1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
|
/* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
data. */
/* By Rod Smith, initial coding January to February, 2009 */
/* This program is copyright (c) 2009-2024 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#define __STDC_LIMIT_MACROS
#define __STDC_CONSTANT_MACROS
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <sys/stat.h>
#include <errno.h>
#include <iostream>
#include <algorithm>
#include "crc32.h"
#include "gpt.h"
#include "bsd.h"
#include "support.h"
#include "parttypes.h"
#include "attributes.h"
#include "diskio.h"
using namespace std;
#ifdef __FreeBSD__
#define log2(x) (log(x) / M_LN2)
#endif // __FreeBSD__
#ifdef _MSC_VER
#define log2(x) (log((double) x) / log(2.0))
#endif // Microsoft Visual C++
#ifdef EFI
// in UEFI mode MMX registers are not yet available so using the
// x86_64 ABI to move "double" values around is not an option.
#ifdef log2
#undef log2
#endif
#define log2(x) log2_32( x )
static inline uint32_t log2_32(uint32_t v) {
int r = -1;
while (v >= 1) {
r++;
v >>= 1;
}
return r;
}
#endif
/****************************************
* *
* GPTData class and related structures *
* *
****************************************/
// Default constructor
GPTData::GPTData(void) {
blockSize = SECTOR_SIZE; // set a default
physBlockSize = 0; // 0 = can't be determined
diskSize = 0;
partitions = NULL;
state = gpt_valid;
device = "";
justLooking = 0;
mainCrcOk = 0;
secondCrcOk = 0;
mainPartsCrcOk = 0;
secondPartsCrcOk = 0;
apmFound = 0;
bsdFound = 0;
sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
beQuiet = 0;
whichWasUsed = use_new;
mainHeader.numParts = 0;
mainHeader.firstUsableLBA = 0;
mainHeader.lastUsableLBA = 0;
numParts = 0;
SetGPTSize(NUM_GPT_ENTRIES);
// Initialize CRC functions...
chksum_crc32gentab();
} // GPTData default constructor
GPTData::GPTData(const GPTData & orig) {
uint32_t i;
if (&orig != this) {
mainHeader = orig.mainHeader;
numParts = orig.numParts;
secondHeader = orig.secondHeader;
protectiveMBR = orig.protectiveMBR;
device = orig.device;
blockSize = orig.blockSize;
physBlockSize = orig.physBlockSize;
diskSize = orig.diskSize;
state = orig.state;
justLooking = orig.justLooking;
mainCrcOk = orig.mainCrcOk;
secondCrcOk = orig.secondCrcOk;
mainPartsCrcOk = orig.mainPartsCrcOk;
secondPartsCrcOk = orig.secondPartsCrcOk;
apmFound = orig.apmFound;
bsdFound = orig.bsdFound;
sectorAlignment = orig.sectorAlignment;
beQuiet = orig.beQuiet;
whichWasUsed = orig.whichWasUsed;
myDisk.OpenForRead(orig.myDisk.GetName());
delete[] partitions;
partitions = new GPTPart [numParts];
if (partitions == NULL) {
cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
<< "Terminating!\n";
exit(1);
} // if
for (i = 0; i < numParts; i++) {
partitions[i] = orig.partitions[i];
} // for
} // if
} // GPTData copy constructor
// The following constructor loads GPT data from a device file
GPTData::GPTData(string filename) {
blockSize = SECTOR_SIZE; // set a default
diskSize = 0;
partitions = NULL;
state = gpt_invalid;
device = "";
justLooking = 0;
mainCrcOk = 0;
secondCrcOk = 0;
mainPartsCrcOk = 0;
secondPartsCrcOk = 0;
apmFound = 0;
bsdFound = 0;
sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
beQuiet = 0;
whichWasUsed = use_new;
mainHeader.numParts = 0;
mainHeader.lastUsableLBA = 0;
numParts = 0;
// Initialize CRC functions...
chksum_crc32gentab();
if (!LoadPartitions(filename))
exit(2);
} // GPTData(string filename) constructor
// Destructor
GPTData::~GPTData(void) {
delete[] partitions;
} // GPTData destructor
// Assignment operator
GPTData & GPTData::operator=(const GPTData & orig) {
uint32_t i;
if (&orig != this) {
mainHeader = orig.mainHeader;
numParts = orig.numParts;
secondHeader = orig.secondHeader;
protectiveMBR = orig.protectiveMBR;
device = orig.device;
blockSize = orig.blockSize;
physBlockSize = orig.physBlockSize;
diskSize = orig.diskSize;
state = orig.state;
justLooking = orig.justLooking;
mainCrcOk = orig.mainCrcOk;
secondCrcOk = orig.secondCrcOk;
mainPartsCrcOk = orig.mainPartsCrcOk;
secondPartsCrcOk = orig.secondPartsCrcOk;
apmFound = orig.apmFound;
bsdFound = orig.bsdFound;
sectorAlignment = orig.sectorAlignment;
beQuiet = orig.beQuiet;
whichWasUsed = orig.whichWasUsed;
myDisk.OpenForRead(orig.myDisk.GetName());
delete[] partitions;
partitions = new GPTPart [numParts];
if (partitions == NULL) {
cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
<< "Terminating!\n";
exit(1);
} // if
for (i = 0; i < numParts; i++) {
partitions[i] = orig.partitions[i];
} // for
} // if
return *this;
} // GPTData::operator=()
/*********************************************************************
* *
* Begin functions that verify data, or that adjust the verification *
* information (compute CRCs, rebuild headers) *
* *
*********************************************************************/
// Perform detailed verification, reporting on any problems found, but
// do *NOT* recover from these problems. Returns the total number of
// problems identified.
