File: gdcmRescaler.cxx

package info (click to toggle)
gdcm 2.4.4-3%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 32,912 kB
  • ctags: 52,166
  • sloc: cpp: 188,527; ansic: 124,526; xml: 41,799; sh: 7,162; python: 3,667; cs: 2,128; java: 1,344; lex: 1,290; tcl: 677; php: 128; makefile: 116
file content (491 lines) | stat: -rw-r--r-- 15,094 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*=========================================================================

  Program: GDCM (Grassroots DICOM). A DICOM library

  Copyright (c) 2006-2011 Mathieu Malaterre
  All rights reserved.
  See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "gdcmRescaler.h"
#include <limits>
#include <algorithm> // std::max
#include <stdlib.h> // abort
#include <string.h> // memcpy
#include <math.h> // floor

namespace gdcm
{

// parameter 'size' is in bytes
template <typename TOut, typename TIn>
void RescaleFunction(TOut *out, const TIn *in, double intercept, double slope, size_t size)
{
  size /= sizeof(TIn);
  for(size_t i = 0; i != size; ++i)
    {
    // Implementation detail:
    // The rescale function does not add the usual +0.5 to do the proper integer type
    // cast, since TOut is expected to be floating point type whenever it would occur
    out[i] = (TOut)(slope * in[i] + intercept);
    //assert( out[i] == (TOut)(slope * in[i] + intercept) ); // will really slow down stuff...
    //assert( in[i] == (TIn)(((double)out[i] - intercept) / slope + 0.5) );

    // For image such as: gdcmData/MR16BitsAllocated_8BitsStored.dcm, the following line will not work:
    // Indeed the pixel declares itself as 16/8/7 with pixel representation of 1. In this case
    // anything outside the range [-127,128] is required to be discarded !
    //assert( (TIn)out[i] == in[i] );
    }
}

// no such thing as partial specialization of function in c++
// so instead use this trick:
template<typename TOut, typename TIn>
struct FImpl;

template<typename TOut, typename TIn>
void InverseRescaleFunction(TOut *out, const TIn *in, double intercept, double slope, size_t size)
{ FImpl<TOut,TIn>::InverseRescaleFunction(out,in,intercept,slope,size); } // users, don't touch this!

template<typename TOut, typename TIn>
struct FImpl
{
  // parameter 'size' is in bytes
  // TODO: add template parameter for intercept/slope so that we can have specialized instantiation
  // when 1. both are int, 2. slope is 1, 3. intercept is 0
  // Detail: casting from float to int is soooo slow
  static void InverseRescaleFunction( TOut *out, const TIn *in,
    double intercept, double slope, size_t size) // users, go ahead and specialize this
    {
    // If you read the code down below you'll see a specialized function for float, thus
    // if we reach here it pretty much means slope/intercept were integer type
    assert( intercept == (int)intercept );
    assert( slope == (int)slope );
    size /= sizeof(TIn);
    for(size_t i = 0; i != size; ++i)
      {
      // '+ 0.5' trick is NOT needed for image such as: gdcmData/D_CLUNIE_CT1_J2KI.dcm
      out[i] = (TOut)(((double)in[i] - intercept) / slope );
      }
    }
};

template < typename T >
static inline T round(const double d)
{
  return (T)floor(d + 0.5);
}

template<typename TOut>
struct FImpl<TOut, float>
{
  static void InverseRescaleFunction(TOut *out, const float *in,
    double intercept, double slope, size_t size)
    {
    size /= sizeof(float);
    for(size_t i = 0; i != size; ++i)
      {
      // '+ 0.5' trick is needed for instance for : gdcmData/MR-MONO2-12-shoulder.dcm
      // well known trick of adding 0.5 after a floating point type operation to properly find the
      // closest integer that will represent the transformation
      // TOut in this case is integer type, while input is floating point type
      out[i] = round<TOut>(((double)in[i] - intercept) / slope);
      //assert( out[i] == (TOut)(((double)in[i] - intercept) / slope ) );
      }
    }
};
template<typename TOut>
struct FImpl<TOut, double>
{
  static void InverseRescaleFunction(TOut *out, const double *in,
    double intercept, double slope, size_t size)
    {
    size /= sizeof(double);
    for(size_t i = 0; i != size; ++i)
      {
      // '+ 0.5' trick is needed for instance for : gdcmData/MR-MONO2-12-shoulder.dcm
      // well known trick of adding 0.5 after a floating point type operation to properly find the
      // closest integer that will represent the transformation
      // TOut in this case is integer type, while input is floating point type
      out[i] = round<TOut>(((double)in[i] - intercept) / slope);
      //assert( out[i] == (TOut)(((double)in[i] - intercept) / slope ) );
      }
    }
};

