1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
|
/*=========================================================================
Program: GDCM (Grassroots DICOM). A DICOM library
Copyright (c) 2006-2011 Mathieu Malaterre
All rights reserved.
See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "gdcmIconImageGenerator.h"
#include "gdcmIconImage.h"
#include "gdcmAttribute.h"
#include "gdcmPrivateTag.h"
#include "gdcmImage.h"
#include "gdcmJPEGCodec.h"
#include "gdcmRescaler.h"
#include <list>
#include <limits>
#include <queue>
#include <algorithm>
namespace gdcm
{
class IconImageGeneratorInternals
{
public:
IconImageGeneratorInternals()
{
dims[0] = dims[1] = 0;
Min = 0;
Max = 0;
UseMinMax = false;
AutoMinMax = false;
ConvertRGBToPaletteColor = true;
UseOutsideValuePixel = false;
OutsideValuePixel = 0;
}
unsigned int dims[2];
double Min;
double Max;
bool UseMinMax;
bool AutoMinMax;
bool ConvertRGBToPaletteColor;
bool UseOutsideValuePixel;
double OutsideValuePixel;
};
IconImageGenerator::IconImageGenerator():P(new Pixmap),I(new IconImage),Internals(new IconImageGeneratorInternals)
{
}
IconImageGenerator::~IconImageGenerator()
{
delete Internals;
}
// Implementation detail:
// This function was required at some point in time since the implementation
// RGB -> PALETTE is extremely slow
void IconImageGenerator::ConvertRGBToPaletteColor(bool b)
{
Internals->ConvertRGBToPaletteColor = b;
}
void IconImageGenerator::SetOutputDimensions(const unsigned int dims[2])
{
Internals->dims[0] = dims[0];
Internals->dims[1] = dims[1];
}
namespace quantization
{
// retrieved from:
// http://en.literateprograms.org/Special:Downloadcode/Median_cut_algorithm_(C_Plus_Plus)
/* Copyright (c) 2011 the authors listed at the following URL, and/or
the authors of referenced articles or incorporated external code:
http://en.literateprograms.org/Median_cut_algorithm_(C_Plus_Plus)?action=history&offset=20080309133934
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Retrieved from: http://en.literateprograms.org/Median_cut_algorithm_(C_Plus_Plus)?oldid=12754
*/
const int NUM_DIMENSIONS = 3;
struct Point
{
unsigned char x[NUM_DIMENSIONS];
};
class Block
{
Point minCorner, maxCorner;
Point* points;
int pointsLength;
public:
Block(Point* points, int pointsLength);
Point * getPoints();
int numPoints() const;
int longestSideIndex() const;
int longestSideLength() const;
bool operator<(const Block& rhs) const;
void shrink();
};
template <int index>
class CoordinatePointComparator
{
public:
bool operator()(Point left, Point right)
{
return left.x[index] < right.x[index];
}
};
//std::list<Point> medianCut(Point* image, int numPoints, unsigned int desiredSize);
Block::Block(Point* pts, int ptslen)
{
assert( ptslen > 0 );
this->points = pts;
this->pointsLength = ptslen;
for(int i=0; i < NUM_DIMENSIONS; i++)
{
minCorner.x[i] = std::numeric_limits<unsigned char>::min();
maxCorner.x[i] = std::numeric_limits<unsigned char>::max();
}
}
Point * Block::getPoints()
{
return points;
}
int Block::numPoints() const
{
return pointsLength;
}
int Block::longestSideIndex() const
{
int m = maxCorner.x[0] - minCorner.x[0];
int maxIndex = 0;
for(int i=1; i < NUM_DIMENSIONS; i++)
{
int diff = maxCorner.x[i] - minCorner.x[i];
if (diff > m)
{
m = diff;
maxIndex = i;
}
}
return maxIndex;
}
int Block::longestSideLength() const
{
int i = longestSideIndex();
return maxCorner.x[i] - minCorner.x[i];
}
bool Block::operator<(const Block& rhs) const
{
return this->longestSideLength() < rhs.longestSideLength();
}
void Block::shrink()
{