int GPTData::Verify(void) {
int problems = 0, alignProbs = 0;
uint32_t i, numSegments, testAlignment = sectorAlignment;
uint64_t totalFree, largestSegment;
// First, check for CRC errors in the GPT data....
if (!mainCrcOk) {
problems++;
cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
<< "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
<< "header ('b' on the recovery & transformation menu). This report may be a false\n"
<< "alarm if you've already corrected other problems.\n";
} // if
if (!mainPartsCrcOk) {
problems++;
cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
<< "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
<< "transformation menu). This report may be a false alarm if you've already\n"
<< "corrected other problems.\n";
} // if
if (!secondCrcOk) {
problems++;
cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
<< "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
<< "header ('d' on the recovery & transformation menu). This report may be a false\n"
<< "alarm if you've already corrected other problems.\n";
} // if
if (!secondPartsCrcOk) {
problems++;
cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
<< "be corrupt. This program will automatically create a new backup partition\n"
<< "table when you save your partitions.\n";
} // if
// Now check that the main and backup headers both point to themselves....
if (mainHeader.currentLBA != 1) {
problems++;
cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
<< "is being automatically corrected, but it may be a symptom of more serious\n"
<< "problems. Think carefully before saving changes with 'w' or using this disk.\n";
mainHeader.currentLBA = 1;
} // if
if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
problems++;
cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
<< "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
<< "option on the experts' menu to adjust the secondary header's and partition\n"
<< "table's locations.\n";
} // if
// Now check that critical main and backup GPT entries match each other
if (mainHeader.currentLBA != secondHeader.backupLBA) {
problems++;
cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
<< ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
<< secondHeader.backupLBA << ").\n";
} // if
if (mainHeader.backupLBA != secondHeader.currentLBA) {
problems++;
cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
<< ") doesn't\nmatch the backup GPT header's current LBA pointer ("
<< secondHeader.currentLBA << ").\n"
<< "The 'e' option on the experts' menu may fix this problem.\n";
} // if
if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
problems++;
cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
<< ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
<< secondHeader.firstUsableLBA << ")\n";
} // if
if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
problems++;
cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
<< ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
<< secondHeader.lastUsableLBA << ")\n"
<< "The 'e' option on the experts' menu can probably fix this problem.\n";
} // if
if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
problems++;
cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
<< ") doesn't\nmatch the backup GPT header's disk GUID ("
<< secondHeader.diskGUID << ")\n"
<< "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
<< "select one or the other header.\n";
} // if
if (mainHeader.numParts != secondHeader.numParts) {
problems++;
cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
<< ") doesn't\nmatch the backup GPT header's number of partitions ("
<< secondHeader.numParts << ")\n"
<< "Resizing the partition table ('s' on the experts' menu) may help.\n";
} // if
if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
problems++;
cout << "\nProblem: main GPT header's size of partition entries ("
<< mainHeader.sizeOfPartitionEntries << ") doesn't\n"
<< "match the backup GPT header's size of partition entries ("
<< secondHeader.sizeOfPartitionEntries << ")\n"
<< "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
<< "select one or the other header.\n";
} // if
// Now check for a few other miscellaneous problems...
// Check that the disk size will hold the data...
if (mainHeader.backupLBA >= diskSize) {
problems++;
cout << "\nProblem: Disk is too small to hold all the data!\n"
<< "(Disk size is " << diskSize << " sectors, needs to be "
<< mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
<< "The 'e' option on the experts' menu may fix this problem.\n";
} // if
// Check the main and backup partition tables for overlap with things and unusual gaps
if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() > mainHeader.firstUsableLBA) {
problems++;
cout << "\nProblem: Main partition table extends past the first usable LBA.\n"
<< "Using 'j' on the experts' menu may enable fixing this problem.\n";
} // if
if (mainHeader.partitionEntriesLBA < 2) {
problems++;
cout << "\nProblem: Main partition table appears impossibly early on the disk.\n"
<< "Using 'j' on the experts' menu may enable fixing this problem.\n";
} // if
if (secondHeader.partitionEntriesLBA + GetTableSizeInSectors() > secondHeader.currentLBA) {
problems++;
cout << "\nProblem: The backup partition table overlaps the backup header.\n"
<< "Using 'e' on the experts' menu may fix this problem.\n";
} // if
if (mainHeader.partitionEntriesLBA != 2) {
cout << "\nWarning: There is a gap between the main metadata (sector 1) and the main\n"
<< "partition table (sector " << mainHeader.partitionEntriesLBA
<< "). This is helpful in some exotic configurations,\n"
<< "but is generally ill-advised. Using 'j' on the experts' menu can adjust this\n"
<< "gap.\n";
} // if
if (secondHeader.partitionEntriesLBA != diskSize - GetTableSizeInSectors() - 1) {
cout << "\nWarning: There is a gap between the secondary partition table (ending at sector\n"
<< secondHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1
<< ") and the secondary metadata (sector " << mainHeader.backupLBA << ").\n"
<< "This is helpful in some exotic configurations, but is generally ill-advised.\n"
<< "Using 'k' on the experts' menu can adjust this gap.\n";
} // if
if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() != mainHeader.firstUsableLBA) {
cout << "\nWarning: There is a gap between the main partition table (ending sector "
<< mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << ")\n"
<< "and the first usable sector (" << mainHeader.firstUsableLBA << "). This is helpful in some exotic configurations,\n"
<< "but is unusual. The util-linux fdisk program often creates disks like this.\n"
<< "Using 'j' on the experts' menu can adjust this gap.\n";
} // if
if (mainHeader.sizeOfPartitionEntries * mainHeader.numParts < 16384) {
cout << "\nWarning: The size of the partition table (" << mainHeader.sizeOfPartitionEntries * mainHeader.numParts
<< " bytes) is less than the minimum\n"
<< "required by the GPT specification. Most OSes and tools seem to work fine on\n"
<< "such disks, but this is a violation of the GPT specification and so may cause\n"
<< "problems.\n";
} // if
if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
problems++;
cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
<< "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
<< mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
<< "The 'e' option on the experts' menu will probably fix this problem\n";
}
// Check for overlapping partitions....
