1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
/* MIPS Simulator definition.
Copyright (C) 1997 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef SIM_MAIN_H
#define SIM_MAIN_H
/* This simulator doesn't cache the Current Instruction Address */
/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
#define SIM_HAVE_BIENDIAN
/* hobble some common features for moment */
#define WITH_WATCHPOINTS 1
#define WITH_MODULO_MEMORY 1
#include "sim-basics.h"
typedef address_word sim_cia;
#if (WITH_IGEN)
/* Get the number of instructions. FIXME: must be a more elegant way
of doing this. */
#include "itable.h"
#define MAX_INSNS (nr_itable_entries)
#define INSN_NAME(i) itable[(i)].name
#endif
#include "sim-base.h"
/* Depreciated macros and types for manipulating 64bit values. Use
../common/sim-bits.h and ../common/sim-endian.h macros instead. */
typedef signed64 word64;
typedef unsigned64 uword64;
#define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
#define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
#define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
#define SET64HI(t) (((uword64)(t))<<32)
#define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
#define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
/* Sign-extend the given value (e) as a value (b) bits long. We cannot
assume the HI32bits of the operand are zero, so we must perform a
mask to ensure we can use the simple subtraction to sign-extend. */
#define SIGNEXTEND(e,b) \
((unsigned_word) \
(((e) & ((uword64) 1 << ((b) - 1))) \
? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
: ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
/* Check if a value will fit within a halfword: */
#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
/* Floating-point operations: */
#include "sim-fpu.h"
/* FPU registers must be one of the following types. All other values
are reserved (and undefined). */
typedef enum {
fmt_single = 0,
fmt_double = 1,
fmt_word = 4,
fmt_long = 5,
/* The following are well outside the normal acceptable format
range, and are used in the register status vector. */
fmt_unknown = 0x10000000,
fmt_uninterpreted = 0x20000000,
fmt_uninterpreted_32 = 0x40000000,
fmt_uninterpreted_64 = 0x80000000,
} FP_formats;
unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
#define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
#define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
int NaN PARAMS ((unsigned64 op, FP_formats fmt));
int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
#define Convert(rm,op,from,to) \
convert (SD, CPU, cia, rm, op, from, to)
/* Macro to update FPSR condition-code field. This is complicated by
the fact that there is a hole in the index range of the bits within
the FCSR register. Also, the number of bits visible depends on the
MIPS ISA version being supported. */
#define SETFCC(cc,v) {\
int bit = ((cc == 0) ? 23 : (24 + (cc)));\
FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
}
#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
/* This should be the COC1 value at the start of the preceding
instruction: */
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
#if 1
#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
#else
/* They depend on the CPU being simulated */
#define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
#endif
/* Standard FCRS bits: */
#define IR (0) /* Inexact Result */
#define UF (1) /* UnderFlow */
#define OF (2) /* OverFlow */
#define DZ (3) /* Division by Zero */
#define IO (4) /* Invalid Operation */
#define UO (5) /* Unimplemented Operation */
/* Get masks for individual flags: */
#if 1 /* SAFE version */
#define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
#define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
#else
#define FP_FLAGS(b) (1 << ((b) + 2))
#define FP_ENABLE(b) (1 << ((b) + 7))
#define FP_CAUSE(b) (1 << ((b) + 12))
#endif
#define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
#define FP_MASK_RM (0x3)
#define FP_SH_RM (0)
#define FP_RM_NEAREST (0) /* Round to nearest (Round) */
#define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
#define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
#define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
#define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
/* Integer ALU operations: */
#include "sim-alu.h"
#define ALU32_END(ANS) \
if (ALU32_HAD_OVERFLOW) \
SignalExceptionIntegerOverflow (); \
(ANS) = ALU32_OVERFLOW_RESULT
#define ALU64_END(ANS) \
