File: gdcmCurve.cxx

package info (click to toggle)
gdcm 2.4.4-3%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 32,912 kB
  • ctags: 52,166
  • sloc: cpp: 188,527; ansic: 124,526; xml: 41,799; sh: 7,162; python: 3,667; cs: 2,128; java: 1,344; lex: 1,290; tcl: 677; php: 128; makefile: 116
file content (563 lines) | stat: -rw-r--r-- 17,201 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*=========================================================================

  Program: GDCM (Grassroots DICOM). A DICOM library

  Copyright (c) 2006-2011 Mathieu Malaterre
  All rights reserved.
  See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "gdcmCurve.h"
#include "gdcmDataElement.h"
#include "gdcmDataSet.h"
#include "gdcmAttribute.h"

#include <vector>

namespace gdcm
{
/*

C.10.2.1 Curve Attribute Descriptions
C.10.2.1.1 Type of data
A description of the Type of Data (50xx,0020) in this curve.
Defined Terms:
TAC = time activity curve PROF = image profile
HIST = histogram ROI = polygraphic region of interest
TABL = table of values FILT = filter kernel
POLY = poly line ECG = ecg data
PRESSURE = pressure data FLOW = flow data
PHYSIO = physio data RESP = Respiration trace
*/

class CurveInternal
{
public:
  CurveInternal():
  Group(0),
  Dimensions(0),
  NumberOfPoints(0),
  TypeOfData(),
  CurveDescription(),
  DataValueRepresentation(0),
  Data() {}

/*
(5004,0000) UL 2316                                     #   4, 1 CurveGroupLength
(5004,0005) US 1                                        #   2, 1 CurveDimensions
(5004,0010) US 1126                                     #   2, 1 NumberOfPoints
(5004,0020) CS [PHYSIO]                                 #   6, 1 TypeOfData
(5004,0022) LO (no value available)                     #   0, 0 CurveDescription
(5000,0030) SH [DPPS\NONE]                              #  10, 2 AxisUnits
(5004,0103) US 0                                        #   2, 1 DataValueRepresentation
(5000,0110) US 0\1                                      #   4, 2 CurveDataDescriptor
(5000,0112) US 0                                        #   2, 1 CoordinateStartValue
(5000,0114) US 300                                      #   2, 1 CoordinateStepValue
(5000,2500) LO [Physio_1]                               #   8, 1 CurveLabel
(5004,3000) OW 0020\0020\0020\0020\0020\0020\0020\0020\0020\0020\0020\0020\0020... # 2252, 1 CurveData
*/
// Identifier need to be in the [5000,50FF] range (no odd number):
  unsigned short Group;
  unsigned short Dimensions;
  unsigned short NumberOfPoints;
  std::string TypeOfData;
  std::string CurveDescription;
  unsigned short DataValueRepresentation;
  std::vector<char> Data;
  std::vector<unsigned short> CurveDataDescriptor;
  unsigned short CoordinateStartValue;
  unsigned short CoordinateStepValue;
  void Print(std::ostream &os) const {
    os << "Group           0x" <<  std::hex << Group << std::dec << std::endl;
    os << "Dimensions                         :" << Dimensions << std::endl;
    os << "NumberOfPoints                     :" << NumberOfPoints << std::endl;
    os << "TypeOfData                         :" << TypeOfData << std::endl;
    os << "CurveDescription                   :" << CurveDescription << std::endl;
    os << "DataValueRepresentation            :" << DataValueRepresentation << std::endl;
    unsigned short * p = (unsigned short*)&Data[0];
    for(int i = 0; i < NumberOfPoints; i+=2)
      {
      os << p[i] << "," << p[i+1] << std::endl;
      }
  }
};

Curve::Curve()
{
  Internal = new CurveInternal;
}

Curve::~Curve()
{
  delete Internal;
}

Curve::Curve(Curve const &ov):Object(ov)
{
  //delete Internal;
  Internal = new CurveInternal;
  // TODO: copy CurveInternal into other...
  *Internal = *ov.Internal;
}

