1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*=========================================================================
Program: GDCM (Grassroots DICOM). A DICOM library
Copyright (c) 2006-2011 Mathieu Malaterre
All rights reserved.
See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "gdcmImageChangePhotometricInterpretation.h"
#include "gdcmSequenceOfFragments.h"
#include "gdcmSequenceOfItems.h"
#include "gdcmFragment.h"
#include "gdcmRAWCodec.h"
namespace gdcm
{
/*
* http://groups.google.com/group/comp.protocols.dicom/browse_thread/thread/10f91b14e3013a11
* http://groups.google.com/group/comp.protocols.dicom/browse_thread/thread/1190189387c1702c
* http://groups.google.com/group/comp.protocols.dicom/browse_thread/thread/a9e118fbbf6dcc9f
* http://forum.dcmtk.org/viewtopic.php?p=5441&sid=61ad1304edb31203c4136890ab651405
YBR_FULL as Photometric Interpretation is really the right thing to do. The
problem is that the JPEG bitstream as such does not contain any indication of
the color model - it just specifies that there are three samples per pixel. In
theory it is well possible to apply baseline JPEG compression to RGB pixel
data, although this is an unusual approach since YCbCr provides for better
compression ratio at given image quality. A JFIF header would contain that
information, but the JFIF header is neither required nor recommended in the
DICOM JPEG bitstream. In the absence of that information, and with a JPEG
compressed DICOM file where Photometric Interpretation is "RGB", the parser
needs to decide whether the encoder did something unusual but legal and
decompress the JPEG bitstream as RGB, or whether the encoder just failed to
correctly encode the color model of the JPEG bitstream (which in my experience
is in most cases the correct assumption) and ignore Photometric Interpretation
(and thus incorrectly decode unusual but legal images).
*/
bool ImageChangePhotometricInterpretation::ChangeMonochrome()
{
// Ok let's give up on this one for now.
// We would need to take care of Pixel Padding Value to actually be able to
// invert the image without this information we potentially will be making
// mistake. just like Largest Image Pixel Value and other would be wrong
const Bitmap &image = *Input;
PhotometricInterpretation pi = image.GetPhotometricInterpretation();
if( pi != PhotometricInterpretation::MONOCHROME1 && pi != PhotometricInterpretation::MONOCHROME2 ) return false;
if( pi == PI )
{
return true;
}
unsigned long len = image.GetBufferLength();
char *p = new char[len];
image.GetBuffer( p );
std::stringstream is;
is.write( p, len );
delete[] p;
//ImageCodec ic;
RAWCodec ic;
ic.SetPixelFormat(image.GetPixelFormat());
std::ostringstream os;
ic.DoInvertMonochrome( is, os );
DataElement &de = Output->GetDataElement();
std::string str = os.str();
VL::Type strSize = (VL::Type)str.size();
de.SetByteValue( str.c_str(), strSize);
//Output->GetLUT().Clear();
Output->SetPhotometricInterpretation( PI );
//Output->GetPixelFormat().SetSamplesPerPixel( 3 );
//Output->SetPlanarConfiguration( 0 ); // FIXME OT-PAL-8-face.dcm has a PlanarConfiguration while being PALETTE COLOR...
//const TransferSyntax &ts = image.GetTransferSyntax();
////assert( ts == TransferSyntax::RLELossless );
//if( ts.IsExplicit() )
// {
// Output->SetTransferSyntax( TransferSyntax::ExplicitVRLittleEndian );
// }
//else
// {
// assert( ts.IsImplicit() );
// Output->SetTransferSyntax( TransferSyntax::ImplicitVRLittleEndian );
// }
bool success = true;
return success;
}
bool ImageChangePhotometricInterpretation::ChangeYBR2RGB()
{
// Ok let's give up on this one for now.
// We would need to take care of Pixel Padding Value to actually be able to
// invert the image without this information we potentially will be making
// mistake. just like Largest Image Pixel Value and other would be wrong
const Bitmap &image = *Input;
PhotometricInterpretation pi = image.GetPhotometricInterpretation();
//assert( pi == PhotometricInterpretation::MONOCHROME1 || pi == PhotometricInterpretation::MONOCHROME2 );
if( pi == PI )
{
return true;
}
unsigned long len = image.GetBufferLength();
char *p8 = new char[len];
image.GetBuffer( p8 );
const PixelFormat &pf = image.GetPixelFormat();
if( image.GetPlanarConfiguration() != 0 ) return false;
if( pf.GetSamplesPerPixel() != 3 || pf.GetPixelRepresentation() != 0 ) return false;
if( pf.GetBitsAllocated() == 16 )
{
unsigned short *p = (unsigned short*)p8;
unsigned short rgb[3];
unsigned short ybr[3];
for( unsigned long i = 0; i < len / (3 * 2); ++i ) {
ybr[0] = p[ 3 * i + 0];
ybr[1] = p[ 3 * i + 1];
ybr[2] = p[ 3 * i + 2];
YBR2RGB(rgb, ybr);
p[ 3 * i + 0] = rgb[0];
p[ 3 * i + 1] = rgb[1];
p[ 3 * i + 2] = rgb[2];
}
}
else if( pf.GetBitsAllocated() == 8 )
{
unsigned char *p = (unsigned char*)p8;
unsigned char rgb[3];
unsigned char ybr[3];
for( unsigned long i = 0; i < len / 3; ++i ) {
ybr[0] = p[ 3 * i + 0];
ybr[1] = p[ 3 * i + 1];
ybr[2] = p[ 3 * i + 2];
YBR2RGB(rgb, ybr);
p[ 3 * i + 0] = rgb[0];
p[ 3 * i + 1] = rgb[1];
p[ 3 * i + 2] = rgb[2];
}
}
DataElement &de = Output->GetDataElement();
de.SetByteValue( p8, len);
//Output->GetLUT().Clear();
Output->SetPhotometricInterpretation( PI );
//Output->GetPixelFormat().SetSamplesPerPixel( 3 );
//Output->SetPlanarConfiguration( 0 ); // FIXME OT-PAL-8-face.dcm has a PlanarConfiguration while being PALETTE COLOR...
