1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
|
/*=========================================================================
Program: GDCM (Grassroots DICOM). A DICOM library
Copyright (c) 2006-2011 Mathieu Malaterre
All rights reserved.
See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "gdcmRLECodec.h"
#include "gdcmTransferSyntax.h"
#include "gdcmTrace.h"
#include "gdcmByteSwap.txx"
#include "gdcmDataElement.h"
#include "gdcmSequenceOfFragments.h"
#include "gdcmSmartPointer.h"
#include "gdcmSwapper.h"
#include <vector>
#include <algorithm> // req C++11
#include <stddef.h> // ptrdiff_t fix
#include <cstring>
#include <gdcmrle/rle.h>
namespace gdcm
{
// TODO ideally this code should be in utilities for ease of reuse
class RLEHeader
{
public:
uint32_t NumSegments;
uint32_t Offset[15];
void Print(std::ostream &os)
{
os << "NumSegments:" << NumSegments << "\n";
for(int i=0; i<15; ++i)
{
os << i << ":" << Offset[i] << "\n";
}
}
};
class RLEFrame
{
public:
void Read(std::istream &is)
{
// read Header (64 bytes)
is.read((char*)(&Header), sizeof(uint32_t)*16);
assert( sizeof(uint32_t)*16 == 64 );
assert( sizeof(RLEHeader) == 64 );
SwapperNoOp::SwapArray((uint32_t*)&Header,16);
uint32_t numSegments = Header.NumSegments;
if( numSegments >= 1 )
{
assert( Header.Offset[0] == 64 );
}
// We just check that we are indeed at the proper position start+64
}
void Print(std::ostream &os)
{
Header.Print(os);
}
//private:
RLEHeader Header;
std::vector<char> Bytes;
};
class RLEInternals
{
public:
RLEFrame Frame;
std::vector<uint32_t> SegmentLength;
};
RLECodec::RLECodec()
{
Internals = new RLEInternals;
Length = 0;
BufferLength = 0;
}
RLECodec::~RLECodec()
{
delete Internals;
}
bool RLECodec::CanDecode(TransferSyntax const &ts) const
{
return ts == TransferSyntax::RLELossless;
}
bool RLECodec::CanCode(TransferSyntax const &ts) const
{
return ts == TransferSyntax::RLELossless;
}
/*
G.3 THE RLE ALGORITHM
The RLE algorithm described in this section is used to compress Byte Segments into RLE Segments.
There is a one-to-one correspondence between Byte Segments and RLE Segments. Each RLE segment
must be an even number of bytes or padded at its end with zero to make it even.
G.3.1 The RLE encoder
A sequence of identical bytes (Replicate Run) is encoded as a two-byte code:
< -count + 1 > <byte value>, where
count = the number of bytes in the run, and
2 <= count <= 128
and a non-repetitive sequence of bytes (Literal Run) is encoded as:
< count - 1 > <Iiteral sequence of bytes>, where
count = number of bytes in the sequence, and
1 <= count <= 128.
The value of -128 may not be used to prefix a byte value.
Note: It is common to encode a 2-byte repeat run as a Replicate Run except when preceded and followed by
a Literal Run, in which case it's best to merge the three runs into a Literal Run.
Three-byte repeats shall be encoded as Replicate Runs. Each row of the image shall be encoded
separately and not cross a row boundary.
*/
inline int count_identical_bytes(const char *start, size_t len)
{
assert( len );
#if 0
const char *p = start + 1;
const unsigned int cmin = std::min(128u,len);
const char *end = start + cmin;
while( p < end && *p == *start )
{
++p;
}
return p - start;
#else
const char ref = start[0];
unsigned int count = 1; // start at one; make unsigned for comparison
const size_t cmin = std::min((size_t)128,len);
while( count < cmin && start[count] == ref )
{
//std::cerr << "count/len:" << count << "," << len << std::endl;
++count;
}
assert( /*2 <= count && */ count <= 128 ); // remove post condition as it will be our return error code
assert( count >= 1 );
return count;
#endif
}
inline int count_nonrepetitive_bytes(const char *start, size_t len)
{
/*
* TODO:
* I need a special handling when there is only a one repetition that break the Literal run...
Note: It is common to encode a 2-byte repeat run as a Replicate Run except when preceded and followed by
a Literal Run, in which case it's best to merge the three runs into a Literal Run.