problems += FindOverlaps();
// Check for insane partitions (start after end, hugely big, etc.)
problems += FindInsanePartitions();
// Check for mismatched MBR and GPT partitions...
problems += FindHybridMismatches();
// Check for MBR-specific problems....
problems += VerifyMBR();
// Check for a 0xEE protective partition that's marked as active....
if (protectiveMBR.IsEEActive()) {
cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
<< "technically a violation of the GPT specification, and can cause some EFIs to\n"
<< "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
<< "computers. You can clear this flag by creating a fresh protective MBR using\n"
<< "the 'n' option on the experts' menu.\n";
}
// Verify that partitions don't run into GPT data areas....
problems += CheckGPTSize();
if (!protectiveMBR.DoTheyFit()) {
cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
<< "fresh protective or hybrid MBR is recommended.\n";
problems++;
}
// Check that partitions are aligned on proper boundaries (for WD Advanced
// Format and similar disks)....
if ((physBlockSize != 0) && (blockSize != 0))
testAlignment = physBlockSize / blockSize;
testAlignment = max(testAlignment, sectorAlignment);
if (testAlignment == 0) // Should not happen; just being paranoid.
testAlignment = sectorAlignment;
for (i = 0; i < numParts; i++) {
if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % testAlignment) != 0) {
cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
<< testAlignment << "-sector boundary. This may\nresult "
<< "in degraded performance on some modern (2009 and later) hard disks.\n";
alignProbs++;
} // if
if ((partitions[i].IsUsed()) && ((partitions[i].GetLastLBA() + 1) % testAlignment) != 0) {
cout << "\nCaution: Partition " << i + 1 << " doesn't end on a "
<< testAlignment << "-sector boundary. This may\nresult "
<< "in problems with some disk encryption tools.\n";
} // if
} // for
if (alignProbs > 0)
cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
<< "for information on disk alignment.\n";
// Now compute available space, but only if no problems found, since
// problems could affect the results
if (problems == 0) {
totalFree = FindFreeBlocks(&numSegments, &largestSegment);
cout << "\nNo problems found. " << totalFree << " free sectors ("
<< BytesToIeee(totalFree, blockSize) << ") available in "
<< numSegments << "\nsegments, the largest of which is "
<< largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
<< ") in size.\n";
} else {
cout << "\nIdentified " << problems << " problems!\n";
} // if/else
return (problems);
} // GPTData::Verify()
// Checks to see if the GPT tables overrun existing partitions; if they
// do, issues a warning but takes no action. Returns number of problems
// detected (0 if OK, 1 to 2 if problems).
int GPTData::CheckGPTSize(void) {
uint64_t overlap, firstUsedBlock, lastUsedBlock;
uint32_t i;
int numProbs = 0;
// first, locate the first & last used blocks
firstUsedBlock = UINT64_MAX;
lastUsedBlock = 0;
for (i = 0; i < numParts; i++) {
if (partitions[i].IsUsed()) {
if (partitions[i].GetFirstLBA() < firstUsedBlock)
firstUsedBlock = partitions[i].GetFirstLBA();
if (partitions[i].GetLastLBA() > lastUsedBlock) {
lastUsedBlock = partitions[i].GetLastLBA();
} // if
} // if
} // for
// If the disk size is 0 (the default), then it means that various
// variables aren't yet set, so the below tests will be useless;
// therefore we should skip everything
if (diskSize != 0) {
if (mainHeader.firstUsableLBA > firstUsedBlock) {
overlap = mainHeader.firstUsableLBA - firstUsedBlock;
cout << "Warning! Main partition table overlaps the first partition by "
<< overlap << " blocks!\n";
if (firstUsedBlock > 2) {
cout << "Try reducing the partition table size by " << overlap * 4
<< " entries.\n(Use the 's' item on the experts' menu.)\n";
} else {
cout << "You will need to delete this partition or resize it in another utility.\n";
} // if/else
numProbs++;
} // Problem at start of disk
if (mainHeader.lastUsableLBA < lastUsedBlock) {
overlap = lastUsedBlock - mainHeader.lastUsableLBA;
cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
<< overlap << " blocks!\n";
if (lastUsedBlock > (diskSize - 2)) {
cout << "You will need to delete this partition or resize it in another utility.\n";
} else {
cout << "Try reducing the partition table size by " << overlap * 4
<< " entries.\n(Use the 's' item on the experts' menu.)\n";
} // if/else
numProbs++;
} // Problem at end of disk
} // if (diskSize != 0)
return numProbs;
} // GPTData::CheckGPTSize()
// Check the validity of the GPT header. Returns 1 if the main header
// is valid, 2 if the backup header is valid, 3 if both are valid, and
// 0 if neither is valid. Note that this function checks the GPT signature,
// revision value, and CRCs in both headers.