void Curve::Print(std::ostream &os) const
{
  Internal->Print( os );
}

unsigned int Curve::GetNumberOfCurves(DataSet const & ds)
{
  Tag overlay(0x5000,0x0000); // First possible overlay
  bool finished = false;
  unsigned int numoverlays = 0;
  while( !finished )
    {
    const DataElement &de = ds.FindNextDataElement( overlay );
    if( de.GetTag().GetGroup() > 0x50FF ) // last possible curve
      {
      finished = true;
      }
    else if( de.GetTag().IsPrivate() )
      {
      // Move on to the next public one:
      overlay.SetGroup( (uint16_t)(de.GetTag().GetGroup() + 1) );
      overlay.SetElement( 0 ); // reset just in case...
      }
    else
      {
      // Yeah this is an overlay element
      //if( ds.FindDataElement( Tag(overlay.GetGroup(),0x3000 ) ) )
      if( ds.FindDataElement( Tag(de.GetTag().GetGroup(),0x3000 ) ) )
        {
        // ok so far so good...
        //const DataElement& overlaydata = ds.GetDataElement(Tag(overlay.GetGroup(),0x3000));
        const DataElement& overlaydata = ds.GetDataElement(Tag(de.GetTag().GetGroup(),0x3000));
        if( !overlaydata.IsEmpty() )
          {
          ++numoverlays;
          }
        }
      // Store found tag in overlay:
      overlay = de.GetTag();
      // Move on to the next possible one:
      overlay.SetGroup( (uint16_t)(overlay.GetGroup() + 2) );
      // reset to element 0x0 just in case...
      overlay.SetElement( 0 );
      }
    }

  return numoverlays;
}

void Curve::Update(const DataElement & de)
{
  assert( de.GetTag().IsPublic() );
  const ByteValue* bv = de.GetByteValue();
  if( !bv ) return; // Discard any empty element (will default to another value)
  assert( bv->GetPointer() && bv->GetLength() );
  std::string s( bv->GetPointer(), bv->GetLength() );
  // What if a \0 can be found before the end of string...
  //assert( strlen( s.c_str() ) == s.size() );

  // First thing check consistency:
  if( !GetGroup() )
    {
    SetGroup( de.GetTag().GetGroup() );
    }
  else // check consistency
    {
    assert( GetGroup() == de.GetTag().GetGroup() ); // programmer error
    }

  //std::cerr << "Tag: " << de.GetTag() << std::endl;
  if( de.GetTag().GetElement() == 0x0000 ) // CurveGroupLength
    {
    // ??
    }
  else if( de.GetTag().GetElement() == 0x0005 ) // CurveDimensions
    {
    Attribute<0x5000,0x0005> at;
    at.SetFromDataElement( de );
    SetDimensions( at.GetValue() );
    }
  else if( de.GetTag().GetElement() == 0x0010 ) // NumberOfPoints
    {
    Attribute<0x5000,0x0010> at;
    at.SetFromDataElement( de );
    SetNumberOfPoints( at.GetValue() );
    }
  else if( de.GetTag().GetElement() == 0x0020 ) // TypeOfData
    {
    SetTypeOfData( s.c_str() );
    }
  else if( de.GetTag().GetElement() == 0x0022 ) // CurveDescription
    {
    SetCurveDescription( s.c_str() );
    }
  else if( de.GetTag().GetElement() == 0x0030 ) // AxisUnits
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x0040 ) // Axis Labels
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x0103 ) // DataValueRepresentation
    {
    Attribute<0x5000,0x0103> at;
    at.SetFromDataElement( de );
    SetDataValueRepresentation( at.GetValue() );
    }
  else if( de.GetTag().GetElement() == 0x0104 ) // Minimum Coordinate Value
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x0105 ) // Maximum Coordinate Value
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x0106 ) // Curve Range
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x0110 ) // CurveDataDescriptor
    {
    Attribute<0x5000,0x0110> at;
    at.SetFromDataElement( de );
    SetCurveDataDescriptor( at.GetValues(), at.GetNumberOfValues() );
    }
  else if( de.GetTag().GetElement() == 0x0112 ) // CoordinateStartValue
    {
    Attribute<0x5000,0x0112> at;
    at.SetFromDataElement( de );
    SetCoordinateStartValue( at.GetValue() );
    }
  else if( de.GetTag().GetElement() == 0x0114 ) // CoordinateStepValue
    {
    Attribute<0x5000,0x0114> at;
    at.SetFromDataElement( de );
    SetCoordinateStepValue( at.GetValue() );
    }
  else if( de.GetTag().GetElement() == 0x2500 ) // CurveLabel
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x2600 ) // Referenced Overlay Sequence
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x2610 ) // Referenced Overlay Group
    {
    gdcmWarningMacro( "TODO" );
    }
  else if( de.GetTag().GetElement() == 0x3000 ) // CurveData
    {
    SetCurve(bv->GetPointer(), bv->GetLength());
    }
  else
    {
    assert( 0 && "should not happen: Unknown curve tag" );
    }

