
{
case 0 : /* psw */
{
int old_sm = CPU (h_sm);
CPU (h_bsm) = (newval & (1 << 15)) != 0;
CPU (h_bie) = (newval & (1 << 14)) != 0;
CPU (h_bcond) = (newval & (1 << 8)) != 0;
CPU (h_sm) = (newval & (1 << 7)) != 0;
CPU (h_ie) = (newval & (1 << 6)) != 0;
CPU (h_cond) = (newval & (1 << 0)) != 0;
/* When switching stack modes, update the registers. */
if (old_sm != CPU (h_sm))
{
if (old_sm)
{
/* Switching user -> system. */
CPU (h_cr[3]) = CPU (h_gr[15]);
CPU (h_gr[15]) = CPU (h_cr[2]);
}
else
{
/* Switching system -> user. */
CPU (h_cr[2]) = CPU (h_gr[15]);
CPU (h_gr[15]) = CPU (h_cr[3]);
}
}
break;
}
case 1 : /* condition bit */
CPU (h_cond) = (newval & 1) != 0;
break;
case 2 : /* interrupt stack pointer */
if (! CPU (h_sm))
CPU (h_gr[15]) = newval;
else
CPU (h_cr[2]) = newval;
break;
case 3 : /* user stack pointer */
if (CPU (h_sm))
CPU (h_gr[15]) = newval;
else
CPU (h_cr[3]) = newval;
break;
case 4 : /* unused */
case 5 : /* unused */
case 6 : /* backup pc */
CPU (h_cr[cr]) = newval;
break;
default :
/* ignore */
break;
}
}
void
do_lock (SIM_CPU *cpu, SI r1, SI r2)
{
/* Nothing to do [at present]. */
}
void
do_unlock (SIM_CPU *cpu, SI r1, SI r2)
{
/* Nothing to do [at present]. */
}
void
do_trap (SIM_CPU *current_cpu, int num)
{
SIM_DESC sd = CPU_STATE (current_cpu);
host_callback *cb = STATE_CALLBACK (sd);
switch (num)
{
case 0 :
/* Trap 0 is used for system calls. */
{
/* Store the results in these first so we don't clobber PARM[123]
when we set RETVAL, RETERR. */
int retval = 0, reterr = 0;
/* int save_errno = errno; */
/* errno = 0;*/
#define FUNC CPU (h_gr)[0]
#define PARM1 CPU (h_gr)[1]
#define PARM2 CPU (h_gr)[2]
#define PARM3 CPU (h_gr)[3]
#define RETERR CPU (h_gr)[2]
#define RETVAL CPU (h_gr)[0]
#define RETVAL2 CPU (h_gr)[1]
switch (FUNC)
{
#if 0
case TARGET_SYS_argvlen :
{
int addr_size = MACH_ADDR_BITSIZE (MODEL_MACH (STATE_MODEL (current_state))) / 8;
int argc,envc,arglen,envlen;
char **argv = STATE_ARGV (current_state);
char **envp = STATE_ENVP (current_state);
argc = arglen = 0;
if (argv)
{
for ( ; argv[argc]; ++argc)
arglen += strlen (argv[argc]) + 1;
}
envc = envlen = 0;
if (envp)
{
for ( ; envp[envc]; ++envc)
envlen += strlen (envp[envc]) + 1;
}
retval = ((argc + 1) * addr_size) + ((envc + 1) * addr_size)
+ ((arglen + envlen + addr_size - 1) & -addr_size);
break;
}
case TARGET_SYS_argv :
{
/* Pointer to buffer of two pointers for argv, envp. */
SIM_ADDR argv_envp = PARM1;
/* P is the target address of the pointers to the strings. */
SIM_ADDR p = PARM2;
/* Q is the target address of where all the strings go. */
SIM_ADDR q;
int addr_size = MACH_ADDR_BITSIZE (MODEL_MACH (STATE_MODEL (current_state))) / 8;
int i,argc,envc,len;
char **argv = STATE_ARGV (current_state);
char **envp = STATE_ENVP (current_state);
argc = 0;
if (argv)
{
for ( ; argv[argc]; ++argc)
continue;
}
envc = 0;
if (envp)
{
for ( ; envp[envc]; ++envc)
continue;
}
q = p + ((argc + 1) * addr_size) + ((envc + 1) * addr_size);
/* We could standardize on a format and have the caller compute
argv,envp; but this obviates the need for that. */
SETMEMAI (current_cpu, argv_envp, p);
for (i = 0; i < argc; ++i)
{
SETMEMAI (current_cpu, p, q);
