1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
/*************************************************************
Copyright (C) 1990, 1991, 1993 Andy C. Hung, all rights reserved.
PUBLIC DOMAIN LICENSE: Stanford University Portable Video Research
Group. If you use this software, you agree to the following: This
program package is purely experimental, and is licensed "as is".
Permission is granted to use, modify, and distribute this program
without charge for any purpose, provided this license/ disclaimer
notice appears in the copies. No warranty or maintenance is given,
either expressed or implied. In no event shall the author(s) be
liable to you or a third party for any special, incidental,
consequential, or other damages, arising out of the use or inability
to use the program for any purpose (or the loss of data), even if we
have been advised of such possibilities. Any public reference or
advertisement of this source code should refer to it as the Portable
Video Research Group (PVRG) code, and not by any author(s) (or
Stanford University) name.
*************************************************************/
/*
************************************************************
codec.c
This file contains much of the transform coding routines to manipulate
the Huffman stream.
************************************************************
*/
/*LABEL codec.c */
/* Include files. */
#include "globals.h"
#include "csize.h"
#include <stdlib.h> /* abs */
/* Definitions for renaming functions. */
#define fputv meputv
#define fgetv megetv
/* Exportable functions. */
/*PUBLIC*/
extern void FrequencyAC();
extern void EncodeAC();
extern void DecodeAC();
extern int DecodeDC();
extern void FrequencyDC();
extern void EncodeDC();
extern void ResetCodec();
extern void ClearFrameFrequency();
extern void AddFrequency();
extern void InstallFrequency();
extern void InstallPrediction();
extern void PrintACEhuff();
extern void PrintDCEhuff();
extern int SizeACEhuff();
extern int SizeDCEhuff();
extern int LosslessDecodeDC();
extern void LosslessFrequencyDC();
extern void LosslessEncodeDC();
/*PRIVATE*/
/* Imported Variables. */
extern int bit_set_mask[]; /* Used for testing sign extension. */
extern int Loud; /* General debug level. */
extern FRAME *CFrame; /* Frame parameter. */
extern IMAGE *CImage; /* Image parameter. */
extern SCAN *CScan; /* Scan parameter. */
/* Local Variables */
static int *LastDC=NULL; /* Last DC value for DPCM. */
static int *ACFrequency=NULL; /* AC Frequency table to accum. statistics.*/
static int *DCFrequency=NULL; /* DC Frequency table to accum. statistics.*/
static int extend_mask[]={ /* Used for sign extensions. */
0xFFFFFFFE,
0xFFFFFFFC,
0xFFFFFFF8,
0xFFFFFFF0,
0xFFFFFFE0,
0xFFFFFFC0,
0xFFFFFF80,
0xFFFFFF00,
0xFFFFFE00,
0xFFFFFC00,
0xFFFFF800,
0xFFFFF000,
0xFFFFE000,
0xFFFFC000,
0xFFFF8000,
0xFFFF0000,
0xFFFE0000,
0xFFFC0000,
0xFFF80000,
0xFFF00000
};
/*START*/
/*BFUNC
FrequencyAC() is used to accumulate the Huffman codes for the input
matrix. The Huffman codes are not actually stored but rather the count
of each code is stored so that construction of a Custom Table is
possible.
EFUNC*/
void FrequencyAC(matrix)
int *matrix;
{
BEGIN("FrequencyAC")
int i,k,r,ssss,cofac;
for(k=r=0;++k < BLOCKSIZE;) /* Like EncodeAC below except don't write out */
{
cofac = abs(matrix[k]); /* Find absolute size */
if (cofac < 256)
{
ssss = csize[cofac];
}
else
{
cofac = cofac >> 8;
ssss = csize[cofac] + 8;
}
if (matrix[k] == 0) /* Check for zeroes */
{
if (k == BLOCKSIZE-1) /* If end of block, then process */
{
#ifdef CODEC_DEBUG
printf("AC FEncoding EOB %d\n",0);
#endif
ACFrequency[0]++; /* Increment EOB frequency */
break;
}
r++;
}
else
{
while(r > 15) /* Convert, r, ssss, into RLE */
{
#ifdef CODEC_DEBUG
printf("AC FEncoding OVFL %d\n",240);
#endif
ACFrequency[240]++; /* Increment ZRL extender freq */
r -= 16;
}
i = 16*r + ssss; /* Make code */
r = 0;
#ifdef CODEC_DEBUG
printf("AC FEncoding nnnnssss %d\n",i);
#endif
ACFrequency[i]++; /* Increment frequency of such code. */
}
}
}
/*BFUNC
EncodeAC() takes the matrix and encodes it by passing the values
of the codes found to the Huffman package.