int i,j;
for(j=0; j<NUM_DIMENSIONS; j++)
{
minCorner.x[j] = maxCorner.x[j] = points[0].x[j];
}
for(i=1; i < pointsLength; i++)
{
for(j=0; j<NUM_DIMENSIONS; j++)
{
minCorner.x[j] = std::min(minCorner.x[j], points[i].x[j]);
maxCorner.x[j] = std::max(maxCorner.x[j], points[i].x[j]);
}
}
}
std::list<Point> medianCut(DataElement const &PixelData, int numPoints, unsigned int desiredSize,
std::vector<unsigned char> & outputimage )
{
assert( numPoints > 0 );
//Point* Points = (Point*)malloc(sizeof(Point) * numPoints);
Point* Points = new Point[numPoints];
assert( Points );
const ByteValue *bv = PixelData.GetByteValue();
assert( bv );
const unsigned char *inbuffer = (unsigned char*)bv->GetPointer();
assert( inbuffer );
size_t bvlen = bv->GetLength(); (void)bvlen;
assert( bvlen == (size_t) numPoints * 3 ); // only 8bits RGB please
for(int i = 0; i < numPoints; i++)
{
#if 0
memcpy(&Points[i], inbuffer + 3 * i, 3);
#else
Points[i].x[0] = inbuffer[ 3 * i + 0 ];
Points[i].x[1] = inbuffer[ 3 * i + 1 ];
Points[i].x[2] = inbuffer[ 3 * i + 2 ];
#endif
}
Point* image = Points;
std::priority_queue<Block> blockQueue;
Block initialBlock(image, numPoints);
initialBlock.shrink();
blockQueue.push(initialBlock);
while (blockQueue.size() < desiredSize /*&& blockQueue.top().numPoints() > 1*/ )
{
Block longestBlock = blockQueue.top();
blockQueue.pop();
Point * begin = longestBlock.getPoints();
Point * median = longestBlock.getPoints() + (longestBlock.numPoints()+1)/2;
Point * end = longestBlock.getPoints() + longestBlock.numPoints();
switch(longestBlock.longestSideIndex())
{
case 0: std::nth_element(begin, median, end, CoordinatePointComparator<0>()); break;
case 1: std::nth_element(begin, median, end, CoordinatePointComparator<1>()); break;
case 2: std::nth_element(begin, median, end, CoordinatePointComparator<2>()); break;
}
Block block1(begin, median-begin), block2(median, end-median);
block1.shrink();
block2.shrink();
blockQueue.push(block1);
blockQueue.push(block2);
}
std::list<Point> result;
//int s = blockQueue.size();
outputimage.resize( numPoints );
//const ByteValue *bv = PixelData.GetByteValue();
//const char *inbuffer = bv->GetPointer();
while(!blockQueue.empty())
{
Block block = blockQueue.top();
blockQueue.pop();
Point * points = block.getPoints();
int sum[NUM_DIMENSIONS] = {0,0,0};
for(int i=0; i < block.numPoints(); i++)
{
for(int j=0; j < NUM_DIMENSIONS; j++)
{
sum[j] += points[i].x[j];
}
}
Point averagePoint;
for(int j=0; j < NUM_DIMENSIONS; j++)
{
averagePoint.x[j] = sum[j] / block.numPoints();
}
result.push_back(averagePoint);
//int index = std::distance(s.begin(), it.first);
size_t index = result.size();
assert( index <= 256 );
for(int i = 0; i < numPoints; i++)
{
const unsigned char *currentcolor = inbuffer + 3 * i;
for(size_t j = 0; j < block.numPoints(); j++)
{
assert( currentcolor < inbuffer + bvlen );
assert( currentcolor + 3 <= inbuffer + bvlen );
if( std::equal( currentcolor, currentcolor + 3, points[j].x ) )
{
//assert( outputimage[i] == 0 );
assert( index > 0 );
outputimage[i] = (unsigned char)(index - 1);
}
}
}
}
delete[] Points;
return result;
}
} // end namespace quantization
// Create LUT with a maximum number of color equal to \param maxcolor
void IconImageGenerator::BuildLUT( Bitmap & bitmap, unsigned int maxcolor )
{
assert( Internals->ConvertRGBToPaletteColor );
using namespace quantization;
const unsigned int *dims = bitmap.GetDimensions();
unsigned int numPoints = dims[0]*dims[1];
std::vector<unsigned char> indeximage;
std::list<Point> palette =