}

void Curve::SetGroup(unsigned short group) { Internal->Group = group; }
unsigned short Curve::GetGroup() const { return Internal->Group; }
void Curve::SetDimensions(unsigned short dimensions) { Internal->Dimensions = dimensions; }
unsigned short Curve::GetDimensions() const { return Internal->Dimensions; }
void Curve::SetNumberOfPoints(unsigned short numberofpoints) { Internal->NumberOfPoints = numberofpoints; }
unsigned short Curve::GetNumberOfPoints() const { return Internal->NumberOfPoints; }
void Curve::SetTypeOfData(const char *typeofdata)
{
  if( typeofdata )
    Internal->TypeOfData = typeofdata;
}
const char *Curve::GetTypeOfData() const { return Internal->TypeOfData.c_str(); }

static const char * const TypeOfDataDescription[][2] = {
{ "TAC" , "time activity curve" },
{ "PROF" , "image profile" },
{ "HIST" , "histogram" },
{ "ROI" , "polygraphic region of interest" },
{ "TABL" , "table of values" },
{ "FILT" , "filter kernel" },
{ "POLY" , "poly line" },
{ "ECG" , "ecg data" },
{ "PRESSURE" , "pressure data" },
{ "FLOW" , "flow data" },
{ "PHYSIO" , "physio data" },
{ "RESP" , "Respiration trace" },
{ 0 , 0 }
};
const char *Curve::GetTypeOfDataDescription() const
{
  typedef const char* const (*TypeOfDataDescriptionType)[2];
  TypeOfDataDescriptionType t = TypeOfDataDescription;
  int i = 0;
  const char *p = t[i][0];
  while( p )
    {
    if( Internal->TypeOfData == p )
      {
      break;
      }
    ++i;
    p = t[i][0];
    }
  return t[i][1];
}

void Curve::SetCurveDescription(const char *curvedescription)
{
  if( curvedescription )
    Internal->CurveDescription = curvedescription;
}
void Curve::SetDataValueRepresentation(unsigned short datavaluerepresentation) { Internal->DataValueRepresentation = datavaluerepresentation; }
unsigned short Curve::GetDataValueRepresentation() const { return Internal->DataValueRepresentation; }

void Curve::SetCurveDataDescriptor(const uint16_t * values, size_t num)
{
  Internal->CurveDataDescriptor = std::vector<uint16_t>(values, values+num);
}
std::vector<unsigned short> const &Curve::GetCurveDataDescriptor() const
{
  return Internal->CurveDataDescriptor;
}

void Curve::SetCoordinateStartValue( unsigned short v )
{
  Internal->CoordinateStartValue = v;
}
void Curve::SetCoordinateStepValue( unsigned short v )
{
  Internal->CoordinateStepValue = v;
}

bool Curve::IsEmpty() const
{
  return Internal->Data.empty();
}

void Curve::SetCurve(const char *array, unsigned int length)
{
  if( !array || length == 0 ) return;
  Internal->Data.resize( length );
  std::copy(array, array+length, Internal->Data.begin());
  //assert( 8 * length == (unsigned int)Internal->Rows * Internal->Columns );
  //assert( Internal->Data.size() == length );
}

void Curve::Decode(std::istream &is, std::ostream &os)
{
  (void)is;
  (void)os;
  assert(0);
}

/*
PS 3.3 - 2004
C.10.2.1.2 Data value representation
0000H = unsigned short (US)
0001H = signed short (SS)
0002H = floating point single (FL)
0003H = floating point double (FD)
0004H = signed long (SL)
*/
inline size_t getsizeofrep( unsigned short dr )
{
  size_t val = 0;
  switch( dr )
    {
  case 0:
    val = sizeof( uint16_t );
    break;
  case 1:
    val = sizeof( int16_t );
    break;
  case 2:
    val = sizeof( float );
    break;
  case 3:
    val = sizeof( double );
    break;
  case 4:
    val = sizeof( int32_t );
    break;
    }
  return val;
}

/*
C.10.2.1.5 Curve data descriptor, coordinate start value, coordinate step value
The Curve Data for dimension(s) containing evenly distributed data can be eliminated by using a
method that defines the Coordinate Start Value and Coordinate Step Value (interval). The one
dimensional data list is then calculated rather than being enumerated.
For the Curve Data Descriptor (50xx,0110) an Enumerated Value describing how each
component of the N-tuple curve is described, either by points or interval spacing. One value for
each dimension. Where:
0000H = Dimension component described using interval spacing
0001H = Dimension component described using values
Using interval spacing:
Dimension component(s) described by interval spacing use Attributes of Coordinate Start Value
(50xx,0112), Coordinate Step Value (50xx,0114) and Number of Points (50xx,0010). The 1-
dimensional data list is calculated by using a start point of Coordinate Start Value and adding the
interval (Coordinate Step Value) to obtain each data point until the Number of Points is satisfied.
The data points of this dimension will be absent from Curve Data (50xx,3000).
*/
double Curve::ComputeValueFromStartAndStep(unsigned int idx) const
{
  assert( !Internal->CurveDataDescriptor.empty() );
  const double res = Internal->CoordinateStartValue +
    Internal->CoordinateStepValue * idx;
  return res;
}