if (ALU64_HAD_OVERFLOW) \
SignalExceptionIntegerOverflow (); \
(ANS) = ALU64_OVERFLOW_RESULT;
/* The following is probably not used for MIPS IV onwards: */
/* Slots for delayed register updates. For the moment we just have a
fixed number of slots (rather than a more generic, dynamic
system). This keeps the simulator fast. However, we only allow
for the register update to be delayed for a single instruction
cycle. */
#define PSLOTS (8) /* Maximum number of instruction cycles */
typedef struct _pending_write_queue {
int in;
int out;
int total;
int slot_delay[PSLOTS];
int slot_size[PSLOTS];
int slot_bit[PSLOTS];
void *slot_dest[PSLOTS];
unsigned64 slot_value[PSLOTS];
} pending_write_queue;
#ifndef PENDING_TRACE
#define PENDING_TRACE 0
#endif
#define PENDING_IN ((CPU)->pending.in)
#define PENDING_OUT ((CPU)->pending.out)
#define PENDING_TOTAL ((CPU)->pending.total)
#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
#define PENDING_SLOT_BIT ((CPU)->pending.slot_size)
#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
/* Invalidate the pending write queue, all pending writes are
discarded. */
#define PENDING_INVALIDATE() \
memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
/* Schedule a write to DEST for N cycles time. For 64 bit
destinations, schedule two writes. For floating point registers,
the caller should schedule a write to both the dest register and
the FPR_STATE register. When BIT is non-negative, only BIT of DEST
is updated. */
#define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
do { \
if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
sim_engine_abort (SD, CPU, cia, \
"PENDING_SCHED - buffer overflow\n"); \
if (PENDING_TRACE) \
sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
} while (0)
#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
#define PENDING_TICK() pending_tick (SD, CPU, cia)
#define PENDING_FLUSH() abort () /* think about this one */
#define PENDING_FP() abort () /* think about this one */
/* For backward compatibility */
#define PENDING_FILL(R,VAL) \
{ \
if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \
else \
PENDING_SCHED(GPR[(R)], VAL, 2, -1); \
}
struct _sim_cpu {
/* The following are internal simulator state variables: */
#define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
#define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
address_word dspc; /* delay-slot PC */
#define DSPC ((CPU)->dspc)
/* Issue a delay slot instruction immediatly by re-calling
idecode_issue */
#define DELAY_SLOT(TARGET) \
do { \
address_word target = (TARGET); \
instruction_word delay_insn; \
sim_events_slip (SD, 1); \
CIA = CIA + 4; \
STATE |= simDELAYSLOT; \
delay_insn = IMEM (CIA); \
idecode_issue (CPU_, delay_insn, (CIA)); \
STATE &= ~simDELAYSLOT; \
NIA = target; \
} while (0)
#define NULLIFY_NEXT_INSTRUCTION() \
do { \
sim_events_slip (SD, 1); \
dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \
NIA = CIA + 8; \
} while (0)
/* State of the simulator */
unsigned int state;
unsigned int dsstate;
#define STATE ((CPU)->state)
#define DSSTATE ((CPU)->dsstate)
/* Flags in the "state" variable: */
#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
#define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
#define simPCOC0 (1 << 17) /* COC[1] from current */
#define simPCOC1 (1 << 18) /* COC[1] from previous */
#define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
#define ENGINE_ISSUE_PREFIX_HOOK() \
{ \
/* Perform any pending writes */ \
PENDING_TICK(); \
/* Set previous flag, depending on current: */ \
if (STATE & simPCOC0) \
STATE |= simPCOC1; \
else \
STATE &= ~simPCOC1; \
/* and update the current value: */ \
if (GETFCC(0)) \
STATE |= simPCOC0; \
else \
STATE &= ~simPCOC0; \
}
/* This is nasty, since we have to rely on matching the register
numbers used by GDB. Unfortunately, depending on the MIPS target
GDB uses different register numbers. We cannot just include the
relevant "gdb/tm.h" link, since GDB may not be configured before
the sim world, and also the GDB header file requires too much other
state. */
#ifndef TM_MIPS_H
#define LAST_EMBED_REGNUM (89)
#define NUM_REGS (LAST_EMBED_REGNUM + 1)
#endif
/* To keep this default simulator simple, and fast, we use a direct
vector of registers. The internal simulator engine then uses
manifests to access the correct slot. */
unsigned_word registers[LAST_EMBED_REGNUM + 1];
int register_widths[NUM_REGS];
#define REGISTERS ((CPU)->registers)
#define GPR (®ISTERS[0])