medianCut(bitmap.GetDataElement(), numPoints, maxcolor, indeximage);
size_t ncolors = palette.size();
LookupTable & lut = bitmap.GetLUT();
lut.Clear();
lut.Allocate( 8 );
std::vector< unsigned char > buffer[3];
for( int i = 0; i < 3; ++i )
buffer[i].reserve( ncolors );
std::list<Point>::const_iterator it = palette.begin();
for( ; it != palette.end(); ++it )
{
Point const & p = *it;
for( int i = 0; i < 3; ++i )
buffer[i].push_back( p.x[i] );
}
for( int i = 0; i < 3; ++i )
{
lut.InitializeLUT( LookupTable::LookupTableType(i), (unsigned short)ncolors, 0, 8 );
lut.SetLUT( LookupTable::LookupTableType(i), &buffer[i][0], (unsigned short)ncolors );
}
bitmap.GetDataElement().SetByteValue( (char*)&indeximage[0], (uint32_t)indeximage.size() );
assert( lut.Initialized() );
}
void IconImageGenerator::SetOutsideValuePixel(double v)
{
if( Internals->AutoMinMax )
{
Internals->UseOutsideValuePixel = true;
Internals->OutsideValuePixel = v;
}
}
void IconImageGenerator::AutoPixelMinMax(bool b)
{
if( b )
{
Internals->UseMinMax = false;
Internals->AutoMinMax = true;
}
}
void IconImageGenerator::SetPixelMinMax(double min, double max)
{
Internals->Min = min;
Internals->Max = max;
Internals->UseMinMax = true;
Internals->AutoMinMax = false;
}
template <typename TPixelType>
void ComputeMinMax( const TPixelType *p, size_t npixels , double & min, double &max, double discardvalue)
{
assert( npixels );
const TPixelType discard = (TPixelType)discardvalue;
assert( (double)discard == discardvalue );
TPixelType lmin = std::numeric_limits< TPixelType>::max();
TPixelType lmax = std::numeric_limits< TPixelType>::min();
for( size_t i = 0; i < npixels; ++i )
{
if( p[i] < lmin && p[i] != discard )
{
lmin = p[i];
}
else if( p[i] > lmax /* && p[i] != discard */ )
{
lmax = p[i];
}
}
//assert( lmin != std::numeric_limits< TPixelType>::max() );
//assert( lmax != std::numeric_limits< TPixelType>::min() );
// what if lmin == lmax == 0 for example:
// let's fake a slightly different min/max found:
if( lmin == lmax )
{
if( lmax == std::numeric_limits<TPixelType>::max() )
{
lmin--;
assert( lmin + 1 > lmin );
}
else
{
lmax++;
}
}
min = lmin;
max = lmax;
// std::cout << min << " " << max << std::endl;
}
template <typename TPixelType>
void ComputeMinMax( const TPixelType *p, size_t npixels , double & min, double &max)
{
assert( npixels );
TPixelType lmin = std::numeric_limits< TPixelType>::max();
TPixelType lmax = std::numeric_limits< TPixelType>::min();
for( size_t i = 0; i < npixels; ++i )
{
if( p[i] < lmin )
{
lmin = p[i];
}
else if( p[i] > lmax )
{
lmax = p[i];
}
}
//assert( lmin != std::numeric_limits< TPixelType>::max() );
//assert( lmax != std::numeric_limits< TPixelType>::min() );
// what if lmin == lmax == 0 for example:
// let's fake a slightly different min/max found:
if( lmin == lmax )
{
if( lmax == std::numeric_limits<TPixelType>::max() )
{
lmin--;
assert( lmin + 1 > lmin );
}
else
{
lmax++;
}
}
min = lmin;
max = lmax;
// std::cout << min << " " << max << std::endl;
}
bool IconImageGenerator::Generate()
{
/*
PS 3.3-2009
F.7 ICON IMAGE KEY DEFINITION
a. Only monochrome and palette color images shall be used. Samples per Pixel
(0028,0002) shall have a Value of 1, Photometric Interpretation (0028,0004) shall
have a Value of either MONOCHROME 1, MONOCHROME 2 or PALETTE COLOR,
Planar Configuration (0028,0006) shall not be present
Note: True color icon images are not supported. This is due to the fact that the reduced size of the
Icon Image makes the quality of a palette color image (with 256 colors) sufficient in most cases.