*/
assert( len );
#if 0
const char *prev = start;
const char *p = start + 1;
const unsigned int cmin = std::min(128u,len);
const char *end = start + cmin;
while( p < end && *p != *prev )
{
++prev;
++p;
}
return p - start;
#else
unsigned int count = 1;
const size_t cmin = std::min((size_t)128,len);
#if 0
// TODO: this version that handles the note still does not work...
while( count < cmin )
{
if ( start[count] != start[count-1] )
{
// Special case:
if( count + 1 < cmin && start[count] != start[count+1] )
{
continue;
}
break;
}
++count;
}
#else
#if 1
// This version properly encode: 0 1 1 0 as: 3 0 1 1 0 ...
for( count = 1; count < cmin; ++count )
{
if( start[count] == start[count-1] )
{
if( count + 1 < cmin && start[count] != start[count+1] )
{
continue;
}
--count;//Note that count can go negative, or wrapped if unsigned!
break;
}
}
#else
// This version does not handle 0 1 1 0 as specified in the note in the DICOM standard
while( count < cmin && start[count] != start[count-1] )
{
++count;
}
#endif
#endif
assert( 1 <= count && count <= 128 );
return count;
#endif
}
/* return output length */
ptrdiff_t rle_encode(char *output, size_t outputlength, const char *input, size_t inputlength)
{
char *pout = output;
const char *pin = input;
size_t length = inputlength;
while( pin != input + inputlength )
{
assert( length <= inputlength );
assert( pin <= input + inputlength );
int count = count_identical_bytes(pin, length);
if( count > 1 ) /* or 2 ? */
{
// repeat case:
//
// Test first we are allowed to write two bytes:
if( pout + 1 + 1 > output + outputlength ) return -1;
*pout = (char)(-count + 1);
assert( /**pout != -128 &&*/ 1 - *pout == count );
assert( *pout <= -1 && *pout >= -127 );
++pout;
*pout = *pin;
++pout;
}
else
{
// non repeat case:
// ok need to compute non-repeat:
count = count_nonrepetitive_bytes(pin, length);
// first test we are allowed to write 1 + count bytes in the output buffer:
if( pout + count + 1 > output + outputlength ) return -1;
*pout = (char)(count - 1);
assert( *pout != -128 && *pout+1 == count );
assert( *pout >= 0 );
++pout;
memcpy(pout, pin, count);
pout += count;
}
// count byte where read, move pin to new position:
pin += count;
// compute remaining length:
assert( count <= (int)length );
length -= count;
}
return pout - output;
}
template <typename T>
bool DoInvertPlanarConfiguration(T *output, const T *input, uint32_t inputlength)
{
const T *r = input+0;
const T *g = input+1;
const T *b = input+2;
uint32_t length = (inputlength / 3) * 3; // remove the 0 padding
assert( length == inputlength || length == inputlength - 1 );
assert( length % 3 == 0 );
uint32_t plane_length = length / 3;
T *pout = output;
// copy red plane:
while( pout != output + plane_length * 1 )
{
*pout++ = *r;
r += 3;
}
assert( r == input + length );
// copy green plane:
assert( pout == output + plane_length );
while( pout != output + plane_length * 2 )
{
*pout++ = *g;
g += 3;
}
assert( g == input + length + 1);
// copy blue plane:
assert( pout == output + 2*plane_length );
while( pout != output + plane_length * 3 )
{
*pout++ = *b;
b += 3;
}
assert( b == input + length + 2);
assert ( pout = output + length );
return true;
}
bool RLECodec::Code(DataElement const &in, DataElement &out)
{
const unsigned int *dims = this->GetDimensions();
const unsigned int n = 256*256;
char *outbuf;
// At most we are encoding a single row at a time, so we would be very unlucky
// if the row *after* compression would not fit in 256*256 bytes...
char small_buffer[n];
outbuf = small_buffer;
// Create a Sequence Of Fragments:
SmartPointer<SequenceOfFragments> sq = new SequenceOfFragments;
const Tag itemStart(0xfffe, 0xe000);
//sq->GetTable().SetTag( itemStart );
// FIXME ? Is this compulsary ?