#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
/* While space is allocated for the floating point registers in the
main registers array, they are stored separatly. This is because
their size may not necessarily match the size of either the
general-purpose or system specific registers */
#define NR_FGR (32)
#define FGRIDX (38)
#define FGR ((CPU)->fgr)
fp_word fgr[NR_FGR];
#define LO (REGISTERS[33])
#define HI (REGISTERS[34])
#define PCIDX 37
#define PC (REGISTERS[PCIDX])
#define CAUSE (REGISTERS[36])
#define SRIDX (32)
#define SR (REGISTERS[SRIDX]) /* CPU status register */
#define FCR0IDX (71)
#define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
#define FCR31IDX (70)
#define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
#define FCSR (FCR31)
#define Debug (REGISTERS[86])
#define DEPC (REGISTERS[87])
#define EPC (REGISTERS[88])
#define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
unsigned_word c0_config_reg;
#define C0_CONFIG ((CPU)->c0_config_reg)
/* The following are pseudonyms for standard registers */
#define ZERO (REGISTERS[0])
#define V0 (REGISTERS[2])
#define A0 (REGISTERS[4])
#define A1 (REGISTERS[5])
#define A2 (REGISTERS[6])
#define A3 (REGISTERS[7])
#define SP (REGISTERS[29])
#define RA (REGISTERS[31])
/* Keep the current format state for each register: */
FP_formats fpr_state[32];
#define FPR_STATE ((CPU)->fpr_state)
pending_write_queue pending;
/* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
read-write instructions. It is set when a linked load occurs. It
is tested and cleared by the conditional store. It is cleared
(during other CPU operations) when a store to the location would
no longer be atomic. In particular, it is cleared by exception
return instructions. */
int llbit;
#define LLBIT ((CPU)->llbit)
/* The HIACCESS and LOACCESS counts are used to ensure that
corruptions caused by using the HI or LO register to close to a
following operation are spotted. */
int hiaccess;
int loaccess;
#define HIACCESS ((CPU)->hiaccess)
#define LOACCESS ((CPU)->loaccess)
#if 1
/* The 4300 and a few other processors have interlocks on hi/lo
register reads, and hence do not have this problem. To avoid
spurious warnings, we just disable this always. */
#define CHECKHILO(s)
#else
unsigned_word HLPC;
/* If either of the preceding two instructions have accessed the HI
or LO registers, then the values they see should be
undefined. However, to keep the simulator world simple, we just
let them use the value read and raise a warning to notify the
user: */
#define CHECKHILO(s) {\
if ((HIACCESS != 0) || (LOACCESS != 0)) \
sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
}
#endif
sim_cpu_base base;
};
/* MIPS specific simulator watch config */
void watch_options_install PARAMS ((SIM_DESC sd));
struct swatch {
sim_event *pc;
sim_event *clock;
sim_event *cycles;
};
/* FIXME: At present much of the simulator is still static */
struct sim_state {
struct swatch watch;
sim_cpu cpu[MAX_NR_PROCESSORS];
#if (WITH_SMP)
#define STATE_CPU(sd,n) (&(sd)->cpu[n])
#else
#define STATE_CPU(sd,n) (&(sd)->cpu[0])
#endif
sim_state_base base;
};
/* Status information: */
/* TODO : these should be the bitmasks for these bits within the
status register. At the moment the following are VR4300
bit-positions: */
#define status_KSU_mask (0x3) /* mask for KSU bits */
#define status_KSU_shift (3) /* shift for field */
#define ksu_kernel (0x0)
#define ksu_supervisor (0x1)
#define ksu_user (0x2)
#define ksu_unknown (0x3)
#define status_IE (1 << 0) /* Interrupt enable */
#define status_EXL (1 << 1) /* Exception level */
#define status_RE (1 << 25) /* Reverse Endian in user mode */
#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
#define status_SR (1 << 20) /* soft reset or NMI */
#define status_BEV (1 << 22) /* Location of general exception vectors */
#define status_TS (1 << 21) /* TLB shutdown has occurred */
#define status_ERL (1 << 2) /* Error level */
#define status_RP (1 << 27) /* Reduced Power mode */
#define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
/* NOTE: We keep the following status flags as bit values (1 for true,
0 for false). This allows them to be used in binary boolean
operations without worrying about what exactly the non-zero true
value is. */
/* UserMode */
#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
/* BigEndianMem */
/* Hardware configuration. Affects endianness of LoadMemory and
StoreMemory and the endianness of Kernel and Supervisor mode
execution. The value is 0 for little-endian; 1 for big-endian. */