This simplifies the handling of Icon Images by File-set Readers and File-set Updaters.
b. If an FSR/FSU supports Icons (i.e. does not ignore them) then it shall support at least
a maximum size of 64 by 64 Icons. An FSC may write Icons of any size. Icons larger
than 64 by 64 may be ignored by FSRs and FSUs unless specialized by Application
Profiles
c. Pixel samples have a Value of either 1 or 8 for Bits Allocated (0028,0100) and Bits
Stored (0028,0101). High Bit (0028,0102) shall have a Value of one less than the
Value used in Bit Stored
d. Pixel Representation (0028,0103) shall used an unsigned integer representation
(Value 0000H)
e. Pixel Aspect Ratio (0028,0034) shall have a Value of 1:1
f. If a Palette Color lookup Table is used, an 8 Bit Allocated (0028,0100) shall be used
*/
I->Clear();
I->SetNumberOfDimensions(2);
I->SetDimension(0, Internals->dims[0] );
I->SetDimension(1, Internals->dims[1] );
PixelFormat oripf = P->GetPixelFormat();
if( P->GetPhotometricInterpretation() != PhotometricInterpretation::MONOCHROME1
&& P->GetPhotometricInterpretation() != PhotometricInterpretation::MONOCHROME2
&& P->GetPhotometricInterpretation() != PhotometricInterpretation::PALETTE_COLOR
&& P->GetPhotometricInterpretation() != PhotometricInterpretation::RGB
&& P->GetPhotometricInterpretation() != PhotometricInterpretation::YBR_FULL
&& P->GetPhotometricInterpretation() != PhotometricInterpretation::YBR_FULL_422
&& P->GetPhotometricInterpretation() != PhotometricInterpretation::YBR_RCT
&& P->GetPhotometricInterpretation() != PhotometricInterpretation::YBR_ICT )
{
gdcmErrorMacro( "PhotometricInterpretation is not supported: "
<< P->GetPhotometricInterpretation() );
return false;
}
if( P->GetPhotometricInterpretation() == PhotometricInterpretation::RGB
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL_422
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_RCT
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_ICT )
{
if( Internals->ConvertRGBToPaletteColor )
{
I->SetPhotometricInterpretation( PhotometricInterpretation::PALETTE_COLOR );
}
else
{
I->SetPhotometricInterpretation( PhotometricInterpretation::RGB );
}
}
else
{
I->SetPhotometricInterpretation( P->GetPhotometricInterpretation() );
assert( I->GetPhotometricInterpretation() == PhotometricInterpretation::MONOCHROME1
|| I->GetPhotometricInterpretation() == PhotometricInterpretation::MONOCHROME2
|| I->GetPhotometricInterpretation() == PhotometricInterpretation::PALETTE_COLOR );
if( !Internals->ConvertRGBToPaletteColor
&& P->GetPhotometricInterpretation() == PhotometricInterpretation::PALETTE_COLOR )
{
I->SetPhotometricInterpretation( PhotometricInterpretation::RGB );
}
}
assert( I->GetPlanarConfiguration() == 0 );
// FIXME we should not retrieve the whole image, ideally we only need a
// single 2D frame
std::vector< char > vbuffer;
size_t framelen = P->GetBufferLength();
if( P->GetNumberOfDimensions() == 3 )
{
const unsigned int *dims = P->GetDimensions();
assert( framelen % dims[2] == 0 );
framelen /= dims[2];
}
vbuffer.resize( P->GetBufferLength() );
char *buffer = &vbuffer[0];
bool boolean = P->GetBuffer(buffer);
if( !boolean ) return false;
// truncate to the size of a single frame:
vbuffer.resize( framelen );
// Important: After call to GetBuffer() in case we have a 12bits stored image
I->SetPixelFormat( P->GetPixelFormat() );
DataElement& pixeldata = I->GetDataElement();
std::vector< char > vbuffer2;
vbuffer2.resize( I->GetBufferLength() );
uint8_t ps = I->GetPixelFormat().GetPixelSize();
char *iconb = &vbuffer2[0];
char *imgb = &vbuffer[0];
const unsigned int *imgdims = P->GetDimensions();
const unsigned int stepi = imgdims[0] / Internals->dims[0];
const unsigned int stepj = imgdims[1] / Internals->dims[1];
// Let's cherry-pick pixel from the input image. The nice thing about this approach
// is that this also works for palletized image.
