File: AWTMedical3.java

package info (click to toggle)
gdcm 3.0.24-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 27,856 kB
  • sloc: cpp: 203,722; ansic: 76,471; xml: 48,131; python: 3,473; cs: 2,308; java: 1,629; lex: 1,290; sh: 334; php: 128; makefile: 97
file content (322 lines) | stat: -rw-r--r-- 13,050 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*=========================================================================

  Program: GDCM (Grassroots DICOM). A DICOM library

  Copyright (c) 2006-2011 Mathieu Malaterre
  All rights reserved.
  See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
package examples;

import vtk.*;
//import gdcm.*;

import vtk.util.VtkPanelContainer;
import vtk.util.VtkPanelUtil;
import vtk.util.VtkUtil;

import java.util.ArrayList;


import javax.swing.*;
import java.awt.*;
import java.io.File;

/**
 *
 * This class should show how to read an image and display it
 * using gdcm and vtk, similar to gdcmorthoplanes
 *
 * used to test the transition from vtk 5.6 to vtk 5.9
 * @author mmroden
 */
public class AWTMedical3  extends JComponent implements VtkPanelContainer {

  private vtkPanel renWin;

    vtkImageData ReadDataFile(File inSelectedFile){

        vtkImageData outImageData = null;
        Directory theDir = new Directory();

        String theInputDirectory = inSelectedFile.getPath();
        theDir.Load(theInputDirectory);

        Scanner theScanner = new Scanner();
        Tag theStudyTag = new Tag(0x0020,0x000d);
        Tag theSeriesTag = new Tag(0x0020,0x000e);
        theScanner.AddTag(theStudyTag);//get studies,
        theScanner.AddTag(theSeriesTag);//get studies,
        theScanner.Scan(theDir.GetFilenames());

        FilenamesType theStudyValues = theScanner.GetOrderedValues(theStudyTag);
        long theNumStudies = theStudyValues.size();
        //for now, take the first study, and nothing else.
        //and the return is actually not FilenamesType, just a
        //vector of strings
        if (theNumStudies != 1)
            return outImageData;
        String theStudyVal = theStudyValues.get(0);
        //now, get all the values from the scanner that are in that
        //study, then from that get their different series
        FilenamesType theFilenames =
                theScanner.GetAllFilenamesFromTagToValue(theStudyTag, theStudyVal);

        //from that set of filenames, isolate individual series
        //conclude that singleton series = RT struct (can do further
        //checking for things like MIPs and the like)
        //and multiple series entries = volumetric data
        theScanner.Scan(theFilenames);
        FilenamesType theSeriesValues = theScanner.GetOrderedValues(theSeriesTag);
        String studyUID = theScanner.GetValue(theScanner.GetFilenames().get(0), theStudyTag);
        long theNumSeries = theSeriesValues.size();
        for (int i = 0; i < theNumSeries; i++) {
            FilenamesType theSeriesFiles =
                theScanner.GetAllFilenamesFromTagToValue(theSeriesTag, theSeriesValues.get(i));
            long theNumFilesInSeries = theSeriesFiles.size();
            if (theNumFilesInSeries > 1) {//assume it's CT or volumetric data
                //for now, assume a single volume
                //could have multiples, like PET and CT

                IPPSorter sorter = new IPPSorter();
                sorter.SetComputeZSpacing(true);
                sorter.SetZSpacingTolerance(0.001);
                Boolean sorted = sorter.Sort(theSeriesFiles);
                if (!sorted){
                    //need some better way to handle failures here
                    return outImageData;
                }

                FilenamesType sortedFT = sorter.GetFilenames();
                long theSize = sortedFT.size();
                vtkStringArray sa = new vtkStringArray();
                ArrayList<String> theStrings = new ArrayList<String>();

                vtkGDCMImageReader gdcmReader = new vtkGDCMImageReader();
                for (int j = 0; j < theSize; j++) {
                    String theFileName = sortedFT.get(j);
                    if (gdcmReader.CanReadFile(theFileName) > 0){
                        theStrings.add(theFileName);
                        sa.InsertNextValue(theFileName);
                    } else {
                        //this is a busted series
                        //need some more appropriate error here
                        return outImageData;
                    }
                }

                gdcmReader.SetFileNames(sa);

                gdcmReader.Update();

                outImageData = gdcmReader.GetOutput();//the zeroth output should be the image
            }
        }
        String theImageInfo = "";
        if (outImageData != null){
            theImageInfo = outImageData.Print();
        }
        return outImageData;
    }