//const char dummy[4] = {};
//sq->GetTable().SetByteValue( dummy, sizeof(dummy) );
const ByteValue *bv = in.GetByteValue();
assert( bv );
const char *input = bv->GetPointer();
unsigned long bvl = bv->GetLength();
unsigned long image_len = bvl / dims[2];
// If 16bits, need to do the padded composite...
char *buffer = 0;
// if rgb (3 comp) need to the planar configuration
char *bufferrgb = 0;
if( GetPixelFormat().GetBitsAllocated() > 8 )
{
//RequestPaddedCompositePixelCode = true;
buffer = new char [ image_len ];
}
if ( GetPhotometricInterpretation() == PhotometricInterpretation::RGB
|| GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL
|| GetPhotometricInterpretation() == PhotometricInterpretation::YBR_RCT
|| GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL_422 )
{
bufferrgb = new char [ image_len ];
}
unsigned int MaxNumSegments = 1;
if( GetPixelFormat().GetBitsAllocated() == 8 )
{
MaxNumSegments *= 1;
}
else if( GetPixelFormat().GetBitsAllocated() == 16 )
{
MaxNumSegments *= 2;
}
else if( GetPixelFormat().GetBitsAllocated() == 32 )
{
MaxNumSegments *= 4;
}
else
{
delete[] buffer;
delete[] bufferrgb;
return false;
}
if( GetPhotometricInterpretation() == PhotometricInterpretation::RGB
|| GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL
|| GetPhotometricInterpretation() == PhotometricInterpretation::YBR_RCT
|| GetPhotometricInterpretation() == PhotometricInterpretation::YBR_FULL_422 )
{
MaxNumSegments *= 3;
}
assert( GetPixelFormat().GetBitsAllocated() == 8 || GetPixelFormat().GetBitsAllocated() == 16
|| GetPixelFormat().GetBitsAllocated() == 32 );
if( GetPixelFormat().GetSamplesPerPixel() == 3 )
{
assert( MaxNumSegments % 3 == 0 );
}
RLEHeader header = { static_cast<uint32_t> ( MaxNumSegments ), { 64 } };
// there cannot be any space in between the end of the RLE header and the start
// of the first RLE segment
//
// Create a RLE Frame for each frame:
for(unsigned int dim = 0; dim < dims[2]; ++dim)
{
// Within each frame, create the RLE Segments:
// lets' try a simple scheme where each Segments is given an equal portion
// of the input image.
const char *ptr_img = input + dim * image_len;
if( GetPlanarConfiguration() == 0 && GetPixelFormat().GetSamplesPerPixel() == 3 )
{
if( GetPixelFormat().GetBitsAllocated() == 8 )
{
DoInvertPlanarConfiguration<char>(bufferrgb, ptr_img, (uint32_t)(image_len / sizeof(char)));
}
else /* ( GetPixelFormat().GetBitsAllocated() == 16 ) */
{
assert( GetPixelFormat().GetBitsAllocated() == 16 );
// should not happen right ?
DoInvertPlanarConfiguration<short>((short*)bufferrgb, (short*)ptr_img, (uint32_t)(image_len / sizeof(short)));
}
ptr_img = bufferrgb;
}
if( GetPixelFormat().GetBitsAllocated() == 32 )
{
assert( !(image_len % 4) );
//assert( image_len % 3 == 0 );
unsigned int div = GetPixelFormat().GetSamplesPerPixel();
for(unsigned int j = 0; j < div; ++j)
{
unsigned long iimage_len = image_len / div;
char *ibuffer = buffer + j * iimage_len;
const char *iptr_img = ptr_img + j * iimage_len;
assert( iimage_len % 4 == 0 );
for(unsigned long i = 0; i < iimage_len/4; ++i)
{
#ifdef GDCM_WORDS_BIGENDIAN
ibuffer[i] = iptr_img[4*i+0];
#else
ibuffer[i] = iptr_img[4*i+3];
#endif
}
for(unsigned long i = 0; i < iimage_len/4; ++i)
{
