1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
/* Rational - Rational number class with overflow detection.
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Antonio Diaz Diaz.
This library is free software: you have unlimited permission to
copy, distribute and modify it.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <algorithm>
#include <cctype>
#include <climits>
#include <cstdlib>
#include <string>
#include "rational.h"
#ifndef LLONG_MAX
#define LLONG_MAX 0x7FFFFFFFFFFFFFFFLL
#endif
#ifndef LLONG_MIN
#define LLONG_MIN (-LLONG_MAX - 1LL)
#endif
#ifndef ULLONG_MAX
#define ULLONG_MAX 0xFFFFFFFFFFFFFFFFULL
#endif
namespace {
long long llgcd( long long n, long long m ) // Greatest Common Divisor
{
if( n < 0 ) n = -n;
if( m < 0 ) m = -m;
while( true )
{
if( m ) n %= m; else return n;
if( n ) m %= n; else return m;
}
}
int gcd( int n, int m ) // Greatest Common Divisor
{
if( n < 0 ) n = -n;
if( m < 0 ) m = -m;
while( true )
{
if( m ) n %= m; else return n;
if( n ) m %= n; else return m;
}
}
const std::string overflow_string( const int n )
{ if( n > 0 ) return "+INF"; if( n < 0 ) return "-INF"; return "NAN"; }
int overflow_value( const int n )
{ if( n > 0 ) return INT_MAX; if( n < 0 ) return -INT_MAX; return 0; }
int overflow_value( const long long n )
{ if( n > 0 ) return INT_MAX; if( n < 0 ) return -INT_MAX; return 0; }
} // end namespace
void Rational::normalize( long long n, long long d )
{
if( d == 0 ) { num = overflow_value( n ); den = 0; return; } // set error
if( n == 0 ) { num = 0; den = 1; return; }
if( d != 1 )
{
const long long tmp = llgcd( n, d );
n /= tmp; d /= tmp;
}
if( n <= INT_MAX && n >= -INT_MAX && d <= INT_MAX && d >= -INT_MAX )
{ if( d >= 0 ) { num = n; den = d; } else { num = -n; den = -d; } }
else
{ num = overflow_value( (d >= 0) ? n : -n ); den = 0; }
}
void Rational::normalize()
{
if( den == 0 ) return; // no op on error
if( num == 0 ) { den = 1; return; }
if( num < -INT_MAX )
{
if( den < -INT_MAX ) den = -INT_MAX;
num = overflow_value( -den ); den = 0; return;
}
if( den < 0 )
{
if( den < -INT_MAX ) { num = overflow_value( -num ); den = 0; return; }
num = -num; den = -den;
}
if( den != 1 )
{
const int tmp = gcd( num, den );
num /= tmp; den /= tmp;
}
}
Rational Rational::inverse() const
{
if( den <= 0 ) return *this; // no op on error
Rational tmp;
if( num > 0 ) { tmp.num = den; tmp.den = num; }
else if( num < 0 ) { tmp.num = -den; tmp.den = -num; }
else { tmp.num = overflow_value( den ); tmp.den = 0; } // set error
return tmp;
}
Rational & Rational::operator+=( const Rational & r )
{
if( den <= 0 ) return *this; // no op on error
if( r.den <= 0 ) { num = r.num; den = 0; return *this; } // set error
const long long new_den = (long long)den * r.den;
const long long new_num = ( (long long)num * r.den ) +
( (long long)r.num * den );
normalize( new_num, new_den );
return *this;
}
Rational & Rational::operator*=( const Rational & r )
{
if( den <= 0 ) return *this; // no op on error
if( r.den <= 0 ) { num = r.num; den = 0; return *this; } // set error
const long long new_num = (long long)num * r.num;
const long long new_den = (long long)den * r.den;
normalize( new_num, new_den );
return *this;
}
int Rational::round() const
{
if( den <= 0 ) return num;
int result = num / den;
const int rest = std::abs( num ) % den;
if( rest > 0 && rest >= den - rest )
{ if( num >= 0 ) ++result; else --result; }
return result;
}
// Recognized formats: 123 123/456 123.456 .123 12% 12/3% 12.3% .12%
// Values may be preceded by an optional '+' or '-' sign.
