1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/*=========================================================================
Program: GDCM (Grassroots DICOM). A DICOM library
Copyright (c) 2006-2011 Mathieu Malaterre
All rights reserved.
See Copyright.txt or http://gdcm.sourceforge.net/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
package examples;
import vtk.*;
//import gdcm.*;
import vtk.util.VtkPanelContainer;
import vtk.util.VtkPanelUtil;
import vtk.util.VtkUtil;
import java.util.ArrayList;
import javax.swing.*;
import java.awt.*;
import java.io.File;
/**
*
* This class should show how to read an image and display it
* using gdcm and vtk, similar to gdcmorthoplanes
*
* used to test the transition from vtk 5.6 to vtk 5.9
* @author mmroden
*/
public class AWTMedical3 extends JComponent implements VtkPanelContainer {
private vtkPanel renWin;
vtkImageData ReadDataFile(File inSelectedFile){
vtkImageData outImageData = null;
Directory theDir = new Directory();
String theInputDirectory = inSelectedFile.getPath();
theDir.Load(theInputDirectory);
Scanner theScanner = new Scanner();
Tag theStudyTag = new Tag(0x0020,0x000d);
Tag theSeriesTag = new Tag(0x0020,0x000e);
theScanner.AddTag(theStudyTag);//get studies,
theScanner.AddTag(theSeriesTag);//get studies,
theScanner.Scan(theDir.GetFilenames());
FilenamesType theStudyValues = theScanner.GetOrderedValues(theStudyTag);
long theNumStudies = theStudyValues.size();
//for now, take the first study, and nothing else.
//and the return is actually not FilenamesType, just a
//vector of strings
if (theNumStudies != 1)
return outImageData;
String theStudyVal = theStudyValues.get(0);
//now, get all the values from the scanner that are in that
//study, then from that get their different series
FilenamesType theFilenames =
theScanner.GetAllFilenamesFromTagToValue(theStudyTag, theStudyVal);
//from that set of filenames, isolate individual series
//conclude that singleton series = RT struct (can do further
//checking for things like MIPs and the like)
//and multiple series entries = volumetric data
theScanner.Scan(theFilenames);
FilenamesType theSeriesValues = theScanner.GetOrderedValues(theSeriesTag);
String studyUID = theScanner.GetValue(theScanner.GetFilenames().get(0), theStudyTag);
long theNumSeries = theSeriesValues.size();
for (int i = 0; i < theNumSeries; i++) {
FilenamesType theSeriesFiles =
theScanner.GetAllFilenamesFromTagToValue(theSeriesTag, theSeriesValues.get(i));
long theNumFilesInSeries = theSeriesFiles.size();
if (theNumFilesInSeries > 1) {//assume it's CT or volumetric data
//for now, assume a single volume
//could have multiples, like PET and CT
IPPSorter sorter = new IPPSorter();
sorter.SetComputeZSpacing(true);
sorter.SetZSpacingTolerance(0.001);
Boolean sorted = sorter.Sort(theSeriesFiles);
if (!sorted){
//need some better way to handle failures here
return outImageData;
}
FilenamesType sortedFT = sorter.GetFilenames();
long theSize = sortedFT.size();
vtkStringArray sa = new vtkStringArray();
ArrayList<String> theStrings = new ArrayList<String>();
vtkGDCMImageReader gdcmReader = new vtkGDCMImageReader();
for (int j = 0; j < theSize; j++) {
String theFileName = sortedFT.get(j);
if (gdcmReader.CanReadFile(theFileName) > 0){
theStrings.add(theFileName);
sa.InsertNextValue(theFileName);
} else {
//this is a busted series
//need some more appropriate error here
return outImageData;
}
}
gdcmReader.SetFileNames(sa);
gdcmReader.Update();
outImageData = gdcmReader.GetOutput();//the zeroth output should be the image
}
}
String theImageInfo = "";
if (outImageData != null){
theImageInfo = outImageData.Print();
}
return outImageData;
}
//this function is a rewrite of Medical3 to see if data can
//be loaded via gdcm easily
public AWTMedical3(File inFile) {
// Create the buttons.
renWin = new vtkPanel();
vtkImageData theImageData = ReadDataFile(inFile);
// An isosurface, or contour value of 500 is known to correspond to the
// skin of the patient. Once generated, a vtkPolyDataNormals filter is
// is used to create normals for smooth surface shading during rendering.