// In the future it would be nice to also support averaging a group of pixel, instead
// of always picking the top-left pixel from the block.
for(unsigned int i = 0; i < Internals->dims[1]; ++i )
for(unsigned int j = 0; j < Internals->dims[0]; ++j )
{
assert( (i * Internals->dims[0] + j) * ps < I->GetBufferLength() );
assert( (i * imgdims[0] * stepj + j * stepi) * ps < framelen /*P->GetBufferLength()*/ );
memcpy(iconb + (i * Internals->dims[0] + j) * ps,
imgb + (i * imgdims[0] * stepj + j * stepi) * ps, ps );
}
// Apply LUT
if( P->GetPhotometricInterpretation() == PhotometricInterpretation::PALETTE_COLOR )
{
std::string tempvbuf(&vbuffer2[0], vbuffer2.size());
std::istringstream is( tempvbuf );
std::stringstream ss;
P->GetLUT().Decode( is, ss );
if( I->GetPixelFormat().GetBitsAllocated() == 16 )
{
//assert( I->GetPixelFormat().GetPixelRepresentation() == 0 );
std::string s = ss.str();
Rescaler r;
r.SetPixelFormat( I->GetPixelFormat() );
//r.SetPixelFormat( PixelFormat::UINT16 );
// FIXME: This is not accurate. We should either:
// - Read the value from window/level to get better min,max value
// - iterate over all possible value to find the min,max as we are looping
// over all values anyway
const double min = 0; // oripf.GetMin();
const double max = 65536 - 1; //oripf.GetMax();
r.SetSlope( 255. / (max - min + 0) ); // UINT8_MAX
const double step = min * r.GetSlope();
r.SetIntercept( 0 - step );
// paranoid self check:
assert( r.GetIntercept() + r.GetSlope() * min == 0. );
assert( r.GetIntercept() + r.GetSlope() * max == 255. );
r.SetTargetPixelType( PixelFormat::UINT8 );
r.SetUseTargetPixelType(true);
std::vector<char> v8;
v8.resize( Internals->dims[0] * Internals->dims[1] * 3 );
if( !r.Rescale(&v8[0],&s[0],s.size()) )
{
assert( 0 ); // should not happen in real life
gdcmErrorMacro( "Problem in the rescaler" );
return false;
}
if( Internals->ConvertRGBToPaletteColor )
{
LookupTable &lut = I->GetLUT();
lut.Allocate();
// re-encode:
std::stringstream ss2;
ss2.str( std::string( &v8[0], v8.size() ) );
std::string s2 = ss2.str();
// As per standard, we only support 8bits icon
I->SetPixelFormat( PixelFormat::UINT8 );
pixeldata.SetByteValue( &s2[0], (uint32_t)s2.size() );
BuildLUT( *I, 256 );
}
else
{
I->SetPixelFormat( PixelFormat::UINT8 );
I->GetPixelFormat().SetSamplesPerPixel( 3 );
pixeldata.SetByteValue( &v8[0], (uint32_t)v8.size() );
}
}
else
{
assert( I->GetPixelFormat() == PixelFormat::UINT8 );
std::string s = ss.str();
if( Internals->ConvertRGBToPaletteColor )
{
LookupTable &lut = I->GetLUT();
lut.Allocate();
// As per standard, we only support 8bits icon
I->SetPixelFormat( PixelFormat::UINT8 );
pixeldata.SetByteValue( &s[0], (uint32_t)s.size() );
BuildLUT(*I, 256 );
}
else
{
I->SetPixelFormat( PixelFormat::UINT8 );
I->GetPixelFormat().SetSamplesPerPixel( 3 );