// Returns the number of chars read from 's', or 0 if input is invalid.
// In case of invalid input, the Rational is not changed.
//
int Rational::parse( const char * const s )
{
if( !s || !s[0] ) return 0;
long long n = 0, d = 1; // restrain intermediate overflow
int c = 0;
bool minus = false;
while( std::isspace( s[c] ) ) ++c;
if( s[c] == '+' ) ++c;
else if( s[c] == '-' ) { ++c; minus = true; }
if( !std::isdigit( s[c] ) && s[c] != '.' ) return 0;
while( std::isdigit( s[c] ) )
{
if( ( LLONG_MAX - (s[c] - '0') ) / 10 < n ) return 0;
n = (n * 10) + (s[c] - '0'); ++c;
}
if( s[c] == '.' )
{
++c; if( !std::isdigit( s[c] ) ) return 0;
while( std::isdigit( s[c] ) )
{
if( ( LLONG_MAX - (s[c] - '0') ) / 10 < n || LLONG_MAX / 10 < d )
return 0;
n = (n * 10) + (s[c] - '0'); d *= 10; ++c;
}
}
else if( s[c] == '/' )
{
++c; d = 0;
while( std::isdigit( s[c] ) )
{
if( ( LLONG_MAX - (s[c] - '0') ) / 10 < d ) return 0;
d = (d * 10) + (s[c] - '0'); ++c;
}
if( d == 0 ) return 0;
}
if( s[c] == '%' )
{
++c;
if( n % 100 == 0 ) n /= 100;
else if( n % 10 == 0 && LLONG_MAX / 10 >= d ) { n /= 10; d *= 10; }
else if( LLONG_MAX / 100 >= d ) d *= 100;
else return 0;
}
if( minus ) n = -n;
Rational tmp; tmp.normalize( n, d );
if( !tmp.error() ) { *this = tmp; return c; }
return 0;
}
// Returns a string representing the value 'num/den' in decimal point
// format with 'prec' decimals.
// 'iwidth' is the minimum width of the integer part, prefixed with
// spaces if needed.
// If 'prec' is negative, only the needed decimals are produced.
//
const std::string Rational::to_decimal( const unsigned iwidth, int prec ) const
{
if( den <= 0 ) return overflow_string( num );
std::string s;
int ipart = std::abs( num / den );
const bool truncate = ( prec < 0 );
if( prec < 0 ) prec = -prec;
do { s += '0' + ( ipart % 10 ); ipart /= 10; } while( ipart > 0 );
if( num < 0 ) s += '-';
if( iwidth > s.size() ) s.append( iwidth - s.size(), ' ' );
std::reverse( s.begin(), s.end() );
long long rest = std::abs( num ) % den;
if( prec > 0 && ( rest > 0 || !truncate ) )
{
s += '.';
while( prec > 0 && ( rest > 0 || !truncate ) )
{ rest *= 10; s += '0' + ( rest / den ); rest %= den; --prec; }
}
return s;
}
// Returns a string representing the value 'num/den' in fractional form.
// 'width' is the minimum width to be produced, prefixed with spaces if
// needed.
//
const std::string Rational::to_fraction( const unsigned width ) const
{
if( den <= 0 ) return overflow_string( num );
std::string s;
int n = std::abs( num ), d = den;
do { s += '0' + ( d % 10 ); d /= 10; } while( d > 0 );
s += '/';
do { s += '0' + ( n % 10 ); n /= 10; } while( n > 0 );
if( num < 0 ) s += '-';
if( width > s.size() ) s.append( width - s.size(), ' ' );
std::reverse( s.begin(), s.end() );
return s;
}
|