int GPTData::CheckHeaderValidity(void) {
int valid = 3;
cout.setf(ios::uppercase);
cout.fill('0');
// Note: failed GPT signature checks produce no error message because
// a message is displayed in the ReversePartitionBytes() function
if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
valid -= 1;
} else if ((mainHeader.revision != 0x00010000) && valid) {
valid -= 1;
cout << "Unsupported GPT version in main header; read 0x";
cout.width(8);
cout << hex << mainHeader.revision << ", should be\n0x";
cout.width(8);
cout << UINT32_C(0x00010000) << dec << "\n";
} // if/else/if
if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
valid -= 2;
} else if ((secondHeader.revision != 0x00010000) && valid) {
valid -= 2;
cout << "Unsupported GPT version in backup header; read 0x";
cout.width(8);
cout << hex << secondHeader.revision << ", should be\n0x";
cout.width(8);
cout << UINT32_C(0x00010000) << dec << "\n";
} // if/else/if
// Check for an Apple disk signature
if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
(mainHeader.signature << 32) == APM_SIGNATURE2) {
apmFound = 1; // Will display warning message later
} // if
cout.fill(' ');
return valid;
} // GPTData::CheckHeaderValidity()
// Check the header CRC to see if it's OK...
// Note: Must be called with header in platform-ordered byte order.
// Returns 1 if header's computed CRC matches the stored value, 0 if the
// computed and stored values don't match
int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
uint32_t oldCRC, newCRC, hSize;
uint8_t *temp;
// Back up old header CRC and then blank it, since it must be 0 for
// computation to be valid
oldCRC = header->headerCRC;
header->headerCRC = UINT32_C(0);
hSize = header->headerSize;
if (IsLittleEndian() == 0)
ReverseHeaderBytes(header);
if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
if (warn) {
cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
} // if
hSize = HEADER_SIZE;
} else if ((hSize > sizeof(GPTHeader)) && warn) {
cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
<< "which may result in a CRC false alarm.\n";
} // if/elseif
temp = new uint8_t[hSize];
if (temp != NULL) {
memset(temp, 0, hSize);
if (hSize < sizeof(GPTHeader))
memcpy(temp, header, hSize);
else
memcpy(temp, header, sizeof(GPTHeader));
newCRC = chksum_crc32((unsigned char*) temp, hSize);
delete[] temp;
} else {
cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
exit(1);
}
if (IsLittleEndian() == 0)
ReverseHeaderBytes(header);
header->headerCRC = oldCRC;
return (oldCRC == newCRC);
} // GPTData::CheckHeaderCRC()
// Recompute all the CRCs. Must be called before saving if any changes have
// been made. Must be called on platform-ordered data (this function reverses
// byte order and then undoes that reversal.)
void GPTData::RecomputeCRCs(void) {
uint32_t crc, hSize;
int littleEndian;
// If the header size is bigger than the GPT header data structure, reset it;
// otherwise, set both header sizes to whatever the main one is....
if (mainHeader.headerSize > sizeof(GPTHeader))
hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
else
hSize = secondHeader.headerSize = mainHeader.headerSize;
if ((littleEndian = IsLittleEndian()) == 0) {
ReversePartitionBytes();
ReverseHeaderBytes(&mainHeader);
ReverseHeaderBytes(&secondHeader);
} // if
// Compute CRC of partition tables & store in main and secondary headers
crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
mainHeader.partitionEntriesCRC = crc;
secondHeader.partitionEntriesCRC = crc;
if (littleEndian == 0) {
ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
} // if
// Zero out GPT headers' own CRCs (required for correct computation)
mainHeader.headerCRC = 0;
secondHeader.headerCRC = 0;
crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
if (littleEndian == 0)
ReverseBytes(&crc, 4);
mainHeader.headerCRC = crc;
crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
if (littleEndian == 0)
ReverseBytes(&crc, 4);
secondHeader.headerCRC = crc;
if (littleEndian == 0) {
ReverseHeaderBytes(&mainHeader);
ReverseHeaderBytes(&secondHeader);
ReversePartitionBytes();
} // if
} // GPTData::RecomputeCRCs()
// Rebuild the main GPT header, using the secondary header as a model.