static inline PixelFormat::ScalarType ComputeBestFit(const PixelFormat &pf, double intercept, double slope)
{
  PixelFormat::ScalarType st = PixelFormat::UNKNOWN;
  assert( slope == (int)slope && intercept == (int)intercept);

  const double min = slope * (double)pf.GetMin() + intercept;
  const double max = slope * (double)pf.GetMax() + intercept;
  assert( min <= max );
  assert( min == (int64_t)min && max == (int64_t)max );
  if( min >= 0 ) // unsigned
    {
    if( max <= std::numeric_limits<uint8_t>::max() )
      {
      st = PixelFormat::UINT8;
      }
    else if( max <= std::numeric_limits<uint16_t>::max() )
      {
      st = PixelFormat::UINT16;
      }
    else if( max <= std::numeric_limits<uint32_t>::max() )
      {
      st = PixelFormat::UINT32;
      }
    else
      {
      gdcmErrorMacro( "Unhandled Pixel Format" );
      return st;
      }
    }
  else
    {
    if( max <= std::numeric_limits<int8_t>::max()
     && min >= std::numeric_limits<int8_t>::min() )
      {
      st = PixelFormat::INT8;
      }
    else if( max <= std::numeric_limits<int16_t>::max()
      && min >= std::numeric_limits<int16_t>::min() )
      {
      st = PixelFormat::INT16;
      }
    else if( max <= std::numeric_limits<int32_t>::max()
      && min >= std::numeric_limits<int32_t>::min() )
      {
      st = PixelFormat::INT32;
      }
    else
      {
      gdcmErrorMacro( "Unhandled Pixel Format" );
      return st;
      }
    }
  // postcondition:
  assert( min >= PixelFormat(st).GetMin() );
  assert( max <= PixelFormat(st).GetMax() );
  assert( st != PixelFormat::UNKNOWN );
  return st;
}

PixelFormat::ScalarType Rescaler::ComputeInterceptSlopePixelType()
{
  assert( PF != PixelFormat::UNKNOWN );
  PixelFormat::ScalarType output = PixelFormat::UNKNOWN;
  if( PF == PixelFormat::SINGLEBIT ) return PixelFormat::SINGLEBIT;
  if( Slope != (int)Slope || Intercept != (int)Intercept)
    {
    //assert( PF != PixelFormat::INT8 && PF != PixelFormat::UINT8 ); // Is there any Object that have Rescale on char ?
    assert( PF != PixelFormat::SINGLEBIT );
    return PixelFormat::FLOAT64;
    }
  //if( PF.IsValid() )
    {
    const double intercept = Intercept;
    const double slope = Slope;
    output = ComputeBestFit (PF,intercept,slope);
    }
  return output;
}

template <typename TIn>
void Rescaler::RescaleFunctionIntoBestFit(char *out, const TIn *in, size_t n)
{
  double intercept = Intercept;
  double slope = Slope;
  PixelFormat::ScalarType output = ComputeInterceptSlopePixelType();
  if( UseTargetPixelType )
    {
    output = TargetScalarType;
    }
  switch(output)
    {
  case PixelFormat::SINGLEBIT:
    assert(0);
    break;
  case PixelFormat::UINT8:
    RescaleFunction<uint8_t,TIn>((uint8_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::INT8:
    RescaleFunction<int8_t,TIn>((int8_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::UINT16:
    RescaleFunction<uint16_t,TIn>((uint16_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::INT16:
    RescaleFunction<int16_t,TIn>((int16_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::UINT32:
    RescaleFunction<uint32_t,TIn>((uint32_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::INT32:
    RescaleFunction<int32_t,TIn>((int32_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::FLOAT32:
    RescaleFunction<float,TIn>((float*)out,in,intercept,slope,n);
    break;
  case PixelFormat::FLOAT64:
    RescaleFunction<double,TIn>((double*)out,in,intercept,slope,n);
    break;
  default:
    assert(0);
    break;
    }
 }

