File: codec.c

package info (click to toggle)
gdcm 3.0.21-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 26,880 kB
  • sloc: cpp: 203,477; ansic: 78,582; xml: 48,129; python: 3,459; cs: 2,308; java: 1,629; lex: 1,290; sh: 334; php: 128; makefile: 117
file content (691 lines) | stat: -rw-r--r-- 15,098 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
/*************************************************************
Copyright (C) 1990, 1991, 1993 Andy C. Hung, all rights reserved.
PUBLIC DOMAIN LICENSE: Stanford University Portable Video Research
Group. If you use this software, you agree to the following: This
program package is purely experimental, and is licensed "as is".
Permission is granted to use, modify, and distribute this program
without charge for any purpose, provided this license/ disclaimer
notice appears in the copies.  No warranty or maintenance is given,
either expressed or implied.  In no event shall the author(s) be
liable to you or a third party for any special, incidental,
consequential, or other damages, arising out of the use or inability
to use the program for any purpose (or the loss of data), even if we
have been advised of such possibilities.  Any public reference or
advertisement of this source code should refer to it as the Portable
Video Research Group (PVRG) code, and not by any author(s) (or
Stanford University) name.
*************************************************************/
/*
************************************************************
codec.c

This file contains much of the transform coding routines to manipulate
the Huffman stream.

************************************************************
*/

/*LABEL codec.c */

/* Include files. */
#include "globals.h"
#include "csize.h"

#include <stdlib.h> /* abs */

/* Definitions for renaming functions. */

#define fputv meputv
#define fgetv megetv

/* Exportable functions. */

/*PUBLIC*/

extern void FrequencyAC();
extern void EncodeAC();
extern void DecodeAC();
extern int DecodeDC();
extern void FrequencyDC();
extern void EncodeDC();
extern void ResetCodec();
extern void ClearFrameFrequency();
extern void AddFrequency();
extern void InstallFrequency();
extern void InstallPrediction();
extern void PrintACEhuff();
extern void PrintDCEhuff();
extern int SizeACEhuff();
extern int SizeDCEhuff();

extern int LosslessDecodeDC();
extern void LosslessFrequencyDC();
extern void LosslessEncodeDC();

/*PRIVATE*/

/* Imported Variables. */

extern int bit_set_mask[]; /* Used for testing sign extension. */
extern int Loud;           /* General debug level. */
extern FRAME *CFrame;      /* Frame parameter. */
extern IMAGE *CImage;      /* Image parameter. */
extern SCAN *CScan;        /* Scan parameter. */

/* Local Variables */

static int *LastDC=NULL;         /* Last DC value for DPCM. */
static int *ACFrequency=NULL;    /* AC Frequency table to accum. statistics.*/
static int *DCFrequency=NULL;    /* DC Frequency table to accum. statistics.*/
static int extend_mask[]={       /* Used for sign extensions. */
0xFFFFFFFE,
0xFFFFFFFC,
0xFFFFFFF8,
0xFFFFFFF0,
0xFFFFFFE0,
0xFFFFFFC0,
0xFFFFFF80,
0xFFFFFF00,
0xFFFFFE00,
0xFFFFFC00,
0xFFFFF800,
0xFFFFF000,
0xFFFFE000,
0xFFFFC000,
0xFFFF8000,
0xFFFF0000,
0xFFFE0000,
0xFFFC0000,
0xFFF80000,
0xFFF00000
};

/*START*/

/*BFUNC

FrequencyAC() is used to accumulate the Huffman codes for the input
matrix. The Huffman codes are not actually stored but rather the count
of each code is stored so that construction of a Custom Table is
possible.

EFUNC*/

void FrequencyAC(matrix)
     int *matrix;
{
  BEGIN("FrequencyAC")
  int i,k,r,ssss,cofac;

  for(k=r=0;++k < BLOCKSIZE;)  /* Like EncodeAC below except don't write out */
    {
      cofac = abs(matrix[k]);           /* Find absolute size */
      if (cofac < 256)
  {
    ssss = csize[cofac];
  }
      else
  {
    cofac = cofac >> 8;
    ssss = csize[cofac] + 8;
  }
      if (matrix[k] == 0)               /* Check for zeroes */
  {
    if (k == BLOCKSIZE-1)         /* If end of block, then process */
      {
#ifdef CODEC_DEBUG
        printf("AC FEncoding EOB %d\n",0);
#endif
        ACFrequency[0]++;         /* Increment EOB frequency */
        break;
      }
    r++;
  }
      else
  {
    while(r > 15)                 /* Convert, r, ssss, into RLE */
      {
#ifdef CODEC_DEBUG
        printf("AC FEncoding OVFL %d\n",240);
#endif
        ACFrequency[240]++;       /* Increment ZRL extender freq */
        r -= 16;
      }
    i = 16*r + ssss;              /* Make code */
    r = 0;
#ifdef CODEC_DEBUG
    printf("AC FEncoding nnnnssss %d\n",i);
#endif
    ACFrequency[i]++;             /* Increment frequency of such code. */
  }
    }
}

/*BFUNC

EncodeAC() takes the matrix and encodes it by passing the values
of the codes found to the Huffman package.