#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
/*(state & simBE) ? 1 : 0)*/
/* ReverseEndian */
/* This mode is selected if in User mode with the RE bit being set in
SR (Status Register). It reverses the endianness of load and store
instructions. */
#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
/* BigEndianCPU */
/* The endianness for load and store instructions (0=little;1=big). In
User mode this endianness may be switched by setting the state_RE
bit in the SR register. Thus, BigEndianCPU may be computed as
(BigEndianMem EOR ReverseEndian). */
#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
/* Exceptions: */
/* NOTE: These numbers depend on the processor architecture being
simulated: */
#define Interrupt (0)
#define TLBModification (1)
#define TLBLoad (2)
#define TLBStore (3)
#define AddressLoad (4)
#define AddressStore (5)
#define InstructionFetch (6)
#define DataReference (7)
#define SystemCall (8)
#define BreakPoint (9)
#define ReservedInstruction (10)
#define CoProcessorUnusable (11)
#define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
#define Trap (13)
#define FPE (15)
#define DebugBreakPoint (16)
#define Watch (23)
/* The following exception code is actually private to the simulator
world. It is *NOT* a processor feature, and is used to signal
run-time errors in the simulator. */
#define SimulatorFault (0xFFFFFFFF)
void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
#define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
#define SignalExceptionInterrupt() signal_exception (SD, CPU, NULL_CIA, Interrupt)
#define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
#define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
#define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
#define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
#define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
#define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
#define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
/* Co-processor accesses */
void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
#define COP_LW(coproc_num,coproc_reg,memword) \
cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
#define COP_LD(coproc_num,coproc_reg,memword) \
cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
#define COP_SW(coproc_num,coproc_reg) \
cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
#define COP_SD(coproc_num,coproc_reg) \
cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
#define DecodeCoproc(instruction) \
decode_coproc (SD, CPU, cia, (instruction))
/* Memory accesses */
/* The following are generic to all versions of the MIPS architecture
to date: */
/* Memory Access Types (for CCA): */
#define Uncached (0)
#define CachedNoncoherent (1)
#define CachedCoherent (2)
#define Cached (3)
#define isINSTRUCTION (1 == 0) /* FALSE */
#define isDATA (1 == 1) /* TRUE */
#define isLOAD (1 == 0) /* FALSE */
#define isSTORE (1 == 1) /* TRUE */
#define isREAL (1 == 0) /* FALSE */
#define isRAW (1 == 1) /* TRUE */
/* The parameter HOST (isTARGET / isHOST) is ignored */
#define isTARGET (1 == 0) /* FALSE */
/* #define isHOST (1 == 1) TRUE */
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
is the number of bytes minus 1. */
#define AccessLength_BYTE (0)
#define AccessLength_HALFWORD (1)
#define AccessLength_TRIPLEBYTE (2)
#define AccessLength_WORD (3)
#define AccessLength_QUINTIBYTE (4)
#define AccessLength_SEXTIBYTE (5)
#define AccessLength_SEPTIBYTE (6)
#define AccessLength_DOUBLEWORD (7)
#define AccessLength_QUADWORD (15)
int address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
void load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, address_word pAddr, address_word vAddr, int IorD));
#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
void store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
void cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
#define CacheOp(op,pAddr,vAddr,instruction) \
cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
void sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
#define SyncOperation(stype) \
sync_operation (SD, CPU, cia, (stype))
void prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
#define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
unsigned32 ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
#define IMEM(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
FILE *tracefh;
void pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
#endif
|