template <typename TIn>
void Rescaler::InverseRescaleFunctionIntoBestFit(char *out, const TIn *in, size_t n)
{
  const double intercept = Intercept;
  const double slope = Slope;
  PixelFormat output = ComputePixelTypeFromMinMax();
  switch(output)
    {
  case PixelFormat::SINGLEBIT:
    assert(0);
    break;
  case PixelFormat::UINT8:
    InverseRescaleFunction<uint8_t,TIn>((uint8_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::INT8:
    InverseRescaleFunction<int8_t,TIn>((int8_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::UINT16:
    InverseRescaleFunction<uint16_t,TIn>((uint16_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::INT16:
    InverseRescaleFunction<int16_t,TIn>((int16_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::UINT32:
    InverseRescaleFunction<uint32_t,TIn>((uint32_t*)out,in,intercept,slope,n);
    break;
  case PixelFormat::INT32:
    InverseRescaleFunction<int32_t,TIn>((int32_t*)out,in,intercept,slope,n);
    break;
  default:
    assert(0);
    break;
    }
 }


bool Rescaler::InverseRescale(char *out, const char *in, size_t n)
{
  bool fastpath = true;
  switch(PF)
    {
  case PixelFormat::FLOAT32:
  case PixelFormat::FLOAT64:
    fastpath = false;
    break;
  default:
    ;
    }

  // fast path:
  if( fastpath && (Slope == 1 && Intercept == 0) )
    {
    memcpy(out,in,n);
    return true;
    }
  // check if we are dealing with floating point type
  if( Slope != (int)Slope || Intercept != (int)Intercept)
    {
    // need to rescale as double (64bits) as slope/intercept are 64bits
    //assert(0);
    }
  // else integral type
  switch(PF)
    {
  case PixelFormat::UINT16:
    InverseRescaleFunctionIntoBestFit<uint16_t>(out,(uint16_t*)in,n);
    break;
  case PixelFormat::INT16:
    InverseRescaleFunctionIntoBestFit<int16_t>(out,(int16_t*)in,n);
    break;
  case PixelFormat::UINT32:
    InverseRescaleFunctionIntoBestFit<uint32_t>(out,(uint32_t*)in,n);
    break;
  case PixelFormat::INT32:
    InverseRescaleFunctionIntoBestFit<int32_t>(out,(int32_t*)in,n);
    break;
  case PixelFormat::FLOAT32:
    assert( sizeof(float) == 32 / 8 );
    InverseRescaleFunctionIntoBestFit<float>(out,(float*)in,n);
    break;
  case PixelFormat::FLOAT64:
    assert( sizeof(double) == 64 / 8 );
    InverseRescaleFunctionIntoBestFit<double>(out,(double*)in,n);
    break;
  default:
    assert(0);
    break;
    }

  return true;
}

bool Rescaler::Rescale(char *out, const char *in, size_t n)
{
  if( UseTargetPixelType == false )
    {
    // fast path:
    if( Slope == 1 && Intercept == 0 )
      {
      memcpy(out,in,n);
      return true;
      }
    // check if we are dealing with floating point type
    if( Slope != (int)Slope || Intercept != (int)Intercept)
      {
      // need to rescale as float (32bits) as slope/intercept are 32bits
      }
    }
  // else integral type
  switch(PF)
    {
  case PixelFormat::SINGLEBIT:
    memcpy(out,in,n);
    break;
  case PixelFormat::UINT8:
    RescaleFunctionIntoBestFit<uint8_t>(out,(uint8_t*)in,n);
    break;
  case PixelFormat::INT8:
    RescaleFunctionIntoBestFit<int8_t>(out,(int8_t*)in,n);
    break;
  case PixelFormat::UINT12:
  case PixelFormat::UINT16:
    RescaleFunctionIntoBestFit<uint16_t>(out,(uint16_t*)in,n);
    break;
  case PixelFormat::INT12:
  case PixelFormat::INT16:
    RescaleFunctionIntoBestFit<int16_t>(out,(int16_t*)in,n);
    break;
  case PixelFormat::UINT32:
    RescaleFunctionIntoBestFit<uint32_t>(out,(uint32_t*)in,n);
    break;
  case PixelFormat::INT32:
    RescaleFunctionIntoBestFit<int32_t>(out,(int32_t*)in,n);
    break;
  default:
    gdcmErrorMacro( "Unhandled: " << PF );
    assert(0);
    break;
    }

