1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
/*=========================================================================
Program: GDCM (Grassroots DICOM). A DICOM library
Copyright (c) 2006-2011 Mathieu Malaterre
All rights reserved.
See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "gdcmRescaler.h"
#include <limits>
#include <algorithm> // std::max
#include <stdlib.h> // abort
#include <string.h> // memcpy
#include <math.h> // floor
namespace gdcm
{
// parameter 'size' is in bytes
template <typename TOut, typename TIn>
void RescaleFunction(TOut *out, const TIn *in, double intercept, double slope, size_t size)
{
size /= sizeof(TIn);
for(size_t i = 0; i != size; ++i)
{
// Implementation detail:
// The rescale function does not add the usual +0.5 to do the proper integer type
// cast, since TOut is expected to be floating point type whenever it would occur
out[i] = (TOut)(slope * in[i] + intercept);
//assert( out[i] == (TOut)(slope * in[i] + intercept) ); // will really slow down stuff...
//assert( in[i] == (TIn)(((double)out[i] - intercept) / slope + 0.5) );
// For image such as: gdcmData/MR16BitsAllocated_8BitsStored.dcm, the following line will not work:
// Indeed the pixel declares itself as 16/8/7 with pixel representation of 1. In this case
// anything outside the range [-127,128] is required to be discarded !
//assert( (TIn)out[i] == in[i] );
}
}
// no such thing as partial specialization of function in c++
// so instead use this trick:
template<typename TOut, typename TIn>
struct FImpl;
template<typename TOut, typename TIn>
void InverseRescaleFunction(TOut *out, const TIn *in, double intercept, double slope, size_t size)
{ FImpl<TOut,TIn>::InverseRescaleFunction(out,in,intercept,slope,size); } // users, don't touch this!
template<typename TOut, typename TIn>
struct FImpl
{
// parameter 'size' is in bytes
// TODO: add template parameter for intercept/slope so that we can have specialized instantiation
// when 1. both are int, 2. slope is 1, 3. intercept is 0
// Detail: casting from float to int is soooo slow
static void InverseRescaleFunction( TOut *out, const TIn *in,
double intercept, double slope, size_t size) // users, go ahead and specialize this
{
// If you read the code down below you'll see a specialized function for float, thus
// if we reach here it pretty much means slope/intercept were integer type
assert( intercept == (int)intercept );
assert( slope == (int)slope );
size /= sizeof(TIn);
for(size_t i = 0; i != size; ++i)
{
// '+ 0.5' trick is NOT needed for image such as: gdcmData/D_CLUNIE_CT1_J2KI.dcm
out[i] = (TOut)(((double)in[i] - intercept) / slope );
}
}
};
template < typename T >
static inline T round(const double d)
{
return (T)floor(d + 0.5);
}
template<typename TOut>
struct FImpl<TOut, float>
{
static void InverseRescaleFunction(TOut *out, const float *in,
double intercept, double slope, size_t size)
{
size /= sizeof(float);
for(size_t i = 0; i != size; ++i)
{
// '+ 0.5' trick is needed for instance for : gdcmData/MR-MONO2-12-shoulder.dcm
// well known trick of adding 0.5 after a floating point type operation to properly find the
// closest integer that will represent the transformation
// TOut in this case is integer type, while input is floating point type
out[i] = round<TOut>(((double)in[i] - intercept) / slope);