EFUNC*/
void EncodeAC(matrix)
int *matrix;
{
BEGIN("EncodeAC")
int i,k,r,ssss,cofac;
for(k=r=0;++k<BLOCKSIZE;)
{
cofac = abs(matrix[k]); /* Find absolute size */
if (cofac < 256)
{
ssss = csize[cofac];
}
else
{
cofac = cofac >> 8;
ssss = csize[cofac] + 8;
}
if (matrix[k] == 0) /* Check for zeroes */
{
if (k == BLOCKSIZE-1)
{
#ifdef CODEC_DEBUG
printf("AC Encoding EOB %d\n",0);
#endif
EncodeHuffman(0);
break;
}
r++; /* Increment run-length of zeroes */
}
else
{
while(r > 15) /* If run-length > 15, time for */
{ /* Run-length extension */
#ifdef CODEC_DEBUG
printf("AC Encoding OVFL %d\n",240);
#endif
EncodeHuffman(240);
r -= 16;
}
i = 16*r + ssss; /* Now we can find code byte */
#ifdef CODEC_DEBUG
printf("AC Encoding nnnnssss %d\n",i);
#endif
r = 0;
EncodeHuffman(i); /* Encode RLE code */
if (matrix[k]< 0) /* Follow by significant bits */
{
fputv(ssss,matrix[k]-1);
}
else
{
fputv(ssss,matrix[k]);
}
}
}
}
/*BFUNC
DecodeAC() is used to decode the AC coefficients from the stream in
the stream package. The information generated is stored in the matrix
passed to it.
EFUNC*/
void DecodeAC(matrix)
int *matrix;
{
BEGIN("DecodeAC")
int k,r,s,n;
register int *mptr;
for(mptr=matrix+1;mptr<matrix+BLOCKSIZE;mptr++) /* Set all values to zero */
{
*mptr=0;
}
for(k=1;k<BLOCKSIZE;) /* JPEG Mistake */
{
r = DecodeHuffman(); /* Decode Huffman */
#ifdef CODEC_DEBUG
printf("Raw AC Input: %d\n",r);
#endif
s = r & 0xf; /* Find significant bits */
n = (r >> 4) & 0xf; /* n = run-length */
if (s)
{
if ((k += n)>=BLOCKSIZE) break; /* JPEG Mistake */
matrix[k] = fgetv(s); /* Get s bits */
s--; /* Align s */
if ((matrix[k] & bit_set_mask[s]) == 0) /* Also (1 << s) */
{
matrix[k] |= extend_mask[s]; /* Also (-1 << s) + 1 */
matrix[k]++; /* Increment 2's c */
}
k++; /* Goto next element */
}
else if (n == 15) /* Zero run length code extnd */
k += 16;
else
{
break;
}
}
}
/*BFUNC
DecodeDC() is used to decode a DC value from the input stream.
It returns the actual number found.
EFUNC*/
int DecodeDC()
{
BEGIN("DecodeDC")
int s,diff;
s = DecodeHuffman();
#ifdef CODEC_DEBUG
printf("DC Decode sig. %d\n",s);
#endif
if (s)
{
diff = fgetv(s);
s--; /* 2's Bit Align */
#ifdef CODEC_DEBUG
printf("Raw DC Decode %d\n",diff);
#endif
if ((diff & bit_set_mask[s]) == 0)
{
diff |= extend_mask[s];
diff++;
}
diff += *LastDC; /* Change the last DC */
*LastDC = diff;
}
return(*LastDC);
}
/*BFUNC
FrequencyDC() is used to accumulate statistics on what DC codes occur
most frequently.