pixeldata.SetByteValue( &s[0], (uint32_t)s.size() );
}
}
}
else if( P->GetPhotometricInterpretation() == PhotometricInterpretation::RGB
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL_422
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_ICT
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_RCT )
{
std::string tempvbuf( &vbuffer2[0], vbuffer2.size() );
if( P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL
|| P->GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL_422 )
{
assert( I->GetPixelFormat() == PixelFormat::UINT8 );
if( P->GetPlanarConfiguration() == 0 )
{
unsigned char *ybr = (unsigned char*)&tempvbuf[0];
unsigned char *ybr_out = ybr;
unsigned char *ybr_end = ybr + vbuffer2.size();
int R, G, B;
for( ; ybr != ybr_end; )
{
unsigned char a = (unsigned char)(*ybr); ++ybr;
unsigned char b = (unsigned char)(*ybr); ++ybr;
unsigned char c = (unsigned char)(*ybr); ++ybr;
R = 38142 *(a-16) + 52298 *(c -128);
G = 38142 *(a-16) - 26640 *(c -128) - 12845 *(b -128);
B = 38142 *(a-16) + 66093 *(b -128);
R = (R+16384)>>15;
G = (G+16384)>>15;
B = (B+16384)>>15;
if (R < 0) R = 0;
if (G < 0) G = 0;
if (B < 0) B = 0;
if (R > 255) R = 255;
if (G > 255) G = 255;
if (B > 255) B = 255;
*ybr_out = (unsigned char)R; ++ybr_out;
*ybr_out = (unsigned char)G; ++ybr_out;
*ybr_out = (unsigned char)B; ++ybr_out;
}
#if 0
std::ofstream d( "/tmp/d.rgb", std::ios::binary );
d.write( &tempvbuf[0], tempvbuf.size() );
d.close();
#endif
assert( ybr_out == ybr_end );
}
else // ( P->GetPlanarConfiguration() == 1 )
{
std::string tempvbufybr = tempvbuf;
unsigned char *ybr = (unsigned char*)&tempvbufybr[0];
unsigned char *ybr_end = ybr + vbuffer2.size();
assert( vbuffer2.size() % 3 == 0 );
size_t ybrl = vbuffer2.size() / 3;
unsigned char *ybra = ybr + 0 * ybrl;
unsigned char *ybrb = ybr + 1 * ybrl;
unsigned char *ybrc = ybr + 2 * ybrl;
unsigned char *ybr_out = (unsigned char*)&tempvbuf[0];
unsigned char *ybr_out_end = ybr_out + vbuffer2.size();
int R, G, B;
for( ; ybr_out != ybr_out_end; )
{
unsigned char a = (unsigned char)(*ybra); ++ybra;
unsigned char b = (unsigned char)(*ybrb); ++ybrb;
unsigned char c = (unsigned char)(*ybrc); ++ybrc;
R = 38142 *(a-16) + 52298 *(c -128);
G = 38142 *(a-16) - 26640 *(c -128) - 12845 *(b -128);
B = 38142 *(a-16) + 66093 *(b -128);
R = (R+16384)>>15;
G = (G+16384)>>15;
B = (B+16384)>>15;
if (R < 0) R = 0;
if (G < 0) G = 0;
if (B < 0) B = 0;
if (R > 255) R = 255;
if (G > 255) G = 255;
if (B > 255) B = 255;
*ybr_out = (unsigned char)R; ++ybr_out;
*ybr_out = (unsigned char)G; ++ybr_out;
*ybr_out = (unsigned char)B; ++ybr_out;
}
assert( ybra + 2 * ybrl == ybr_end ); (void)ybr_end;
assert( ybrb + 1 * ybrl == ybr_end );
assert( ybrc + 0 * ybrl == ybr_end );
}
}
else
{
if( P->GetPlanarConfiguration() == 1 )
{
assert( I->GetPixelFormat() == PixelFormat::UINT8 );