#ifdef GDCM_WORDS_BIGENDIAN
ibuffer[i+iimage_len/4] = iptr_img[4*i+1];
#else
ibuffer[i+iimage_len/4] = iptr_img[4*i+2];
#endif
}
for(unsigned long i = 0; i < iimage_len/4; ++i)
{
#ifdef GDCM_WORDS_BIGENDIAN
ibuffer[i+2*iimage_len/4] = iptr_img[4*i+2];
#else
ibuffer[i+2*iimage_len/4] = iptr_img[4*i+1];
#endif
}
for(unsigned long i = 0; i < iimage_len/4; ++i)
{
#ifdef GDCM_WORDS_BIGENDIAN
ibuffer[i+3*iimage_len/4] = iptr_img[4*i+3];
#else
ibuffer[i+3*iimage_len/4] = iptr_img[4*i+0];
#endif
}
}
ptr_img = buffer;
}
else if( GetPixelFormat().GetBitsAllocated() == 16 )
{
assert( !(image_len % 2) );
//assert( image_len % 3 == 0 );
unsigned int div = GetPixelFormat().GetSamplesPerPixel();
for(unsigned int j = 0; j < div; ++j)
{
unsigned long iimage_len = image_len / div;
char *ibuffer = buffer + j * iimage_len;
const char *iptr_img = ptr_img + j * iimage_len;
assert( iimage_len % 2 == 0 );
for(unsigned long i = 0; i < iimage_len/2; ++i)
{
#ifdef GDCM_WORDS_BIGENDIAN
ibuffer[i] = iptr_img[2*i];
#else
ibuffer[i] = iptr_img[2*i+1];
#endif
}
for(unsigned long i = 0; i < iimage_len/2; ++i)
{
#ifdef GDCM_WORDS_BIGENDIAN
ibuffer[i+iimage_len/2] = iptr_img[2*i+1];
#else
ibuffer[i+iimage_len/2] = iptr_img[2*i];
#endif
}
}
ptr_img = buffer;
}
assert( image_len % MaxNumSegments == 0 );
const size_t input_seg_length = image_len / MaxNumSegments;
std::string datastr;
for(unsigned int seg = 0; seg < MaxNumSegments; ++seg )
{
size_t partition = input_seg_length;
const char *ptr = ptr_img + seg * input_seg_length;
assert( ptr < ptr_img + image_len );
if( seg == MaxNumSegments - 1 )
{
partition += image_len % MaxNumSegments;
assert( (MaxNumSegments-1) * input_seg_length + partition == (size_t)image_len );
}
assert( partition == input_seg_length );
std::stringstream data;
assert( partition % dims[1] == 0 );
size_t length = 0;
// Do not cross row boundary:
for(unsigned int y = 0; y < dims[1]; ++y)
{
ptrdiff_t llength = rle_encode(outbuf, n, ptr + y*dims[0], partition / dims[1] /*image_len*/);
if( llength < 0 )
{
std::cerr << "RLE compressor error" << std::endl;
return false;
}
assert( llength );
data.write((char*)outbuf, llength);
length += llength;
}
// update header
header.Offset[1+seg] = (uint32_t)(header.Offset[seg] + length);
assert( data.str().size() == length );
datastr += data.str();
}
header.Offset[MaxNumSegments] = 0;
std::stringstream os;
//header.Print( std::cout );
os.write((char*)&header,sizeof(header));
std::string str = os.str() + datastr;
assert( str.size() );
Fragment frag;
//frag.SetTag( itemStart );
VL::Type strSize = (VL::Type)str.size();
frag.SetByteValue( &str[0], strSize );
sq->AddFragment( frag );
}
out.SetValue( *sq );
if( buffer /*GetPixelFormat().GetBitsAllocated() > 8*/ )
{
//RequestPaddedCompositePixelCode = true;
delete[] buffer;
}
if ( bufferrgb /*GetPhotometricInterpretation() == PhotometricInterpretation::RGB*/ )
{
delete[] bufferrgb;
}
return true;
}
// G.3.2 The RLE decoder
// Pseudo code for the RLE decoder is shown below:
// Loop until the number of output bytes equals the uncompressed segment size
// Read the next source byte into n
// If n> =0 and n <= 127 then
// output the next n+1 bytes literally
// Elseif n <= - 1 and n >= -127 then
// output the next byte -n+1 times