EFUNC*/
void FrequencyDC(coef)
int coef;
{
BEGIN("FrequencyDC")
int s,diff,cofac;
diff = coef - *LastDC; /* Do DPCM */
*LastDC = coef;
cofac = abs(diff);
if (cofac < 256) /* Find "code" */
{
s = csize[cofac];
}
else
{
cofac = cofac >> 8;
s = csize[cofac] + 8;
}
#ifdef CODEC_DEBUG
printf("DC FEncoding Difference %d Size %d\n",diff,s);
#endif
DCFrequency[s]++; /* Increment frequency of such code */
}
/*BFUNC
EncodeDC() encodes the input coefficient to the stream using the
currently installed DC Huffman table.
EFUNC*/
void EncodeDC(coef)
int coef;
{
BEGIN("EncodeDC")
int s,diff,cofac;
diff = coef - *LastDC;
*LastDC = coef; /* Do DPCM */
cofac = abs(diff);
if (cofac < 256)
{
s = csize[cofac]; /* Find true size */
}
else
{
cofac = cofac >> 8;
s = csize[cofac] + 8;
}
#ifdef CODEC_DEBUG
printf("DC Encoding Difference %d Size %d\n",diff,s);
#endif
EncodeHuffman(s); /* Encode size */
if (diff < 0) /* Encode difference */
{
diff--;
}
fputv(s,diff);
}
/*BFUNC
ResetCodec() is used to reset all the DC prediction values. This
function is primarily used for initialization and resynchronization.
EFUNC*/
void ResetCodec()
{
BEGIN("ResetCodec")
int i;
for(i=0;i<CScan->NumberComponents;i++)
{
*CScan->LastDC[i] = 0; /* Sets all DC predictions to 0 */
}
}
/*BFUNC
ClearFrameFrequency() clears all current statistics.
EFUNC*/
void ClearFrameFrequency()
{
int i;
int *iptr;
for(i=0;i<CScan->NumberComponents;i++)
{
*CScan->LastDC[i] = 0;
for(iptr=CScan->ACFrequency[i];
iptr<CScan->ACFrequency[i]+257;iptr++)
{
*iptr = 0;
}
for(iptr=CScan->DCFrequency[i];
iptr<CScan->DCFrequency[i]+257;iptr++)
{
*iptr = 0;
}
}
}
/*BFUNC
AddFrequency() is used to combine the first set of frequencies denoted
by the first pointer to the second set of frequencies denoted by the
second pointer.
EFUNC*/
void AddFrequency(ptr1,ptr2)
int *ptr1;
int *ptr2;
{
BEGIN("AddFrequency")
int i;
for(i=0;i<256;i++)
{
*(ptr1) = *(ptr1) + *(ptr2);
ptr1++;
ptr2++;
}
*(ptr1) = MAX(*(ptr1),*(ptr2));
}
/*BFUNC
InstallFrequency() is used to install a particular frequency set of
arrays (denoted by the [index] scan component from the Scan
parameters).
EFUNC*/
void InstallFrequency(index)
int index;
{
BEGIN("InstallFrequency")
ACFrequency = CScan->ACFrequency[index]; /* Set the right pointers */
DCFrequency = CScan->DCFrequency[index];
LastDC = CScan->LastDC[index];
}
/*BFUNC
InstallPrediction() is used to install a particular DC prediction for
use in frequency counting, encoding and decoding.
EFUNC*/
void InstallPrediction(index)
int index;
{
BEGIN("InstallPrediction")
LastDC = CScan->LastDC[index]; /* Set the right pointer */
}
/*BFUNC
PrintACEhuff() prints out the [index] AC Huffman encoding structure in
the Image structure.
EFUNC*/
void PrintACEhuff(index)
int index;
{
BEGIN("PrintACEhuff")
int place;
EHUFF *eh;
int *freq;
int i,j;
freq = CScan->ACFrequency[index];
eh = CImage->ACEhuff[index];
printf("Code:[Frequency:Size]:TotalBits\n");
for(place=0,i=0;i<8;i++)
{
for(j=0;j<8;j++)
{
printf("%2x:[%d:%d]:%d ",
place,freq[place],eh->ehufsi[place],
freq[place]*eh->ehufsi[place]);
place++;
}
printf("\n");
}
}
/*BFUNC
SizeACEhuff() returns the size in bits necessary to code the
particular frequency spectrum by the indexed ehuff.