std::string tempvbufrgb = tempvbuf;
unsigned char *rgb = (unsigned char*)&tempvbufrgb[0];
unsigned char *rgb_end = rgb + vbuffer2.size();
assert( vbuffer2.size() % 3 == 0 );
size_t rgbl = vbuffer2.size() / 3;
unsigned char *rgba = rgb + 0 * rgbl;
unsigned char *rgbb = rgb + 1 * rgbl;
unsigned char *rgbc = rgb + 2 * rgbl;
unsigned char *rgb_out = (unsigned char*)&tempvbuf[0];
unsigned char *rgb_out_end = rgb_out + vbuffer2.size();
for( ; rgb_out != rgb_out_end; )
{
unsigned char a = (unsigned char)(*rgba); ++rgba;
unsigned char b = (unsigned char)(*rgbb); ++rgbb;
unsigned char c = (unsigned char)(*rgbc); ++rgbc;
*rgb_out = a; ++rgb_out;
*rgb_out = b; ++rgb_out;
*rgb_out = c; ++rgb_out;
}
assert( rgba + 2 * rgbl == rgb_end ); (void)rgb_end;
assert( rgbb + 1 * rgbl == rgb_end );
assert( rgbc + 0 * rgbl == rgb_end );
}
}
std::istringstream is( tempvbuf );
if( I->GetPixelFormat() == PixelFormat::UINT8 )
{
std::string s = is.str();
if( Internals->ConvertRGBToPaletteColor )
{
// As per standard, we only support 8bits icon
I->SetPixelFormat( PixelFormat::UINT8 );
pixeldata.SetByteValue( &s[0], (uint32_t)s.size() );
BuildLUT(*I, 256 );
}
else
{
I->SetPixelFormat( PixelFormat::UINT8 );
I->GetPixelFormat().SetSamplesPerPixel( 3 );
pixeldata.SetByteValue( &s[0], (uint32_t)s.size() );
}
}
else
{
assert( I->GetPixelFormat() == PixelFormat::UINT16 );
assert( I->GetPixelFormat().GetPixelRepresentation() == 0 );
std::string s = is.str();
Rescaler r;
r.SetPixelFormat( I->GetPixelFormat() );
//r.SetPixelFormat( PixelFormat::UINT16 );
// FIXME: This is not accurate. We should either:
// - Read the value from window/level to get better min,max value
// - iterate over all possible value to find the min,max as we are looping
// over all values anyway
const double min = 0; // oripf.GetMin();
const double max = 65536 - 1; //oripf.GetMax();
r.SetSlope( 255. / (max - min + 0) ); // UINT8_MAX
const double step = min * r.GetSlope();
r.SetIntercept( 0 - step );
// paranoid self check:
assert( r.GetIntercept() + r.GetSlope() * min == 0. );
assert( r.GetIntercept() + r.GetSlope() * max == 255. );
r.SetTargetPixelType( PixelFormat::UINT8 );
r.SetUseTargetPixelType(true);
std::vector<char> v8;
v8.resize( Internals->dims[0] * Internals->dims[1] * 3 );
if( !r.Rescale(&v8[0],&s[0],s.size()) )
{
assert( 0 ); // should not happen in real life
gdcmErrorMacro( "Problem in the rescaler" );
return false;
}
if( Internals->ConvertRGBToPaletteColor )
{
LookupTable &lut = I->GetLUT();
lut.Allocate();
I->SetPixelFormat( PixelFormat::UINT8 );
pixeldata.SetByteValue( &v8[0], (uint32_t)v8.size() );
BuildLUT(*I, 256 );
}
else
{
I->SetPixelFormat( PixelFormat::UINT8 );
I->GetPixelFormat().SetSamplesPerPixel( 3 );
pixeldata.SetByteValue( &v8[0], (uint32_t)v8.size() );
}
}
}
else
{
// MONOCHROME1 / MONOCHROME2 ...