EFUNC*/

void EncodeAC(matrix)
     int *matrix;
{
  BEGIN("EncodeAC")
  int i,k,r,ssss,cofac;

  for(k=r=0;++k<BLOCKSIZE;)
    {
      cofac = abs(matrix[k]);             /* Find absolute size */
      if (cofac < 256)
  {
    ssss = csize[cofac];
  }
      else
  {
    cofac = cofac >> 8;
    ssss = csize[cofac] + 8;
  }
      if (matrix[k] == 0)                /* Check for zeroes */
  {
    if (k == BLOCKSIZE-1)
      {
#ifdef CODEC_DEBUG
        printf("AC Encoding EOB %d\n",0);
#endif
        EncodeHuffman(0);
        break;
      }
    r++;                           /* Increment run-length of zeroes */
  }
      else
  {
    while(r > 15)                 /* If run-length > 15, time for  */
      {                           /* Run-length extension */
#ifdef CODEC_DEBUG
        printf("AC Encoding OVFL %d\n",240);
#endif
        EncodeHuffman(240);
        r -= 16;
      }
    i = 16*r + ssss;              /* Now we can find code byte */
#ifdef CODEC_DEBUG
    printf("AC Encoding nnnnssss %d\n",i);
#endif
    r = 0;
    EncodeHuffman(i);             /* Encode RLE code */
    if (matrix[k]< 0)             /* Follow by significant bits */
      {
        fputv(ssss,matrix[k]-1);
      }
    else
      {
        fputv(ssss,matrix[k]);
      }

  }
    }
}

/*BFUNC

DecodeAC() is used to decode the AC coefficients from the stream in
the stream package. The information generated is stored in the matrix
passed to it.

EFUNC*/

void DecodeAC(matrix)
     int *matrix;
{
  BEGIN("DecodeAC")
  int k,r,s,n;
  register int *mptr;

  for(mptr=matrix+1;mptr<matrix+BLOCKSIZE;mptr++)  /* Set all values to zero */
    {
      *mptr=0;
    }

  for(k=1;k<BLOCKSIZE;)  /* JPEG Mistake */
    {
      r = DecodeHuffman();                         /* Decode Huffman */
#ifdef CODEC_DEBUG
      printf("Raw AC Input: %d\n",r);
#endif
      s = r & 0xf;                                 /* Find significant bits */
      n = (r >> 4) & 0xf;                          /* n = run-length */
      if (s)
  {
    if ((k += n)>=BLOCKSIZE) break;          /* JPEG Mistake */
    matrix[k] = fgetv(s);                    /* Get s bits */

    s--; /* Align s */
    if ((matrix[k] & bit_set_mask[s]) == 0)  /* Also (1 << s) */
      {
        matrix[k] |= extend_mask[s];         /* Also  (-1 << s) + 1 */
        matrix[k]++;                         /* Increment 2's c */
      }
    k++;                                     /* Goto next element */
  }
      else if (n == 15)                      /* Zero run length code extnd */
  k += 16;
      else
  {
    break;
  }
    }
}

/*BFUNC

DecodeDC() is used to decode a DC value from the input stream.
It returns the actual number found.

EFUNC*/

int DecodeDC()
{
  BEGIN("DecodeDC")
  int s,diff;

  s = DecodeHuffman();
#ifdef CODEC_DEBUG
  printf("DC Decode sig. %d\n",s);
#endif

  if (s)
    {
      diff = fgetv(s);
      s--;                                  /* 2's Bit Align */
#ifdef CODEC_DEBUG
      printf("Raw DC Decode %d\n",diff);
#endif
      if ((diff & bit_set_mask[s]) == 0)
  {
    diff |= extend_mask[s];
    diff++;
  }
      diff += *LastDC;                      /* Change the last DC */
      *LastDC = diff;
    }
  return(*LastDC);
}

/*BFUNC

FrequencyDC() is used to accumulate statistics on what DC codes occur
most frequently.