// Typically called when the main header has been found to be corrupt.
void GPTData::RebuildMainHeader(void) {
mainHeader.signature = GPT_SIGNATURE;
mainHeader.revision = secondHeader.revision;
mainHeader.headerSize = secondHeader.headerSize;
mainHeader.headerCRC = UINT32_C(0);
mainHeader.reserved = secondHeader.reserved;
mainHeader.currentLBA = secondHeader.backupLBA;
mainHeader.backupLBA = secondHeader.currentLBA;
mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
mainHeader.diskGUID = secondHeader.diskGUID;
mainHeader.numParts = secondHeader.numParts;
mainHeader.partitionEntriesLBA = secondHeader.firstUsableLBA - GetTableSizeInSectors();
mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
mainCrcOk = secondCrcOk;
SetGPTSize(mainHeader.numParts, 0);
} // GPTData::RebuildMainHeader()
// Rebuild the secondary GPT header, using the main header as a model.
void GPTData::RebuildSecondHeader(void) {
secondHeader.signature = GPT_SIGNATURE;
secondHeader.revision = mainHeader.revision;
secondHeader.headerSize = mainHeader.headerSize;
secondHeader.headerCRC = UINT32_C(0);
secondHeader.reserved = mainHeader.reserved;
secondHeader.currentLBA = mainHeader.backupLBA;
secondHeader.backupLBA = mainHeader.currentLBA;
secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
secondHeader.diskGUID = mainHeader.diskGUID;
secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
secondHeader.numParts = mainHeader.numParts;
secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
secondCrcOk = mainCrcOk;
SetGPTSize(secondHeader.numParts, 0);
} // GPTData::RebuildSecondHeader()
// Search for hybrid MBR entries that have no corresponding GPT partition.
// Returns number of such mismatches found
int GPTData::FindHybridMismatches(void) {
int i, found, numFound = 0;
uint32_t j;
uint64_t mbrFirst, mbrLast;
for (i = 0; i < 4; i++) {
if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
j = 0;
found = 0;
mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
do {
if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
(partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
found = 1;
j++;
} while ((!found) && (j < numParts));
if (!found) {
numFound++;
cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
<< i + 1 << ", of type 0x";
cout.fill('0');
cout.setf(ios::uppercase);
cout.width(2);
cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
<< "has no corresponding GPT partition! You may continue, but this condition\n"
<< "might cause data loss in the future!\a\n" << dec;
cout.fill(' ');
} // if
} // if
} // for
return numFound;
} // GPTData::FindHybridMismatches
// Find overlapping partitions and warn user about them. Returns number of
// overlapping partitions.
// Returns number of overlapping segments found.
int GPTData::FindOverlaps(void) {
int problems = 0;
uint32_t i, j;
for (i = 1; i < numParts; i++) {
for (j = 0; j < i; j++) {
if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
(partitions[i].DoTheyOverlap(partitions[j]))) {
problems++;
cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
<< " to " << partitions[i].GetLastLBA() << "\n";
cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
<< " to " << partitions[j].GetLastLBA() << "\n";
} // if
} // for j...
} // for i...
return problems;
} // GPTData::FindOverlaps()
// Find partitions that are insane -- they start after they end or are too
// big for the disk. (The latter should duplicate detection of overlaps
// with GPT backup data structures, but better to err on the side of
// redundant tests than to miss something....)
// Returns number of problems found.
int GPTData::FindInsanePartitions(void) {
uint32_t i;
int problems = 0;
for (i = 0; i < numParts; i++) {
if (partitions[i].IsUsed()) {
if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
problems++;
cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
} // if
if (partitions[i].GetLastLBA() >= diskSize) {
problems++;
cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
} // if
} // if
} // for
return problems;
} // GPTData::FindInsanePartitions(void)
/******************************************************************
* *
* Begin functions that load data from disk or save data to disk. *
* *
******************************************************************/
// Change the filename associated with the GPT. Used for duplicating
// the partition table to a new disk and saving backups.
// Returns 1 on success, 0 on failure.
int GPTData::SetDisk(const string & deviceFilename) {
int err, allOK = 1;
device = deviceFilename;
if (allOK && myDisk.OpenForRead(deviceFilename)) {
// store disk information....
diskSize = myDisk.DiskSize(&err);
blockSize = (uint32_t) myDisk.GetBlockSize();
physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
} // if
protectiveMBR.SetDisk(&myDisk);
protectiveMBR.SetDiskSize(diskSize);
protectiveMBR.SetBlockSize(blockSize);
return allOK;
} // GPTData::SetDisk()
// Scan for partition data. This function loads the MBR data (regular MBR or
// protective MBR) and loads BSD disklabel data (which is probably invalid).