  return true;
}

PixelFormat ComputeInverseBestFitFromMinMax(/*const PixelFormat &pf,*/ double intercept, double slope, double _min, double _max)
{
  PixelFormat st = PixelFormat::UNKNOWN;
  //assert( slope == (int)slope && intercept == (int)intercept);

  double dmin = (_min - intercept ) / slope;
  double dmax = (_max - intercept ) / slope;
  assert( dmin <= dmax );
  assert( dmax <= std::numeric_limits<int64_t>::max() );
  assert( dmin >= std::numeric_limits<int64_t>::min() );
  /*
   * Tricky: what happen in the case where floating point approximate dmax as: 65535.000244081035
   * Take for instance: _max = 64527, intercept = -1024, slope = 1.000244140625
   * => dmax = 65535.000244081035
   * thus we must always make sure to cast to an integer first.
   */
  int64_t min = (int64_t)dmin;
  int64_t max = (int64_t)dmax;

  int log2min = 0;
  int log2max = 0;

  if( min >= 0 ) // unsigned
    {
    if( max <= std::numeric_limits<uint8_t>::max() )
      {
      st = PixelFormat::UINT8;
      }
    else if( max <= std::numeric_limits<uint16_t>::max() )
      {
      st = PixelFormat::UINT16;
      }
    else if( max <= std::numeric_limits<uint32_t>::max() )
      {
      st = PixelFormat::UINT32;
      }
    else
      {
      assert(0);
      }
    int64_t max2 = max; // make a copy
    while (max2 >>= 1) ++log2max;
    // need + 1 in case max == 4095 => 12bits stored required
    st.SetBitsStored( (unsigned short)(log2max + 1) );
    }
  else
    {
    if( max <= std::numeric_limits<int8_t>::max()
      && min >= std::numeric_limits<int8_t>::min() )
      {
      st = PixelFormat::INT8;
      }
    else if( max <= std::numeric_limits<int16_t>::max()
      && min >= std::numeric_limits<int16_t>::min() )
      {
      st = PixelFormat::INT16;
      }
    else if( max <= std::numeric_limits<int32_t>::max()
      && min >= std::numeric_limits<int32_t>::min() )
      {
      st = PixelFormat::INT32;
      }
    else
      {
      assert(0);
      }
    assert( min < 0 );
    int64_t min2 = -min; // make a copy
    int64_t max2 = max; // make a copy
    while (min2 >>= 1) ++log2min;
    while (max2 >>= 1) ++log2max;
    const int64_t bs = std::max( log2min, log2max ) + 1;
    assert( bs <= st.GetBitsAllocated() );
    st.SetBitsStored( (unsigned short)bs );
    }
  // postcondition:
  assert( min >= PixelFormat(st).GetMin() );
  assert( max <= PixelFormat(st).GetMax() );
  assert( st != PixelFormat::UNKNOWN );
  assert( st != PixelFormat::FLOAT32 && st != PixelFormat::FLOAT16 && st != PixelFormat::FLOAT64 );
  return st;
}

PixelFormat Rescaler::ComputePixelTypeFromMinMax()
{
  assert( PF != PixelFormat::UNKNOWN );
  const double intercept = Intercept;
  const double slope = Slope;
  const PixelFormat output =
    ComputeInverseBestFitFromMinMax (/*PF,*/intercept,slope,ScalarRangeMin,ScalarRangeMax);
  assert( output != PixelFormat::UNKNOWN && output >= PixelFormat::UINT8 && output <= PixelFormat::INT32 );
  return output;
}

void Rescaler::SetTargetPixelType( PixelFormat const & targetpf )
{
  TargetScalarType = targetpf.GetScalarType();
}

void Rescaler::SetUseTargetPixelType(bool b)
{
  UseTargetPixelType = b;
}

} // end namespace gdcm