EFUNC*/

void FrequencyDC(coef)
     int coef;
{
  BEGIN("FrequencyDC")
  int s,diff,cofac;

  diff = coef - *LastDC;         /* Do DPCM */
  *LastDC = coef;
  cofac = abs(diff);
  if (cofac < 256)               /* Find "code" */
    {
      s = csize[cofac];
    }
  else
    {
      cofac = cofac >> 8;
      s = csize[cofac] + 8;
    }
#ifdef CODEC_DEBUG
  printf("DC FEncoding Difference %d Size %d\n",diff,s);
#endif
  DCFrequency[s]++;              /* Increment frequency of such code */
}

/*BFUNC

EncodeDC() encodes the input coefficient to the stream using the
currently installed DC Huffman table.

EFUNC*/

void EncodeDC(coef)
     int coef;
{
  BEGIN("EncodeDC")
  int s,diff,cofac;

  diff = coef - *LastDC;
  *LastDC = coef;                /* Do DPCM */
  cofac = abs(diff);
  if (cofac < 256)
    {
      s = csize[cofac];          /* Find true size */
    }
  else
    {
      cofac = cofac >> 8;
      s = csize[cofac] + 8;
    }
#ifdef CODEC_DEBUG
  printf("DC Encoding Difference %d Size %d\n",diff,s);
#endif
  EncodeHuffman(s);              /* Encode size */
  if (diff < 0)                  /* Encode difference */
    {
      diff--;
    }
  fputv(s,diff);
}

/*BFUNC

ResetCodec() is used to reset all the DC prediction values. This
function is primarily used for initialization and resynchronization.

EFUNC*/

void ResetCodec()
{
  BEGIN("ResetCodec")
  int i;

  for(i=0;i<CScan->NumberComponents;i++)
    {
      *CScan->LastDC[i] = 0;                /* Sets all DC predictions to 0 */
    }
}

/*BFUNC

ClearFrameFrequency() clears all current statistics.

EFUNC*/

void ClearFrameFrequency()
{
  int i;
  int *iptr;

  for(i=0;i<CScan->NumberComponents;i++)
    {
      *CScan->LastDC[i] = 0;
      for(iptr=CScan->ACFrequency[i];
    iptr<CScan->ACFrequency[i]+257;iptr++)
  {
    *iptr = 0;
  }
      for(iptr=CScan->DCFrequency[i];
    iptr<CScan->DCFrequency[i]+257;iptr++)
  {
    *iptr = 0;
  }
    }
}

/*BFUNC

AddFrequency() is used to combine the first set of frequencies denoted
by the first pointer to the second set of frequencies denoted by the
second pointer.

EFUNC*/

void AddFrequency(ptr1,ptr2)
     int *ptr1;
     int *ptr2;
{
  BEGIN("AddFrequency")
  int i;

  for(i=0;i<256;i++)
    {
      *(ptr1) = *(ptr1) + *(ptr2);
      ptr1++;
      ptr2++;
    }
  *(ptr1) = MAX(*(ptr1),*(ptr2));
}

/*BFUNC

InstallFrequency() is used to install a particular frequency set of
arrays (denoted by the [index] scan component from the Scan
parameters).

EFUNC*/

void InstallFrequency(index)
     int index;
{
  BEGIN("InstallFrequency")
  ACFrequency = CScan->ACFrequency[index];  /* Set the right pointers */
  DCFrequency = CScan->DCFrequency[index];
  LastDC = CScan->LastDC[index];
}


/*BFUNC

InstallPrediction() is used to install a particular DC prediction for
use in frequency counting, encoding and decoding.

EFUNC*/

void InstallPrediction(index)
     int index;
{
  BEGIN("InstallPrediction")

  LastDC = CScan->LastDC[index];   /* Set the right pointer */
}

/*BFUNC

PrintACEhuff() prints out the [index] AC Huffman encoding structure in
the Image structure.

EFUNC*/

void PrintACEhuff(index)
     int index;
{
  BEGIN("PrintACEhuff")
  int place;
  EHUFF *eh;
  int *freq;
  int i,j;

  freq = CScan->ACFrequency[index];
  eh = CImage->ACEhuff[index];
  printf("Code:[Frequency:Size]:TotalBits\n");
  for(place=0,i=0;i<8;i++)
    {
      for(j=0;j<8;j++)
  {
    printf("%2x:[%d:%d]:%d ",
     place,freq[place],eh->ehufsi[place],
     freq[place]*eh->ehufsi[place]);
    place++;
  }
      printf("\n");
    }
}

/*BFUNC

SizeACEhuff() returns the size in bits necessary to code the
particular frequency spectrum by the indexed ehuff.