//assert( out[i] == (TOut)(((double)in[i] - intercept) / slope ) );
}
}
};
template<typename TOut>
struct FImpl<TOut, double>
{
static void InverseRescaleFunction(TOut *out, const double *in,
double intercept, double slope, size_t size)
{
size /= sizeof(double);
for(size_t i = 0; i != size; ++i)
{
// '+ 0.5' trick is needed for instance for : gdcmData/MR-MONO2-12-shoulder.dcm
// well known trick of adding 0.5 after a floating point type operation to properly find the
// closest integer that will represent the transformation
// TOut in this case is integer type, while input is floating point type
out[i] = round<TOut>(((double)in[i] - intercept) / slope);
//assert( out[i] == (TOut)(((double)in[i] - intercept) / slope ) );
}
}
};
static inline PixelFormat::ScalarType ComputeBestFit(const PixelFormat &pf, double intercept, double slope)
{
PixelFormat::ScalarType st = PixelFormat::UNKNOWN;
assert( slope == (int)slope && intercept == (int)intercept);
const double min = slope * (double)pf.GetMin() + intercept;
const double max = slope * (double)pf.GetMax() + intercept;
assert( min <= max );
assert( min == (int64_t)min && max == (int64_t)max );
if( min >= 0 ) // unsigned
{
if( max <= std::numeric_limits<uint8_t>::max() )
{
st = PixelFormat::UINT8;
}
else if( max <= std::numeric_limits<uint16_t>::max() )
{
st = PixelFormat::UINT16;
}
else if( max <= std::numeric_limits<uint32_t>::max() )
{
st = PixelFormat::UINT32;
}
else
{
gdcmErrorMacro( "Unhandled Pixel Format" );
return st;
}
}
else
{
if( max <= std::numeric_limits<int8_t>::max()
&& min >= std::numeric_limits<int8_t>::min() )
{
st = PixelFormat::INT8;
}
else if( max <= std::numeric_limits<int16_t>::max()
&& min >= std::numeric_limits<int16_t>::min() )
{
st = PixelFormat::INT16;
}
else if( max <= std::numeric_limits<int32_t>::max()
&& min >= std::numeric_limits<int32_t>::min() )
{
st = PixelFormat::INT32;
}
else
{
gdcmErrorMacro( "Unhandled Pixel Format" );
return st;
}
}
// postcondition:
assert( min >= PixelFormat(st).GetMin() );
assert( max <= PixelFormat(st).GetMax() );
assert( st != PixelFormat::UNKNOWN );
return st;
}
PixelFormat::ScalarType Rescaler::ComputeInterceptSlopePixelType()
{
assert( PF != PixelFormat::UNKNOWN );
PixelFormat::ScalarType output = PixelFormat::UNKNOWN;
if( PF == PixelFormat::SINGLEBIT ) return PixelFormat::SINGLEBIT;
if( Slope != (int)Slope || Intercept != (int)Intercept)
{
//assert( PF != PixelFormat::INT8 && PF != PixelFormat::UINT8 ); // Is there any Object that have Rescale on char ?
assert( PF != PixelFormat::SINGLEBIT );
return PixelFormat::FLOAT64;
}
//if( PF.IsValid() )
{
const double intercept = Intercept;
const double slope = Slope;
output = ComputeBestFit (PF,intercept,slope);
}
return output;
}
template <typename TIn>
void Rescaler::RescaleFunctionIntoBestFit(char *out, const TIn *in, size_t n)
{
double intercept = Intercept;
double slope = Slope;
PixelFormat::ScalarType output = ComputeInterceptSlopePixelType();
if( UseTargetPixelType )
{
output = TargetScalarType;
}
switch(output)
{
case PixelFormat::SINGLEBIT:
assert(0);
break;
case PixelFormat::UINT8:
RescaleFunction<uint8_t,TIn>((uint8_t*)out,in,intercept,slope,n);
break;
case PixelFormat::INT8:
RescaleFunction<int8_t,TIn>((int8_t*)out,in,intercept,slope,n);
break;
case PixelFormat::UINT16:
RescaleFunction<uint16_t,TIn>((uint16_t*)out,in,intercept,slope,n);