// Elseif n = - 128 then
// output nothing
// Endif
// Endloop
size_t RLECodec::DecodeFragment(Fragment const & frag, char *buffer, unsigned long llen)
{
std::stringstream is;
const ByteValue &bv = dynamic_cast<const ByteValue&>(frag.GetValue());
size_t bv_len = bv.GetLength();
char *mybuffer = new char[bv_len];
bv.GetBuffer(mybuffer, bv.GetLength());
is.write(mybuffer, bv.GetLength());
delete[] mybuffer;
std::stringstream os;
SetLength( llen );
#if !defined(NDEBUG)
const unsigned int * const dimensions = this->GetDimensions();
const PixelFormat & pf = this->GetPixelFormat();
assert( llen == dimensions[0] * dimensions[1] * pf.GetPixelSize() );
#endif
bool r = DecodeByStreams(is, os);
assert( r == true );
(void)r; //warning removal
std::streampos p = is.tellg();
// http://groups.google.com/group/microsoft.public.vc.stl/browse_thread/thread/96740930d0e4e6b8
if( !!is )
{
// Indeed the length of the RLE stream has been padded with a \0
// which is discarded
std::streamoff check = bv.GetLength() - p;
// check == 2 for gdcmDataExtra/gdcmSampleData/US_DataSet/GE_US/2929J686-breaker
assert( check == 0 || check == 1 || check == 2 );
if( check ) gdcmWarningMacro( "tiny offset detected in between RLE segments" );
}
else
{
// ALOKA_SSD-8-MONO2-RLE-SQ.dcm
gdcmWarningMacro( "Bad RLE stream" );
}
std::string::size_type check = os.str().size();
// If the following assert fail expect big troubles:
memcpy(buffer, os.str().c_str(), check);
// pos += check;
return check;
}
bool RLECodec::Decode(DataElement const &in, DataElement &out)
{
if( NumberOfDimensions == 2 )
{
out = in;
const SequenceOfFragments *sf = in.GetSequenceOfFragments();
if( !sf ) return false;
unsigned long len = GetBufferLength();
std::stringstream is;
sf->WriteBuffer( is );
SetLength( len );
std::stringstream os;
bool r = DecodeByStreams(is, os);
assert( r ); (void)r; //warning removal
std::string str = os.str();
std::string::size_type check = str.size();
assert( check == len );
VL::Type checkCast = (VL::Type)check;
out.SetByteValue( &str[0], checkCast );
return true;
}
else if ( NumberOfDimensions == 3 )
{
out = in;
const SequenceOfFragments *sf = in.GetSequenceOfFragments();
if( !sf ) return false;
unsigned long len = GetBufferLength();
char *buffer = new char[len];
unsigned long pos = 0;
// Each RLE Frame store a 2D frame. len is the 3d length
unsigned long llen = len / sf->GetNumberOfFragments();
// assert( GetNumberOfDimensions() == 2
// || GetDimension(2) == sf->GetNumberOfFragments() );
for(unsigned int i = 0; i < sf->GetNumberOfFragments(); ++i)
{
const Fragment &frag = sf->GetFragment(i);
const size_t check = DecodeFragment(frag, buffer + pos, llen); (void)check;
assert( check == llen );
pos += llen;
}
assert( pos == len );
out.SetByteValue( buffer, (uint32_t)len );
delete[] buffer;
return true;
}
return false;
}
bool RLECodec::DecodeExtent(
char *buffer,
unsigned int xmin, unsigned int xmax,
unsigned int ymin, unsigned int ymax,
unsigned int zmin, unsigned int zmax,
std::istream & is
)
{
std::stringstream tmpos;
BasicOffsetTable bot;
bot.Read<SwapperNoOp>( is );
//std::cout << bot << std::endl;
const unsigned int * dimensions = this->GetDimensions();
const PixelFormat & pf = this->GetPixelFormat();