    //this function is a rewrite of Medical3 to see if data can
    //be loaded via gdcm easily
  public AWTMedical3(File inFile) {
    // Create the buttons.
    renWin = new vtkPanel();

    vtkImageData theImageData = ReadDataFile(inFile);

    // An isosurface, or contour value of 500 is known to correspond to the
    // skin of the patient. Once generated, a vtkPolyDataNormals filter is
    // is used to create normals for smooth surface shading during rendering.
    // The triangle stripper is used to create triangle strips from the
    // isosurface these render much faster on some systems.
    vtkContourFilter skinExtractor = new vtkContourFilter();
    skinExtractor.SetInput(theImageData);
    skinExtractor.SetValue(0, 500);
    vtkPolyDataNormals skinNormals = new vtkPolyDataNormals();
    skinNormals.SetInput(skinExtractor.GetOutput());
    skinNormals.SetFeatureAngle(60.0);
//        vtkStripper skinStripper = new vtkStripper();
//        skinStripper.SetInput(skinNormals.GetOutput());
    vtkPolyDataMapper skinMapper = new vtkPolyDataMapper();
    skinMapper.SetInput(skinNormals.GetOutput());
    skinMapper.ScalarVisibilityOff();
    vtkActor skin = new vtkActor();
    skin.SetMapper(skinMapper);
    skin.GetProperty().SetDiffuseColor(1, .49, .25);
    skin.GetProperty().SetSpecular(.3);
    skin.GetProperty().SetSpecularPower(20);

    // An isosurface, or contour value of 1150 is known to correspond to the
    // skin of the patient. Once generated, a vtkPolyDataNormals filter is
    // is used to create normals for smooth surface shading during rendering.
    // The triangle stripper is used to create triangle strips from the
    // isosurface these render much faster on some systems.
    vtkContourFilter boneExtractor = new vtkContourFilter();
    boneExtractor.SetInput(theImageData);
    boneExtractor.SetValue(0, 1150);
    vtkPolyDataNormals boneNormals = new vtkPolyDataNormals();
    boneNormals.SetInput(boneExtractor.GetOutput());
    boneNormals.SetFeatureAngle(60.0);
    vtkStripper boneStripper = new vtkStripper();
    boneStripper.SetInput(boneNormals.GetOutput());
    vtkPolyDataMapper boneMapper = new vtkPolyDataMapper();
    boneMapper.SetInput(boneStripper.GetOutput());
    boneMapper.ScalarVisibilityOff();
    vtkActor bone = new vtkActor();
    bone.SetMapper(boneMapper);
    bone.GetProperty().SetDiffuseColor(1, 1, .9412);

    // An outline provides context around the data.
    vtkOutlineFilter outlineData = new vtkOutlineFilter();
    outlineData.SetInput(theImageData);
    vtkPolyDataMapper mapOutline = new vtkPolyDataMapper();
    mapOutline.SetInput(outlineData.GetOutput());
    vtkActor outline = new vtkActor();
    outline.SetMapper(mapOutline);
    outline.GetProperty().SetColor(0, 0, 0);

    // Now we are creating three orthogonal planes passing through the
    // volume. Each plane uses a different texture map and therefore has
    // different coloration.

    // Start by creating a black/white lookup table.
    vtkLookupTable bwLut = new vtkLookupTable();
    bwLut.SetTableRange(0, 2000);
    bwLut.SetSaturationRange(0, 0);
    bwLut.SetHueRange(0, 0);
    bwLut.SetValueRange(0, 1);
    bwLut.Build();

    // Now create a lookup table that consists of the full hue circle (from
    // HSV);.
    vtkLookupTable hueLut = new vtkLookupTable();
    hueLut.SetTableRange(0, 2000);
    hueLut.SetHueRange(0, 1);
    hueLut.SetSaturationRange(1, 1);
    hueLut.SetValueRange(1, 1);
    hueLut.Build();

    // Finally, create a lookup table with a single hue but having a range
    // in the saturation of the hue.
    vtkLookupTable satLut = new vtkLookupTable();
    satLut.SetTableRange(0, 2000);
    satLut.SetHueRange(.6, .6);
    satLut.SetSaturationRange(0, 1);
    satLut.SetValueRange(1, 1);
    satLut.Build();