break;
case PixelFormat::INT16:
RescaleFunction<int16_t,TIn>((int16_t*)out,in,intercept,slope,n);
break;
case PixelFormat::UINT32:
RescaleFunction<uint32_t,TIn>((uint32_t*)out,in,intercept,slope,n);
break;
case PixelFormat::INT32:
RescaleFunction<int32_t,TIn>((int32_t*)out,in,intercept,slope,n);
break;
case PixelFormat::FLOAT32:
RescaleFunction<float,TIn>((float*)out,in,intercept,slope,n);
break;
case PixelFormat::FLOAT64:
RescaleFunction<double,TIn>((double*)out,in,intercept,slope,n);
break;
default:
assert(0);
break;
}
}
template <typename TIn>
void Rescaler::InverseRescaleFunctionIntoBestFit(char *out, const TIn *in, size_t n)
{
const double intercept = Intercept;
const double slope = Slope;
PixelFormat output = ComputePixelTypeFromMinMax();
switch(output)
{
case PixelFormat::SINGLEBIT:
assert(0);
break;
case PixelFormat::UINT8:
InverseRescaleFunction<uint8_t,TIn>((uint8_t*)out,in,intercept,slope,n);
break;
case PixelFormat::INT8:
InverseRescaleFunction<int8_t,TIn>((int8_t*)out,in,intercept,slope,n);
break;
case PixelFormat::UINT16:
InverseRescaleFunction<uint16_t,TIn>((uint16_t*)out,in,intercept,slope,n);
break;
case PixelFormat::INT16:
InverseRescaleFunction<int16_t,TIn>((int16_t*)out,in,intercept,slope,n);
break;
case PixelFormat::UINT32:
InverseRescaleFunction<uint32_t,TIn>((uint32_t*)out,in,intercept,slope,n);
break;
case PixelFormat::INT32:
InverseRescaleFunction<int32_t,TIn>((int32_t*)out,in,intercept,slope,n);
break;
default:
assert(0);
break;
}
}
bool Rescaler::InverseRescale(char *out, const char *in, size_t n)
{
bool fastpath = true;
switch(PF)
{
case PixelFormat::FLOAT32:
case PixelFormat::FLOAT64:
fastpath = false;
break;
default:
;
}
// fast path:
if( fastpath && (Slope == 1 && Intercept == 0) )
{
memcpy(out,in,n);
return true;
}
// check if we are dealing with floating point type
if( Slope != (int)Slope || Intercept != (int)Intercept)
{
// need to rescale as double (64bits) as slope/intercept are 64bits
//assert(0);
}
// else integral type
switch(PF)
{
case PixelFormat::UINT16:
InverseRescaleFunctionIntoBestFit<uint16_t>(out,(uint16_t*)in,n);
break;
case PixelFormat::INT16:
InverseRescaleFunctionIntoBestFit<int16_t>(out,(int16_t*)in,n);
break;
case PixelFormat::UINT32:
InverseRescaleFunctionIntoBestFit<uint32_t>(out,(uint32_t*)in,n);
break;
case PixelFormat::INT32:
InverseRescaleFunctionIntoBestFit<int32_t>(out,(int32_t*)in,n);
break;
case PixelFormat::FLOAT32:
assert( sizeof(float) == 32 / 8 );
InverseRescaleFunctionIntoBestFit<float>(out,(float*)in,n);
break;
case PixelFormat::FLOAT64:
assert( sizeof(double) == 64 / 8 );
InverseRescaleFunctionIntoBestFit<double>(out,(double*)in,n);
break;
default:
assert(0);
break;
}
return true;
}
bool Rescaler::Rescale(char *out, const char *in, size_t n)
{
if( UseTargetPixelType == false )
{
// fast path:
if( Slope == 1 && Intercept == 0 )
{
memcpy(out,in,n);
return true;
}
// check if we are dealing with floating point type
if( Slope != (int)Slope || Intercept != (int)Intercept)
{
// need to rescale as float (32bits) as slope/intercept are 32bits
}
}
// else integral type
switch(PF)
{
case PixelFormat::SINGLEBIT:
memcpy(out,in,n);
break;
case PixelFormat::UINT8:
RescaleFunctionIntoBestFit<uint8_t>(out,(uint8_t*)in,n);
break;
case PixelFormat::INT8:
RescaleFunctionIntoBestFit<int8_t>(out,(int8_t*)in,n);
break;