// It also looks for APM data, forces a load of GPT data, and summarizes
// the results.
void GPTData::PartitionScan(void) {
BSDData bsdDisklabel;
// Read the MBR & check for BSD disklabel
protectiveMBR.ReadMBRData(&myDisk);
bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
// Load the GPT data, whether or not it's valid
ForceLoadGPTData();
// Some tools create a 0xEE partition that's too big. If this is detected,
// normalize it....
if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
if (!beQuiet) {
cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
} // if
protectiveMBR.MakeProtectiveMBR();
} // if
if (!beQuiet) {
cout << "Partition table scan:\n";
protectiveMBR.ShowState();
bsdDisklabel.ShowState();
ShowAPMState(); // Show whether there's an Apple Partition Map present
ShowGPTState(); // Show GPT status
cout << "\n";
} // if
if (apmFound) {
cout << "\n*******************************************************************\n"
<< "This disk appears to contain an Apple-format (APM) partition table!\n";
if (!justLooking) {
cout << "It will be destroyed if you continue!\n";
} // if
cout << "*******************************************************************\n\n\a";
} // if
} // GPTData::PartitionScan()
// Read GPT data from a disk.
int GPTData::LoadPartitions(const string & deviceFilename) {
BSDData bsdDisklabel;
int err, allOK = 1;
MBRValidity mbrState;
if (!justLooking) {
if (myDisk.OpenForRead(deviceFilename)) {
err = myDisk.OpenForWrite(deviceFilename);
if (err == 0) {
cout << "\aNOTE: Write test failed with error number " << errno
<< ". It will be impossible to save\nchanges to this disk's partition table!\n";
#if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
cout << "You may be able to enable writes by exiting this program, typing\n"
<< "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
<< "program.\n";
#endif
#if defined (__APPLE__)
cout << "You may need to deactivate System Integrity Protection to use this program. See\n"
<< "https://www.quora.com/How-do-I-turn-off-the-rootless-in-OS-X-El-Capitan-10-11\n"
<< "for more information.\n";
#endif
cout << "\n";
} // if
myDisk.Close(); // Close and re-open read-only in case of bugs
} else allOK = 0; // if
}
if (allOK && myDisk.OpenForRead(deviceFilename)) {
// store disk information....
diskSize = myDisk.DiskSize(&err);
blockSize = (uint32_t) myDisk.GetBlockSize();
physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
device = deviceFilename;
PartitionScan(); // Check for partition types, load GPT, & print summary
whichWasUsed = UseWhichPartitions();
switch (whichWasUsed) {
case use_mbr:
XFormPartitions();
break;
case use_bsd:
bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
// bsdDisklabel.DisplayBSDData();
ClearGPTData();
protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
XFormDisklabel(&bsdDisklabel);
break;
case use_gpt:
mbrState = protectiveMBR.GetValidity();
if ((mbrState == invalid) || (mbrState == mbr))
protectiveMBR.MakeProtectiveMBR();
break;
case use_new:
ClearGPTData();
protectiveMBR.MakeProtectiveMBR();
break;
case use_abort:
allOK = 0;
cerr << "Invalid partition data!\n";
break;
} // switch
if (allOK) {
CheckGPTSize();
// Below is unlikely to happen on real disks, but could happen if
// the user is manipulating a truncated image file....
if (diskSize <= GetTableSizeInSectors() * 2 + 3) {
allOK = 0;
cout << "Disk is too small to hold GPT data (" << diskSize
<< " sectors)! Aborting!\n";
}
}
myDisk.Close();
ComputeAlignment();
} else {
allOK = 0;
} // if/else
return (allOK);
} // GPTData::LoadPartitions()
// Loads the GPT, as much as possible. Returns 1 if this seems to have
// succeeded, 0 if there are obvious problems....
int GPTData::ForceLoadGPTData(void) {
int allOK, validHeaders, loadedTable = 1;
allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
} else {
allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
<< "secondary header from the last sector of the disk! You should use 'v' to\n"
<< "verify disk integrity, and perhaps options on the experts' menu to repair\n"
<< "the disk.\n";
} // if/else
if (!allOK)
state = gpt_invalid;
// Return valid headers code: 0 = both headers bad; 1 = main header
// good, backup bad; 2 = backup header good, main header bad;
// 3 = both headers good. Note these codes refer to valid GPT
// signatures, version numbers, and CRCs.
validHeaders = CheckHeaderValidity();
// Read partitions (from primary array)
if (validHeaders > 0) { // if at least one header is OK....
// GPT appears to be valid....
state = gpt_valid;
// We're calling the GPT valid, but there's a possibility that one
// of the two headers is corrupt. If so, use the one that seems to
// be in better shape to regenerate the bad one
if (validHeaders == 1) { // valid main header, invalid backup header
cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
<< "backup header from main header.\n\n";
RebuildSecondHeader();
state = gpt_corrupt;
secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
} else if (validHeaders == 2) { // valid backup header, invalid main header
cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
<< "from backup!\n\n";
RebuildMainHeader();
state = gpt_corrupt;
mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
} // if/else/if
// Figure out which partition table to load....