assert( pf.GetBitsAllocated() % 8 == 0 );
assert( pf != PixelFormat::SINGLEBIT );
assert( pf != PixelFormat::UINT12 && pf != PixelFormat::INT12 );
// skip
std::stringstream os;
Fragment frag;
for( unsigned int z = 0; z < zmin; ++z )
{
frag.ReadPreValue<SwapperNoOp>(is);
std::streamoff off = frag.GetVL();
is.seekg( off, std::ios::cur );
}
for( unsigned int z = zmin; z <= zmax; ++z )
{
frag.ReadPreValue<SwapperNoOp>(is);
std::streampos start = is.tellg();
SetLength( dimensions[0] * dimensions[1] * pf.GetPixelSize() );
const bool r = DecodeByStreams(is, os); (void)r;
assert( r );
// handle DICOM padding
std::streampos end = is.tellg();
size_t numberOfReadBytes = end - start;
if( numberOfReadBytes > frag.GetVL() )
{
// Special handling for ALOKA_SSD-8-MONO2-RLE-SQ.dcm
size_t diff = numberOfReadBytes - frag.GetVL();
assert( diff == 1 );
os.seekp( -diff, std::ios::cur );
os.put( 0 );
end = (size_t)end - 1;
}
assert( end - start == frag.GetVL() || (size_t)(end - start) + 1 == frag.GetVL() );
// sync is (rle16loo.dcm)
if( (end - start) % 2 == 1 )
{
is.get();
}
} // for each z
os.seekg(0, std::ios::beg );
assert( os.good() );
std::istream *theStream = &os;
unsigned int rowsize = xmax - xmin + 1;
unsigned int colsize = ymax - ymin + 1;
unsigned int bytesPerPixel = pf.GetPixelSize();
std::vector<char> buffer1;
buffer1.resize( rowsize*bytesPerPixel );
char *tmpBuffer1 = &buffer1[0];
unsigned int y, z;
std::streamoff theOffset;
for (z = zmin; z <= zmax; ++z)
{
for (y = ymin; y <= ymax; ++y)
{
theStream->seekg(std::ios::beg);
theOffset = 0 + ((z-zmin)*dimensions[1]*dimensions[0] + y*dimensions[0] + xmin)*bytesPerPixel;
theStream->seekg(theOffset);
theStream->read(tmpBuffer1, rowsize*bytesPerPixel);
memcpy(&(buffer[((z-zmin)*rowsize*colsize +
(y-ymin)*rowsize)*bytesPerPixel]),
tmpBuffer1, rowsize*bytesPerPixel);
}
}
return true;
}
bool RLECodec::DecodeByStreamsCommon(std::istream &, std::ostream &)
{
return false;
}
bool RLECodec::DecodeByStreams(std::istream &is, std::ostream &os)
{
std::streampos start = is.tellg();
// FIXME: Do some stupid work:
char dummy_buffer[256];
std::stringstream tmpos;
RLEFrame &frame = Internals->Frame;
frame.Read(is);
unsigned long numSegments = frame.Header.NumSegments;
unsigned long numberOfReadBytes = 0;
unsigned long length = Length;
assert( length );
// Special case:
assert( GetPixelFormat().GetBitsAllocated() == 32 ||
GetPixelFormat().GetBitsAllocated() == 16 ||
GetPixelFormat().GetBitsAllocated() == 8 );
if( GetPixelFormat().GetBitsAllocated() > 8 )
{
RequestPaddedCompositePixelCode = true;
}
assert( GetPixelFormat().GetSamplesPerPixel() == 3 || GetPixelFormat().GetSamplesPerPixel() == 1 );
// A footnote:
// RLE *by definition* with more than one component will have applied the
// Planar Configuration because it simply does not make sense to do it
// otherwise. So implicitely RLE is indeed PlanarConfiguration == 1. However
// when the image says: "hey I am PlanarConfiguration = 0 AND RLE", then
// apply the PlanarConfiguration internally so that people don't get lost
// Because GDCM internally set PlanarConfiguration == 0 by default, even if
// the Attribute is not sent, it will still default to 0 and we will be
// consistent with ourselves...