case PixelFormat::UINT12:
case PixelFormat::UINT16:
RescaleFunctionIntoBestFit<uint16_t>(out,(uint16_t*)in,n);
break;
case PixelFormat::INT12:
case PixelFormat::INT16:
RescaleFunctionIntoBestFit<int16_t>(out,(int16_t*)in,n);
break;
case PixelFormat::UINT32:
RescaleFunctionIntoBestFit<uint32_t>(out,(uint32_t*)in,n);
break;
case PixelFormat::INT32:
RescaleFunctionIntoBestFit<int32_t>(out,(int32_t*)in,n);
break;
default:
gdcmErrorMacro( "Unhandled: " << PF );
assert(0);
break;
}
return true;
}
PixelFormat ComputeInverseBestFitFromMinMax(/*const PixelFormat &pf,*/ double intercept, double slope, double _min, double _max)
{
PixelFormat st = PixelFormat::UNKNOWN;
//assert( slope == (int)slope && intercept == (int)intercept);
double dmin = (_min - intercept ) / slope;
double dmax = (_max - intercept ) / slope;
assert( dmin <= dmax );
assert( dmax <= std::numeric_limits<int64_t>::max() );
assert( dmin >= std::numeric_limits<int64_t>::min() );
/*
* Tricky: what happen in the case where floating point approximate dmax as: 65535.000244081035
* Take for instance: _max = 64527, intercept = -1024, slope = 1.000244140625
* => dmax = 65535.000244081035
* thus we must always make sure to cast to an integer first.
*/
int64_t min = (int64_t)dmin;
int64_t max = (int64_t)dmax;
int log2min = 0;
int log2max = 0;
if( min >= 0 ) // unsigned
{
if( max <= std::numeric_limits<uint8_t>::max() )
{
st = PixelFormat::UINT8;
}
else if( max <= std::numeric_limits<uint16_t>::max() )
{
st = PixelFormat::UINT16;
}
else if( max <= std::numeric_limits<uint32_t>::max() )
{
st = PixelFormat::UINT32;
}
else
{
assert(0);
}
int64_t max2 = max; // make a copy
while (max2 >>= 1) ++log2max;
// need + 1 in case max == 4095 => 12bits stored required
st.SetBitsStored( (unsigned short)(log2max + 1) );
}
else
{
if( max <= std::numeric_limits<int8_t>::max()
&& min >= std::numeric_limits<int8_t>::min() )
{
st = PixelFormat::INT8;
}
else if( max <= std::numeric_limits<int16_t>::max()
&& min >= std::numeric_limits<int16_t>::min() )
{
st = PixelFormat::INT16;
}
else if( max <= std::numeric_limits<int32_t>::max()
&& min >= std::numeric_limits<int32_t>::min() )
{
st = PixelFormat::INT32;
}
else
{
assert(0);
}
assert( min < 0 );
int64_t min2 = -min; // make a copy
int64_t max2 = max; // make a copy
while (min2 >>= 1) ++log2min;
while (max2 >>= 1) ++log2max;
const int64_t bs = std::max( log2min, log2max ) + 1;
assert( bs <= st.GetBitsAllocated() );
st.SetBitsStored( (unsigned short)bs );
}
// postcondition:
assert( min >= PixelFormat(st).GetMin() );
assert( max <= PixelFormat(st).GetMax() );
assert( st != PixelFormat::UNKNOWN );
assert( st != PixelFormat::FLOAT32 && st != PixelFormat::FLOAT16 && st != PixelFormat::FLOAT64 );
return st;
}
PixelFormat Rescaler::ComputePixelTypeFromMinMax()
{
assert( PF != PixelFormat::UNKNOWN );
const double intercept = Intercept;
const double slope = Slope;
const PixelFormat output =
ComputeInverseBestFitFromMinMax (/*PF,*/intercept,slope,ScalarRangeMin,ScalarRangeMax);
assert( output != PixelFormat::UNKNOWN && output >= PixelFormat::UINT8 && output <= PixelFormat::INT32 );
return output;
}
void Rescaler::SetTargetPixelType( PixelFormat const & targetpf )
{
TargetScalarType = targetpf.GetScalarType();
}
void Rescaler::SetUseTargetPixelType(bool b)
{
UseTargetPixelType = b;
}
} // end namespace gdcm
|