char *buffer2 = &vbuffer2[0];
pixeldata.SetByteValue( buffer2, (uint32_t)vbuffer2.size() );
Rescaler r;
r.SetPixelFormat( I->GetPixelFormat() );
// FIXME: This is not accurate. We should either:
// - Read the value from window/level to get better min,max value
// - iterate over all possible value to find the min,max as we are looping
// over all values anyway
double min = (double)oripf.GetMin();
double max = (double)oripf.GetMax();
if( Internals->UseMinMax )
{
min = Internals->Min;
max = Internals->Max;
}
if( Internals->AutoMinMax )
{
const char *p = &vbuffer2[0];
size_t len = vbuffer2.size();
const PixelFormat &pf = I->GetPixelFormat();
assert( pf.GetSamplesPerPixel() == 1 );
if( Internals->UseOutsideValuePixel )
{
const double d = Internals->OutsideValuePixel;
switch ( pf.GetScalarType() )
{
case PixelFormat::UINT8:
ComputeMinMax<uint8_t>( (uint8_t*)p, len / sizeof( uint8_t ), min, max, d);
break;
case PixelFormat::INT8:
ComputeMinMax<int8_t>( (int8_t*)p, len / sizeof( int8_t ), min, max, d);
break;
case PixelFormat::UINT16:
ComputeMinMax<uint16_t>( (uint16_t*)p, len / sizeof( uint16_t ), min, max, d);
break;
case PixelFormat::INT16:
ComputeMinMax<int16_t>( (int16_t*)p, len / sizeof( int16_t ), min, max, d);
break;
default:
assert( 0 ); // should not happen
break;
}
// ok we have found the min value, we should now be able to replace all value 'd' with this min now:
switch ( pf.GetScalarType() )
{
case PixelFormat::UINT8:
std::replace( (uint8_t*)p, (uint8_t*)p + len / sizeof( uint8_t ), (uint8_t)d, (uint8_t)min);
break;
case PixelFormat::INT8:
std::replace( (int8_t*)p, (int8_t*)p + len / sizeof( int8_t ), (int8_t)d, (int8_t)min);
break;
case PixelFormat::UINT16:
std::replace( (uint16_t*)p, (uint16_t*)p + len / sizeof( uint16_t ), (uint16_t)d, (uint16_t)min);
break;
case PixelFormat::INT16:
std::replace( (int16_t*)p, (int16_t*)p + len / sizeof( int16_t ), (int16_t)d, (int16_t)min);
break;
default:
assert( 0 ); // should not happen
break;
}
}
switch ( pf.GetScalarType() )
{
case PixelFormat::UINT8:
ComputeMinMax<uint8_t>( (uint8_t*)p, len / sizeof( uint8_t ), min, max);
break;
case PixelFormat::INT8:
ComputeMinMax<int8_t>( (int8_t*)p, len / sizeof( int8_t ), min, max);
break;
case PixelFormat::UINT16:
ComputeMinMax<uint16_t>( (uint16_t*)p, len / sizeof( uint16_t ), min, max);
break;
case PixelFormat::INT16:
ComputeMinMax<int16_t>( (int16_t*)p, len / sizeof( int16_t ), min, max);
break;
default:
assert( 0 ); // should not happen
break;
}
}
r.SetSlope( 255. / (max - min + 0) ); // UINT8_MAX
const double step = min * r.GetSlope();
r.SetIntercept( 0 - step );
// paranoid self check:
assert( (int)(0.5 + r.GetIntercept() + r.GetSlope() * min) == 0 );
assert( (int)(0.5 + r.GetIntercept() + r.GetSlope() * max) == 255 );
r.SetTargetPixelType( PixelFormat::UINT8 );
r.SetUseTargetPixelType(true);
std::vector<char> v8;
v8.resize( Internals->dims[0] * Internals->dims[1] );
if( !r.Rescale(&v8[0],&vbuffer2[0],vbuffer2.size()) )
{
assert( 0 ); // should not happen in real life
gdcmErrorMacro( "Problem in the rescaler" );
return false;
}
// As per standard, we only support 8bits icon
I->SetPixelFormat( PixelFormat::UINT8 );
pixeldata.SetByteValue( &v8[0], (uint32_t)v8.size() );
}
// \postcondition
if( !Internals->ConvertRGBToPaletteColor
&& I->GetPhotometricInterpretation() == PhotometricInterpretation::RGB )
{
assert( I->GetPixelFormat().GetSamplesPerPixel() == 3 );
}
else
{
assert( I->GetPixelFormat().GetSamplesPerPixel() == 1 );
}
assert( I->GetPixelFormat().GetBitsAllocated() == 8 );
assert( I->GetPixelFormat().GetBitsStored() == 8 );
assert( I->GetPixelFormat().GetHighBit() == 7 );
assert( I->GetPixelFormat().GetPixelRepresentation() == 0 );
return true;
}
} // end namespace gdcm
|