// Load the main partition table, if its header's CRC is OK
if (validHeaders != 2) {
if (LoadMainTable() == 0)
allOK = 0;
} else { // bad main header CRC and backup header CRC is OK
state = gpt_corrupt;
if (LoadSecondTableAsMain()) {
loadedTable = 2;
cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
} else { // backup table bad, bad main header CRC, but try main table in desperation....
if (LoadMainTable() == 0) {
allOK = 0;
loadedTable = 0;
cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
} // if
} // if/else (LoadSecondTableAsMain())
} // if/else (load partition table)
if (loadedTable == 1)
secondPartsCrcOk = CheckTable(&secondHeader);
else if (loadedTable == 2)
mainPartsCrcOk = CheckTable(&mainHeader);
else
mainPartsCrcOk = secondPartsCrcOk = 0;
// Problem with main partition table; if backup is OK, use it instead....
if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
state = gpt_corrupt;
allOK = allOK && LoadSecondTableAsMain();
mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
<< "partition table\ninstead of main partition table!\n\n";
} // if */
// Check for valid CRCs and warn if there are problems
if ((validHeaders != 3) || (mainPartsCrcOk == 0) ||
(secondPartsCrcOk == 0)) {
cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n";
// Show detail status of header and table
if (validHeaders & 0x1)
cerr << "Main header: OK\n";
else
cerr << "Main header: ERROR\n";
if (validHeaders & 0x2)
cerr << "Backup header: OK\n";
else
cerr << "Backup header: ERROR\n";
if (mainPartsCrcOk)
cerr << "Main partition table: OK\n";
else
cerr << "Main partition table: ERROR\n";
if (secondPartsCrcOk)
cerr << "Backup partition table: OK\n";
else
cerr << "Backup partition table: ERROR\n";
cerr << "\n";
state = gpt_corrupt;
} // if
} else {
state = gpt_invalid;
} // if/else
return allOK;
} // GPTData::ForceLoadGPTData()
// Loads the partition table pointed to by the main GPT header. The
// main GPT header in memory MUST be valid for this call to do anything
// sensible!
// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
int GPTData::LoadMainTable(void) {
return LoadPartitionTable(mainHeader, myDisk);
} // GPTData::LoadMainTable()
// Load the second (backup) partition table as the primary partition
// table. Used in repair functions, and when starting up if the main
// partition table is damaged.
// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
int GPTData::LoadSecondTableAsMain(void) {
return LoadPartitionTable(secondHeader, myDisk);
} // GPTData::LoadSecondTableAsMain()
// Load a single GPT header (main or backup) from the specified disk device and
// sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
// value appropriately.
// Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
// failure.
int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
int allOK = 1;
GPTHeader tempHeader;
disk.Seek(sector);
if (disk.Read(&tempHeader, 512) != 512) {
cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
allOK = 0;
} // if
// Reverse byte order, if necessary
if (IsLittleEndian() == 0) {
ReverseHeaderBytes(&tempHeader);
} // if
*crcOk = CheckHeaderCRC(&tempHeader);
if (tempHeader.sizeOfPartitionEntries != sizeof(GPTPart)) {
// Print the below warning only if the CRC is OK -- but correct the
// problem either way. The warning is printed only on a valid CRC
// because otherwise this warning will display inappropriately when
// reading MBR disks. If the CRC is invalid, then a warning about
// that will be shown later, so the user will still know that
// something is wrong.
if (*crcOk) {
cerr << "Warning: Partition table header claims that the size of partition table\n";
cerr << "entries is " << tempHeader.sizeOfPartitionEntries << " bytes, but this program ";
cerr << " supports only " << sizeof(GPTPart) << "-byte entries.\n";
cerr << "Adjusting accordingly, but partition table may be garbage.\n";
}
tempHeader.sizeOfPartitionEntries = sizeof(GPTPart);
}
if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
allOK = SetGPTSize(tempHeader.numParts, 0);
}
*header = tempHeader;
return allOK;
} // GPTData::LoadHeader
// Load a partition table (either main or secondary) from the specified disk,
// using header as a reference for what to load. If sector != 0 (the default
// is 0), loads from the specified sector; otherwise loads from the sector
// indicated in header.
// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
uint32_t sizeOfParts, newCRC;
int retval;
if (header.sizeOfPartitionEntries != sizeof(GPTPart)) {
cerr << "Error! GPT header contains invalid partition entry size!\n";
retval = 0;
} else if (disk.OpenForRead()) {
if (sector == 0) {
retval = disk.Seek(header.partitionEntriesLBA);
} else {
retval = disk.Seek(sector);
} // if/else
if (retval == 1)
retval = SetGPTSize(header.numParts, 0);
if (retval == 1) {
sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
retval = 0;
} // if
newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
if (IsLittleEndian() == 0)
ReversePartitionBytes();
if (!mainPartsCrcOk) {
cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
} // if
} else {
cerr << "Error! Couldn't seek to partition table!\n";
} // if/else
} else {
cerr << "Error! Couldn't open device " << device
<< " when reading partition table!\n";
retval = 0;
} // if/else
return retval;
} // GPTData::LoadPartitionsTable()
// Check the partition table pointed to by header, but don't keep it
// around.