// The triangle stripper is used to create triangle strips from the
// isosurface these render much faster on some systems.
vtkContourFilter skinExtractor = new vtkContourFilter();
skinExtractor.SetInput(theImageData);
skinExtractor.SetValue(0, 500);
vtkPolyDataNormals skinNormals = new vtkPolyDataNormals();
skinNormals.SetInput(skinExtractor.GetOutput());
skinNormals.SetFeatureAngle(60.0);
// vtkStripper skinStripper = new vtkStripper();
// skinStripper.SetInput(skinNormals.GetOutput());
vtkPolyDataMapper skinMapper = new vtkPolyDataMapper();
skinMapper.SetInput(skinNormals.GetOutput());
skinMapper.ScalarVisibilityOff();
vtkActor skin = new vtkActor();
skin.SetMapper(skinMapper);
skin.GetProperty().SetDiffuseColor(1, .49, .25);
skin.GetProperty().SetSpecular(.3);
skin.GetProperty().SetSpecularPower(20);
// An isosurface, or contour value of 1150 is known to correspond to the
// skin of the patient. Once generated, a vtkPolyDataNormals filter is
// is used to create normals for smooth surface shading during rendering.
// The triangle stripper is used to create triangle strips from the
// isosurface these render much faster on some systems.
vtkContourFilter boneExtractor = new vtkContourFilter();
boneExtractor.SetInput(theImageData);
boneExtractor.SetValue(0, 1150);
vtkPolyDataNormals boneNormals = new vtkPolyDataNormals();
boneNormals.SetInput(boneExtractor.GetOutput());
boneNormals.SetFeatureAngle(60.0);
vtkStripper boneStripper = new vtkStripper();
boneStripper.SetInput(boneNormals.GetOutput());
vtkPolyDataMapper boneMapper = new vtkPolyDataMapper();
boneMapper.SetInput(boneStripper.GetOutput());
boneMapper.ScalarVisibilityOff();
vtkActor bone = new vtkActor();
bone.SetMapper(boneMapper);
bone.GetProperty().SetDiffuseColor(1, 1, .9412);
// An outline provides context around the data.
vtkOutlineFilter outlineData = new vtkOutlineFilter();
outlineData.SetInput(theImageData);
vtkPolyDataMapper mapOutline = new vtkPolyDataMapper();
mapOutline.SetInput(outlineData.GetOutput());
vtkActor outline = new vtkActor();
outline.SetMapper(mapOutline);
outline.GetProperty().SetColor(0, 0, 0);
// Now we are creating three orthogonal planes passing through the
// volume. Each plane uses a different texture map and therefore has
// different coloration.
// Start by creating a black/white lookup table.
vtkLookupTable bwLut = new vtkLookupTable();
bwLut.SetTableRange(0, 2000);
bwLut.SetSaturationRange(0, 0);
bwLut.SetHueRange(0, 0);
bwLut.SetValueRange(0, 1);
bwLut.Build();
// Now create a lookup table that consists of the full hue circle (from
// HSV);.
vtkLookupTable hueLut = new vtkLookupTable();
hueLut.SetTableRange(0, 2000);
hueLut.SetHueRange(0, 1);
hueLut.SetSaturationRange(1, 1);
hueLut.SetValueRange(1, 1);
hueLut.Build();
// Finally, create a lookup table with a single hue but having a range
// in the saturation of the hue.
vtkLookupTable satLut = new vtkLookupTable();
satLut.SetTableRange(0, 2000);
satLut.SetHueRange(.6, .6);
satLut.SetSaturationRange(0, 1);
satLut.SetValueRange(1, 1);
satLut.Build();
// Create the first of the three planes. The filter vtkImageMapToColors
// maps the data through the corresponding lookup table created above.