len = strlen (argv[i]) + 1;
/* SETMEM (current_cpu, q, argv[i], len);*/
p += addr_size;
q += len;
}
SETMEMAI (current_cpu, p, 0);
p += addr_size;
SETMEMAI (current_cpu, argv_envp + addr_size, p);
for (i = 0; i < envc; ++i)
{
SETMEMAI (current_cpu, p, q);
len = strlen (envp[i]) + 1;
/* SETMEM (current_cpu, q, envp[i], len);*/
p += addr_size;
q += len;
}
SETMEMAI (current_cpu, p, 0);
retval = argc;
break;
}
#endif
case TARGET_SYS_exit :
/* Tell sim_resume program called exit(). */
sim_engine_halt (sd, current_cpu, NULL, NULL_CIA,
sim_exited, PARM1);
break;
case TARGET_SYS_open :
{
char path[1024];
char *p, *pend;
ADDR addr = PARM1;
for (p = path, pend = path + sizeof (path); p < pend; ++p, ++addr)
{
unsigned int count =
sim_core_read_buffer (CPU_STATE (current_cpu), current_cpu,
sim_core_read_map,
p, addr, 1);
if (count != 1)
{
retval = -1;
reterr = TARGET_EINVAL;
goto FinishSyscall;
}
if (*p == 0)
break;
}
if (p == pend)
{
retval = -1;
reterr = TARGET_ENAMETOOLONG;
goto FinishSyscall;
}
retval = (*cb->open) (cb, path,
PARM2 /*FIXME: , PARM3*/);
}
break;
case TARGET_SYS_close :
retval = (*cb->close) (cb, PARM1);
break;
case TARGET_SYS_read :
{
/* ??? Perfect handling of error conditions may require only one
call to cb->read. One can't assume all the data is
contiguously stored in host memory so that would require
malloc'ing/free'ing the space. Maybe later. */
char buf[1024];
int fd = PARM1;
ADDR addr = PARM2;
size_t count = PARM3;
size_t bytes_read = 0;
int bytes_written;
while (count > 0)
{
retval = (int) (*cb->read) (cb, fd, buf,
count < 1024 ? count : 1024);
if (retval == -1)
goto FinishSyscall;
bytes_written =
sim_core_write_buffer (CPU_STATE (current_cpu), current_cpu,
sim_core_write_map,
buf, addr, retval);
if (bytes_written != retval)
{
retval = -1;
reterr = TARGET_EINVAL;
goto FinishSyscall;
}
bytes_read += retval;
count -= retval;
addr += retval;
}
retval = bytes_read;
}
break;
case TARGET_SYS_write :
{
/* ??? Perfect handling of error conditions may require only one
call to cb->write. One can't assume all the data is
contiguously stored in host memory so that would require
malloc'ing/free'ing the space. Maybe later. */
char buf[1024];
int fd = PARM1;
ADDR addr = PARM2;
size_t count = PARM3;
int bytes_read;
size_t bytes_written = 0;
while (count > 0)
{
int bytes_to_read = count < 1024 ? count : 1024;
bytes_read =
sim_core_read_buffer (CPU_STATE (current_cpu), current_cpu,
sim_core_read_map,
buf, addr, bytes_to_read);
if (bytes_read != bytes_to_read)
{
retval = -1;
reterr = TARGET_EINVAL;
goto FinishSyscall;
}
if (fd == 1)
retval = (int) (*cb->write_stdout) (cb, buf, bytes_read);
else
retval = (int) (*cb->write) (cb, fd, buf, bytes_read);
if (retval == -1)
goto FinishSyscall;
bytes_written += retval;
count -= retval;
addr += retval;
}
retval = bytes_written;
}
break;
default :
retval = -1;
#ifdef TARGET_ENOSYS
reterr = TARGET_ENOSYS;
#else
reterr = TARGET_EINVAL;
#endif
break;
}
FinishSyscall:
RETVAL = retval;
if (reterr == 0)
RETERR = (*cb->get_errno) (cb);
else
RETERR = reterr;
break;
}
case 1: /* breakpoint trap */
sim_engine_halt (sd, current_cpu, NULL, NULL_CIA,
sim_stopped, SIM_SIGTRAP);
break;
default :
abort ();
}
}
|