if( GetPixelFormat().GetSamplesPerPixel() == 3 && GetPlanarConfiguration() == 0 )
{
RequestPlanarConfiguration = true;
}
length /= numSegments;
for(unsigned long i = 0; i<numSegments; ++i)
{
numberOfReadBytes = 0;
std::streampos pos = is.tellg() - start;
if ( frame.Header.Offset[i] - pos != 0 )
{
// ACUSON-24-YBR_FULL-RLE.dcm
// D_CLUNIE_CT1_RLE.dcm
// This should be at most the \0 padding
//gdcmWarningMacro( "RLE Header says: " << frame.Header.Offset[i] <<
// " when it should says: " << pos << std::endl );
std::streamoff check = frame.Header.Offset[i] - pos;//should it be a streampos or a uint32? mmr
// check == 2 for gdcmDataExtra/gdcmSampleData/US_DataSet/GE_US/2929J686-breaker
assert( check == 1 || check == 2);
(void)check; //warning removal
is.seekg( frame.Header.Offset[i] + start, std::ios::beg );
}
unsigned long numOutBytes = 0;
signed char byte;
// FIXME: ALOKA_SSD-8-MONO2-RLE-SQ.dcm I think the RLE decoder is off by
// one, we are reading in 128001 byte, while only 128000 are present
while( numOutBytes < length )
{
is.read((char*)&byte, 1);
assert( is.good() );
numberOfReadBytes++;
if( byte >= 0 /*&& byte <= 127*/ ) /* 2nd is always true */
{
is.read( dummy_buffer, byte+1 );
//assert( is.good() ); // impossible because ALOKA_SSD-8-MONO2-RLE-SQ.dc
numberOfReadBytes += byte+1;
numOutBytes += byte+ 1;
tmpos.write( dummy_buffer, byte+1 );
}
else if( byte <= -1 && byte >= -127 )
{
char nextByte;
is.read( &nextByte, 1);
numberOfReadBytes += 1;
memset(dummy_buffer, nextByte, -byte + 1);
numOutBytes += -byte + 1;
tmpos.write( dummy_buffer, -byte+1 );
}
else /* byte == -128 */
{
assert( byte == -128 );
}
//assert( numberOfReadBytes + frame.Header.Offset[i] - is.tellg() + start == 0);
}
assert( numOutBytes == length );
}
return ImageCodec::DecodeByStreams(tmpos,os);
}
bool RLECodec::GetHeaderInfo(std::istream &is, TransferSyntax &ts)
{
(void)is;
ts = TransferSyntax::RLELossless;
return true;
}
ImageCodec * RLECodec::Clone() const
{
return new RLECodec;
}
bool RLECodec::StartEncode( std::ostream & )
{
return true;
}
bool RLECodec::IsRowEncoder()
{
return false;
}
bool RLECodec::IsFrameEncoder()
{
return true;
}
class memsrc : public ::rle::source
{
public:
memsrc( const char * data, size_t datalen ):ptr(data),cur(data),len(datalen)
{
}
int read( char * out, int l )
{
memcpy( out, cur, l );
cur += l;
assert( cur <= ptr + len );
return l;
}
streampos_t tell()
{
assert( cur <= ptr + len );
return (streampos_t)(cur - ptr);
}
bool seek(streampos_t pos)
{
cur = ptr + pos;
assert( cur <= ptr + len && cur >= ptr );
return true;
}
bool eof()
{
assert( cur <= ptr + len );
return cur == ptr + len;
}
memsrc * clone()
{
memsrc * ret = new memsrc( ptr, len );
return ret;
}
private:
const char * ptr;
const char * cur;
size_t len;
};
bool RLECodec::AppendRowEncode( std::ostream & os, const char * data, size_t datalen)
{
assert(0);
return false;
}
class streamdest : public rle::dest
{
public:
streamdest( std::ostream & os ):stream(os)
{
start = os.tellp();
}
int write( const char * in, int len )
{
stream.write(in, len );
return len;
}
bool seek( streampos_t abs_pos )
{
stream.seekp( abs_pos + start );
return true;
}
private:
std::ostream & stream;
std::streampos start;
};
bool RLECodec::AppendFrameEncode( std::ostream & out, const char * data, size_t datalen )
{
const PixelFormat & pf = this->GetPixelFormat();
rle::pixel_info pi((unsigned char)pf.GetSamplesPerPixel(), (unsigned char)(pf.GetBitsAllocated()));
const unsigned int * dimensions = this->GetDimensions();
rle::image_info ii(dimensions[0], dimensions[1], pi);
const int h = dimensions[1];
memsrc src( data, datalen );
rle::rle_encoder re(src, ii);
streamdest fd( out );
if( !re.write_header( fd ) )
{
gdcmErrorMacro( "could not write header" );
return false;
}
for( int y = 0; y < h; ++y )
{
const int ret = re.encode_row( fd );
if( ret < 0 )
{
gdcmErrorMacro( "problem at row: " << y );
return false;
}
}
return true;
}
bool RLECodec::StopEncode( std::ostream & )
{
return true;
}
} // end namespace gdcm
|