// The vtkImageActor is a type of vtkProp and conveniently displays an
// image on a single quadrilateral plane. It does this using texture
// mapping and as a result is quite fast. (Note: the input image has to
// be unsigned char values, which the vtkImageMapToColors produces.);
// Note also that by specifying the DisplayExtent, the pipeline
// requests data of this extent and the vtkImageMapToColors only
// processes a slice of data.
vtkImageMapToColors sagittalColors = new vtkImageMapToColors();
sagittalColors.SetInput(theImageData);
sagittalColors.SetLookupTable(bwLut);
vtkImageActor sagittal = new vtkImageActor();
sagittal.SetInput(sagittalColors.GetOutput());
sagittal.SetDisplayExtent(32, 32, 0, 63, 0, 92);
// Create the second (axial); plane of the three planes. We use the same
// approach as before except that the extent differs.
vtkImageMapToColors axialColors = new vtkImageMapToColors();
axialColors.SetInput(theImageData);
axialColors.SetLookupTable(hueLut);
vtkImageActor axial = new vtkImageActor();
axial.SetInput(axialColors.GetOutput());
axial.SetDisplayExtent(0, 63, 0, 63, 46, 46);
// Create the third (coronal); plane of the three planes. We use the same
// approach as before except that the extent differs.
vtkImageMapToColors coronalColors = new vtkImageMapToColors();
coronalColors.SetInput(theImageData);
coronalColors.SetLookupTable(satLut);
vtkImageActor coronal = new vtkImageActor();
coronal.SetInput(coronalColors.GetOutput());
coronal.SetDisplayExtent(0, 63, 32, 32, 0, 92);
// It is convenient to create an initial view of the data. The FocalPoint
// and Position form a vector direction. Later on (ResetCamera() method)
// this vector is used to position the camera to look at the data in
// this direction.
vtkCamera aCamera = new vtkCamera();
aCamera.SetViewUp(0, 0, -1);
aCamera.SetPosition(0, 1, 0);
aCamera.SetFocalPoint(0, 0, 0);
aCamera.ComputeViewPlaneNormal();
// Actors are added to the renderer. An initial camera view is created.
// The Dolly() method moves the camera towards the FocalPoint,
// thereby enlarging the image.
renWin.GetRenderer().AddActor(sagittal);
renWin.GetRenderer().AddActor(axial);
renWin.GetRenderer().AddActor(coronal);
renWin.GetRenderer().AddActor(outline);
renWin.GetRenderer().AddActor(skin);
renWin.GetRenderer().AddActor(bone);
// Turn off bone for this example.
bone.VisibilityOff();
// Set skin to semi-transparent.
skin.GetProperty().SetOpacity(0.5);
// An initial camera view is created. The Dolly() method moves
// the camera towards the FocalPoint, thereby enlarging the image.
renWin.GetRenderer().SetActiveCamera(aCamera);
renWin.GetRenderer().ResetCamera();
aCamera.Dolly(1.5);
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
renWin.GetRenderer().SetBackground(1, 1, 1);
VtkPanelUtil.setSize(renWin, 640, 480);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
renWin.GetRenderer().ResetCameraClippingRange();
// Setup panel
setLayout(new BorderLayout());
add(renWin, BorderLayout.CENTER);
}
public vtkPanel getRenWin() {
return renWin;
}
public static void main(String s[]) {
if (s.length == 0){
return; //need a filename here
}
File theFile = new File(s[0]);
//File theFile = new File("/Users/mmroden/Documents/MVSDownloadDirectory/Documents/1.2.840.113704.1.111.3384.1271766367.5/");
AWTMedical3 panel = new AWTMedical3(theFile);
JFrame frame = new JFrame("AWTMedical3");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add("Center", panel);
frame.pack();
frame.setVisible(true);
}
}
|