void Curve::GetAsPoints(float *array) const
{
  assert( getsizeofrep(Internal->DataValueRepresentation) );
  if( Internal->CurveDataDescriptor.empty() )
    {
    assert( Internal->Data.size() == (uint32_t)Internal->NumberOfPoints *
      Internal->Dimensions * getsizeofrep( Internal->DataValueRepresentation) );
    }
  else
    {
    assert( Internal->Data.size() == (uint32_t)Internal->NumberOfPoints *
      1 * getsizeofrep( Internal->DataValueRepresentation) );
    }
  assert( Internal->Dimensions == 1 || Internal->Dimensions == 2 );

  const int mult = Internal->Dimensions;
  int genidx = -1;
  if( !Internal->CurveDataDescriptor.empty() )
    {
    assert( Internal->CurveDataDescriptor.size() == Internal->Dimensions );
    assert( Internal->CurveDataDescriptor.size() == 2 ); // FIXME
    if( Internal->CurveDataDescriptor[0] == 0 )
      {
      assert( Internal->CurveDataDescriptor[1] == 1 );
      genidx = 0;
      }
    else if( Internal->CurveDataDescriptor[1] == 0 )
      {
      assert( Internal->CurveDataDescriptor[0] == 1 );
      genidx = 1;
      }
    else
      {
      assert( 0 && "TODO" );
      }
    }
  const char * beg = &Internal->Data[0];
  const char * end = beg + Internal->Data.size();
  if( genidx == -1 )
    {
    assert( end == beg + 2 * Internal->NumberOfPoints ); (void)beg;(void)end;
    }
  else
    {
    assert( end == beg + mult * Internal->NumberOfPoints ); (void)beg;(void)end;
    }


  if( Internal->DataValueRepresentation == 0 )
    {
    // PS 3.3 - 2004
    // C.10.2.1.5 Curve data descriptor, coordinate start value, coordinate step value
    uint16_t * p = (uint16_t*)&Internal->Data[0];
    // X
    if( genidx == 0 )
      for(int i = 0; i < Internal->NumberOfPoints; i++ )
        array[3*i+0] = ComputeValueFromStartAndStep( i );
    else
      for(int i = 0; i < Internal->NumberOfPoints; i++ )
        array[3*i+0] = p[i + 0];
    // Y
    if( genidx == 1 )
      for(int i = 0; i < Internal->NumberOfPoints; i++ )
        array[3*i+1] = ComputeValueFromStartAndStep( i );
    else
      {
      if( mult == 2 && genidx == -1 )
        {
        for(int i = 0; i < Internal->NumberOfPoints; i++ )
          array[3*i+1] = p[i + 1];
        }
      else if( mult == 2 && genidx == 0 )
        {
        for(int i = 0; i < Internal->NumberOfPoints; i++ )
          array[3*i+1] = p[i + 0];
        }
      else
        {
        for(int i = 0; i < Internal->NumberOfPoints; i++ )
          array[3*i+1] = 0;
        }
      }
    // Z
    for(int i = 0; i < Internal->NumberOfPoints; i++ )
      array[3*i+2] = 0;
    }
  else if( Internal->DataValueRepresentation == 1 )
    {
    int16_t * p = (int16_t*)&Internal->Data[0];
    for(int i = 0; i < Internal->NumberOfPoints; i++ )
      {
      array[3*i+0] = p[mult*i + 0];
      if( mult > 1 )
        array[3*i+1] = p[mult*i + 1];
      else
        array[3*i+1] = 0;
      array[3*i+2] = 0;
      }
    }
  else if( Internal->DataValueRepresentation == 2 )
    {
    float * p = (float*)&Internal->Data[0];
    for(int i = 0; i < Internal->NumberOfPoints; i++ )
      {
      array[3*i+0] = p[mult*i + 0];
      if( mult > 1 )
        array[3*i+1] = p[mult*i + 1];
      else
        array[3*i+1] = 0;
      array[3*i+2] = 0;
      }
    }
  else if( Internal->DataValueRepresentation == 3 )
    {
    double * p = (double*)&Internal->Data[0];
    for(int i = 0; i < Internal->NumberOfPoints; i++ )
      {
      array[3*i+0] = (float)p[mult*i + 0];
      if( mult > 1 )
        array[3*i+1] = (float)p[mult*i + 1];
      else
        array[3*i+1] = 0;
      array[3*i+2] = 0;
      }
    }
  else if( Internal->DataValueRepresentation == 4 )
    {
    int32_t * p = (int32_t*)&Internal->Data[0];
    for(int i = 0; i < Internal->NumberOfPoints; i++ )
      {
      array[3*i+0] = (float)p[mult*i + 0];
      if( mult > 1 )
        array[3*i+1] = (float)p[mult*i + 1];
      else
        array[3*i+1] = 0;
      array[3*i+2] = 0;
      }
    }
  else
    {
    assert( 0 );
    }
}

}