    // Create the first of the three planes. The filter vtkImageMapToColors
    // maps the data through the corresponding lookup table created above.
    // The vtkImageActor is a type of vtkProp and conveniently displays an
    // image on a single quadrilateral plane. It does this using texture
    // mapping and as a result is quite fast. (Note: the input image has to
    // be unsigned char values, which the vtkImageMapToColors produces.);
    // Note also that by specifying the DisplayExtent, the pipeline
    // requests data of this extent and the vtkImageMapToColors only
    // processes a slice of data.
    vtkImageMapToColors sagittalColors = new vtkImageMapToColors();
    sagittalColors.SetInput(theImageData);
    sagittalColors.SetLookupTable(bwLut);
    vtkImageActor sagittal = new vtkImageActor();
    sagittal.SetInput(sagittalColors.GetOutput());
    sagittal.SetDisplayExtent(32, 32, 0, 63, 0, 92);

    // Create the second (axial); plane of the three planes. We use the same
    // approach as before except that the extent differs.
    vtkImageMapToColors axialColors = new vtkImageMapToColors();
    axialColors.SetInput(theImageData);
    axialColors.SetLookupTable(hueLut);
    vtkImageActor axial = new vtkImageActor();
    axial.SetInput(axialColors.GetOutput());
    axial.SetDisplayExtent(0, 63, 0, 63, 46, 46);

    // Create the third (coronal); plane of the three planes. We use the same
    // approach as before except that the extent differs.
    vtkImageMapToColors coronalColors = new vtkImageMapToColors();
    coronalColors.SetInput(theImageData);
    coronalColors.SetLookupTable(satLut);
    vtkImageActor coronal = new vtkImageActor();
    coronal.SetInput(coronalColors.GetOutput());
    coronal.SetDisplayExtent(0, 63, 32, 32, 0, 92);

    // It is convenient to create an initial view of the data. The FocalPoint
    // and Position form a vector direction. Later on (ResetCamera() method)
    // this vector is used to position the camera to look at the data in
    // this direction.
    vtkCamera aCamera = new vtkCamera();
    aCamera.SetViewUp(0, 0, -1);
    aCamera.SetPosition(0, 1, 0);
    aCamera.SetFocalPoint(0, 0, 0);
    aCamera.ComputeViewPlaneNormal();

    // Actors are added to the renderer. An initial camera view is created.
    // The Dolly() method moves the camera towards the FocalPoint,
    // thereby enlarging the image.
    renWin.GetRenderer().AddActor(sagittal);
    renWin.GetRenderer().AddActor(axial);
    renWin.GetRenderer().AddActor(coronal);
    renWin.GetRenderer().AddActor(outline);
    renWin.GetRenderer().AddActor(skin);
    renWin.GetRenderer().AddActor(bone);

    // Turn off bone for this example.
    bone.VisibilityOff();

    // Set skin to semi-transparent.
    skin.GetProperty().SetOpacity(0.5);

    // An initial camera view is created.  The Dolly() method moves
    // the camera towards the FocalPoint, thereby enlarging the image.
    renWin.GetRenderer().SetActiveCamera(aCamera);
    renWin.GetRenderer().ResetCamera();
    aCamera.Dolly(1.5);

    // Set a background color for the renderer and set the size of the
    // render window (expressed in pixels).
    renWin.GetRenderer().SetBackground(1, 1, 1);
    VtkPanelUtil.setSize(renWin, 640, 480);

    // Note that when camera movement occurs (as it does in the Dolly()
    // method), the clipping planes often need adjusting. Clipping planes
    // consist of two planes: near and far along the view direction. The
    // near plane clips out objects in front of the plane the far plane
    // clips out objects behind the plane. This way only what is drawn
    // between the planes is actually rendered.
    renWin.GetRenderer().ResetCameraClippingRange();

    // Setup panel
    setLayout(new BorderLayout());
    add(renWin, BorderLayout.CENTER);
  }



  public vtkPanel getRenWin() {
    return renWin;
  }


  public static void main(String s[]) {
    if (s.length == 0){
      return; //need a filename here
    }
    File theFile = new File(s[0]);
    //File theFile = new File("/Users/mmroden/Documents/MVSDownloadDirectory/Documents/1.2.840.113704.1.111.3384.1271766367.5/");
    AWTMedical3 panel = new AWTMedical3(theFile);

    JFrame frame = new JFrame("AWTMedical3");
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    frame.getContentPane().add("Center", panel);
    frame.pack();
    frame.setVisible(true);
  }

}