//const TransferSyntax &ts = image.GetTransferSyntax();
////assert( ts == TransferSyntax::RLELossless );
//if( ts.IsExplicit() )
// {
// Output->SetTransferSyntax( TransferSyntax::ExplicitVRLittleEndian );
// }
//else
// {
// assert( ts.IsImplicit() );
// Output->SetTransferSyntax( TransferSyntax::ImplicitVRLittleEndian );
// }
bool success = true;
delete[] p8;
return success;
}
bool ImageChangePhotometricInterpretation::ChangeRGB2YBR()
{
// Ok let's give up on this one for now.
// We would need to take care of Pixel Padding Value to actually be able to
// invert the image without this information we potentially will be making
// mistake. just like Largest Image Pixel Value and other would be wrong
const Bitmap &image = *Input;
PhotometricInterpretation pi = image.GetPhotometricInterpretation();
//assert( pi == PhotometricInterpretation::MONOCHROME1 || pi == PhotometricInterpretation::MONOCHROME2 );
if( pi == PI )
{
return true;
}
unsigned long len = image.GetBufferLength();
char *p8 = new char[len];
image.GetBuffer( p8 );
const PixelFormat &pf = image.GetPixelFormat();
if( image.GetPlanarConfiguration() != 0 ) return false;
if( pf.GetSamplesPerPixel() != 3 || pf.GetPixelRepresentation() != 0 ) return false;
if( pf.GetBitsAllocated() == 16 )
{
unsigned short *p = (unsigned short*)p8;
unsigned short rgb[3];
unsigned short ybr[3];
for( unsigned long i = 0; i < len / (3 * 2); ++i ) {
rgb[0] = p[ 3 * i + 0];
rgb[1] = p[ 3 * i + 1];
rgb[2] = p[ 3 * i + 2];
RGB2YBR(ybr, rgb, pf.GetBitsStored());
p[ 3 * i + 0] = ybr[0];
p[ 3 * i + 1] = ybr[1];
p[ 3 * i + 2] = ybr[2];
}
}
else if( pf.GetBitsAllocated() == 8 )
{
unsigned char *p = (unsigned char*)p8;
unsigned char rgb[3];
unsigned char ybr[3];
for( unsigned long i = 0; i < len / 3; ++i ) {
rgb[0] = p[ 3 * i + 0];
rgb[1] = p[ 3 * i + 1];
rgb[2] = p[ 3 * i + 2];
RGB2YBR(ybr, rgb, pf.GetBitsStored());
p[ 3 * i + 0] = ybr[0];
p[ 3 * i + 1] = ybr[1];
p[ 3 * i + 2] = ybr[2];
}
}
DataElement &de = Output->GetDataElement();
de.SetByteValue( p8, len);
//Output->GetLUT().Clear();
Output->SetPhotometricInterpretation( PI );
//Output->GetPixelFormat().SetSamplesPerPixel( 3 );
//Output->SetPlanarConfiguration( 0 ); // FIXME OT-PAL-8-face.dcm has a PlanarConfiguration while being PALETTE COLOR...
//const TransferSyntax &ts = image.GetTransferSyntax();
////assert( ts == TransferSyntax::RLELossless );
//if( ts.IsExplicit() )
// {
// Output->SetTransferSyntax( TransferSyntax::ExplicitVRLittleEndian );
// }
//else
// {
// assert( ts.IsImplicit() );
// Output->SetTransferSyntax( TransferSyntax::ImplicitVRLittleEndian );
// }
bool success = true;
delete[] p8;
return success;
}
bool ImageChangePhotometricInterpretation::Change()
{
// PS 3.3 - 2008 C.7.6.3.1.2 Photometric Interpretation
Output = Input;
if( PI == PhotometricInterpretation::YBR_FULL )
{
if( Input->GetPhotometricInterpretation() != PhotometricInterpretation::RGB ) return false;
/*
In the case where Bits Allocated (0028,0100) has a value of 8 then the following equations convert
between RGB and YCBCR Photometric Interpretation.
Y = + .2990R + .5870G + .1140B
CB = - .1687R - .3313G + .5000B + 128
CR = + .5000R - .4187G - .0813B + 128
Note: The above is based on CCIR Recommendation 601-2 dated 1990.
*/
return ChangeRGB2YBR();
}
else if( PI == PhotometricInterpretation::RGB )
{
if( Input->GetPhotometricInterpretation() != PhotometricInterpretation::YBR_FULL ) return false;
/* octave:
* B = [.2990,.5870,.1140;- .16874, - .33126, .5000; .5000, - .41869, - .08131]
* inv(B)
* 1.0000e+00 -3.6820e-05 1.4020e+00
* 1.0000e+00 -3.4411e-01 -7.1410e-01
* 1.0000e+00 1.7720e+00 -1.3458e-04
*/
return ChangeYBR2RGB();
}
else if( PI == PhotometricInterpretation::MONOCHROME1 || PI == PhotometricInterpretation::MONOCHROME2 )
{
return ChangeMonochrome();
}
//else
return false;
}
} // end namespace gdcm
|