EFUNC*/

int SizeACEhuff(index)
     int index;
{
  BEGIN("SizeACEhuff")
  int place,sumbits;
  EHUFF *eh;
  int *freq;

  freq = CScan->ACFrequency[index];
  eh = CImage->ACEhuff[index];
  for(sumbits=0,place=0;place<256;place++)  /* For all codes, */
    {                                       /* return freq * codelength */
      sumbits += freq[place]*(eh->ehufsi[place] + (place & 0x0f));
    }
  return(sumbits);
}

/*BFUNC

PrintDCEhuff() prints out the DC encoding Huffman structure in the
CImage structure according to the position specified by [index].

EFUNC*/

void PrintDCEhuff(index)
     int index;
{
  BEGIN("PrintDCEhuff")
  int place;
  EHUFF *eh;
  int *freq;
  int i,j;

  freq = CScan->DCFrequency[index];
  eh = CImage->DCEhuff[index];
  printf("Code:[Frequency:Size]:TotalBits\n");
  for(place=0,i=0;i<8;i++)
    {
      for(j=0;j<8;j++)
  {
    printf("%2x:[%d:%d]:%d ",
     place,freq[place],eh->ehufsi[place],
     freq[place]*eh->ehufsi[place]);
    place++;
  }
      printf("\n");
    }
}


/*BFUNC

SizeDCEhuff() returns the bit size of the frequency and codes held by
the indexed dc codebook and frequency.

EFUNC*/

int SizeDCEhuff(index)
     int index;
{
  BEGIN("SizeDCEhuff")
  int place,sumbits;
  EHUFF *eh;
  int *freq;

  freq = CScan->DCFrequency[index];
  eh = CImage->DCEhuff[index];
  for(sumbits=0,place=0;place<256;place++) /* For all codes */
    {                                      /* Return freq * codelength */
      sumbits += freq[place]*(eh->ehufsi[place] + place);
    }
  return(sumbits);
}


/*BFUNC

LosslessFrequencyDC() is used to accumulate statistics on what DC codes occur
most frequently.

EFUNC*/

void LosslessFrequencyDC(coef)
     int coef;
{
  BEGIN("FrequencyDC")
  int s,cofac;

  cofac = coef&0xffff;               /* Take modulo */
  if (cofac & 0x8000)                /* if signed, then get absoulte val*/
    cofac = 0x10000-cofac;

  for(s=0;cofac>=256;s+=8,cofac>>=8);               /* Find "code" */
  s += csize[cofac];

#ifdef CODEC_DEBUG
  printf("DC FEncoding Difference %d Size %d\n",diff,s);
#endif
  DCFrequency[s]++;              /* Increment frequency of such code */
}

/*BFUNC

LosslessEncodeDC() encodes the input coefficient to the stream using
the currently installed DC Huffman table.  The only exception is the
SSSS value of 16.

EFUNC*/

void LosslessEncodeDC(coef)
     int coef;
{
  BEGIN("EncodeDC")
  int s,cofac;

  cofac = coef&0xffff;               /* Take modulo */
  if (cofac & 0x8000)                /* if signed, then get absoulte val*/
    cofac = 0x10000-cofac;

  for(s=0;cofac>=256;s+=8,cofac>>=8);               /* Find "code" */
  s += csize[cofac];

#ifdef CODEC_DEBUG
  printf("DC Encoding Difference %d Size %d\n",coeff,s);
#endif
  EncodeHuffman(s);              /* Encode size */
  if (coef &0x8000)                  /* Encode difference */
    coef--;
  if (s!=16) fputv(s,coef);
}

/*BFUNC

LosslessDecodeDC() is used to decode a DC value from the input stream.
It returns the actual number found.

EFUNC*/

int LosslessDecodeDC()
{
  BEGIN("DecodeDC")
  int s,coef;

  s = DecodeHuffman();
#ifdef CODEC_DEBUG
  printf("DC Decode sig. %d\n",s);
#endif

  /* FIXME begin bug http://groups.google.com/group/comp.protocols.dicom/msg/6d90002f734a12eb?dmode=source */
  if (s==16)  return(32768);
  /* end bug */
  else if (s)
    {
      coef = fgetv(s);
      s--;                                /* 2's Bit Align */
#ifdef CODEC_DEBUG
      printf("Raw DC Decode %d\n",coef);
#endif
      if ((coef & bit_set_mask[s]) == 0)
  {
    coef |= extend_mask[s];
    coef++;
  }
      return(coef);
    }
  else return(0);
}

/*END*/