EFUNC*/
int SizeACEhuff(index)
int index;
{
BEGIN("SizeACEhuff")
int place,sumbits;
EHUFF *eh;
int *freq;
freq = CScan->ACFrequency[index];
eh = CImage->ACEhuff[index];
for(sumbits=0,place=0;place<256;place++) /* For all codes, */
{ /* return freq * codelength */
sumbits += freq[place]*(eh->ehufsi[place] + (place & 0x0f));
}
return(sumbits);
}
/*BFUNC
PrintDCEhuff() prints out the DC encoding Huffman structure in the
CImage structure according to the position specified by [index].
EFUNC*/
void PrintDCEhuff(index)
int index;
{
BEGIN("PrintDCEhuff")
int place;
EHUFF *eh;
int *freq;
int i,j;
freq = CScan->DCFrequency[index];
eh = CImage->DCEhuff[index];
printf("Code:[Frequency:Size]:TotalBits\n");
for(place=0,i=0;i<8;i++)
{
for(j=0;j<8;j++)
{
printf("%2x:[%d:%d]:%d ",
place,freq[place],eh->ehufsi[place],
freq[place]*eh->ehufsi[place]);
place++;
}
printf("\n");
}
}
/*BFUNC
SizeDCEhuff() returns the bit size of the frequency and codes held by
the indexed dc codebook and frequency.
EFUNC*/
int SizeDCEhuff(index)
int index;
{
BEGIN("SizeDCEhuff")
int place,sumbits;
EHUFF *eh;
int *freq;
freq = CScan->DCFrequency[index];
eh = CImage->DCEhuff[index];
for(sumbits=0,place=0;place<256;place++) /* For all codes */
{ /* Return freq * codelength */
sumbits += freq[place]*(eh->ehufsi[place] + place);
}
return(sumbits);
}
/*BFUNC
LosslessFrequencyDC() is used to accumulate statistics on what DC codes occur
most frequently.
EFUNC*/
void LosslessFrequencyDC(coef)
int coef;
{
BEGIN("FrequencyDC")
int s,cofac;
cofac = coef&0xffff; /* Take modulo */
if (cofac & 0x8000) /* if signed, then get absoulte val*/
cofac = 0x10000-cofac;
for(s=0;cofac>=256;s+=8,cofac>>=8); /* Find "code" */
s += csize[cofac];
#ifdef CODEC_DEBUG
printf("DC FEncoding Difference %d Size %d\n",diff,s);
#endif
DCFrequency[s]++; /* Increment frequency of such code */
}
/*BFUNC
LosslessEncodeDC() encodes the input coefficient to the stream using
the currently installed DC Huffman table. The only exception is the
SSSS value of 16.
EFUNC*/
void LosslessEncodeDC(coef)
int coef;
{
BEGIN("EncodeDC")
int s,cofac;
cofac = coef&0xffff; /* Take modulo */
if (cofac & 0x8000) /* if signed, then get absoulte val*/
cofac = 0x10000-cofac;
for(s=0;cofac>=256;s+=8,cofac>>=8); /* Find "code" */
s += csize[cofac];
#ifdef CODEC_DEBUG
printf("DC Encoding Difference %d Size %d\n",coeff,s);
#endif
EncodeHuffman(s); /* Encode size */
if (coef &0x8000) /* Encode difference */
coef--;
if (s!=16) fputv(s,coef);
}
/*BFUNC
LosslessDecodeDC() is used to decode a DC value from the input stream.
It returns the actual number found.
EFUNC*/
int LosslessDecodeDC()
{
BEGIN("DecodeDC")
int s,coef;
s = DecodeHuffman();
#ifdef CODEC_DEBUG
printf("DC Decode sig. %d\n",s);
#endif
/* FIXME begin bug http://groups.google.com/group/comp.protocols.dicom/msg/6d90002f734a12eb?dmode=source */
if (s==16) return(32768);
/* end bug */
else if (s)
{
coef = fgetv(s);
s--; /* 2's Bit Align */
#ifdef CODEC_DEBUG
printf("Raw DC Decode %d\n",coef);
#endif
if ((coef & bit_set_mask[s]) == 0)
{
coef |= extend_mask[s];
coef++;
}
return(coef);
}
else return(0);
}
/*END*/
|