// Returns 1 if the CRC is OK & this table matches the one already in memory,
// 0 if not or if there was a read error.
int GPTData::CheckTable(struct GPTHeader *header) {
uint32_t sizeOfParts, newCRC;
GPTPart *partsToCheck;
GPTHeader *otherHeader;
int allOK = 0;
// Load partition table into temporary storage to check
// its CRC and store the results, then discard this temporary
// storage, since we don't use it in any but recovery operations
if (myDisk.Seek(header->partitionEntriesLBA)) {
partsToCheck = new GPTPart[header->numParts];
sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
if (partsToCheck == NULL) {
cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
exit(1);
} // if
if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
} else {
newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
allOK = (newCRC == header->partitionEntriesCRC);
if (header == &mainHeader)
otherHeader = &secondHeader;
else
otherHeader = &mainHeader;
if (newCRC != otherHeader->partitionEntriesCRC) {
cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
<< "on the recovery & transformation menu to examine the two tables.\n\n";
allOK = 0;
} // if
} // if/else
delete[] partsToCheck;
} // if
return allOK;
} // GPTData::CheckTable()
// Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
// header later on the disk without asking for permission, if necessary, and
// doesn't confirm the operation before writing. If quiet==0, asks permission
// before moving the second header and asks for final confirmation of any
// write.
// Returns 1 on successful write, 0 if there was a problem.
int GPTData::SaveGPTData(int quiet) {
int allOK = 1, syncIt = 1;
char answer;
// First do some final sanity checks....
// This test should only fail on read-only disks....
if (justLooking) {
cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
allOK = 0;
} // if
// Check that disk is really big enough to handle the second header...
if (mainHeader.backupLBA >= diskSize) {
cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
<< "header, but other problems may occur!\n";
MoveSecondHeaderToEnd();
} // if
// Is there enough space to hold the GPT headers and partition tables,
// given the partition sizes?
if (CheckGPTSize() > 0) {
allOK = 0;
} // if
// Check that second header is properly placed. Warn and ask if this should
// be corrected if the test fails....
if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
if (quiet == 0) {
cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
<< "correct this problem? ";
if (GetYN() == 'Y') {
MoveSecondHeaderToEnd();
cout << "Have moved second header and partition table to correct location.\n";
} else {
cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
} // if correction requested
} else { // Go ahead and do correction automatically
MoveSecondHeaderToEnd();
} // if/else quiet
} // if
if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
if (quiet == 0) {
cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
<< "this problem? ";
if (GetYN() == 'Y') {
MoveSecondHeaderToEnd();
cout << "Have adjusted the second header and last usable sector value.\n";
} else {
cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
} // if correction requested
} else { // go ahead and do correction automatically
MoveSecondHeaderToEnd();
} // if/else quiet
} // if
// Check for overlapping or insane partitions....
if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
allOK = 0;
cerr << "Aborting write operation!\n";
} // if
// Check that protective MBR fits, and warn if it doesn't....
if (!protectiveMBR.DoTheyFit()) {
cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
<< "fresh protective or hybrid MBR is recommended.\n";
}
// Check for mismatched MBR and GPT data, but let it pass if found
// (function displays warning message)
FindHybridMismatches();
RecomputeCRCs();
if ((allOK) && (!quiet)) {
cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
<< "PARTITIONS!!\n\nDo you want to proceed? ";
answer = GetYN();
if (answer == 'Y') {
cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
} else {
allOK = 0;
} // if/else
} // if
// Do it!
if (allOK) {
if (myDisk.OpenForWrite()) {
// As per UEFI specs, write the secondary table and GPT first....
allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
if (!allOK) {
cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
<< "menu will resolve this problem.\n";
syncIt = 0;
} // if
// Now write the secondary GPT header...
allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
// Now write the main partition tables...
allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
// Now write the main GPT header...
allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
// To top it off, write the protective MBR...
allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
// re-read the partition table
// Note: Done even if some write operations failed, but not if all of them failed.
// Done this way because I've received one problem report from a user one whose
// system the MBR write failed but everything else was OK (on a GPT disk under
// Windows), and the failure to sync therefore caused Windows to restore the
// original partition table from its cache. OTOH, such restoration might be
// desirable if the error occurs later; but that seems unlikely unless the initial
// write fails....
if (syncIt)
myDisk.DiskSync();
if (allOK) { // writes completed OK
cout << "The operation has completed successfully.\n";
} else {
cerr << "Warning! An error was reported when writing the partition table! This error\n"
<< "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
} // if/else
myDisk.Close();
} else {
cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
<< errno << "! Aborting write!\n";
allOK = 0;
} // if/else
} else {
cout << "Aborting write of new partition table.\n";
} // if
return (allOK);
} // GPTData::SaveGPTData()
// Save GPT data to a backup file. This function does much less error
// checking than SaveGPTData(). It can therefore preserve many types of
// corruption for later analysis; however, it preserves only the MBR,
// the main GPT header, the backup GPT header, and the main partition
// table; it discards the backup partition table, since it should be
// identical to the main partition table on healthy disks.
int GPTData::SaveGPTBackup(const string & filename) {
int allOK = 1;
DiskIO backupFile;
if (backupFile.OpenForWrite(filename)) {
// Recomputing the CRCs is likely to alter them, which could be bad
// if the intent is to save a potentially bad GPT for later analysis;
// but if we don't do this, we get bogus errors when we load the
// backup. I'm favoring misses over false alarms....
RecomputeCRCs();
protectiveMBR.WriteMBRData(&backupFile);
protectiveMBR.SetDisk(&myDisk);
if (allOK) {
// MBR write closed disk, so re-open and seek to end....
backupFile.OpenForWrite();
allOK = SaveHeader(&mainHeader, backupFile, 1);
} // if (allOK)
if (allOK)
allOK = SaveHeader(&secondHeader, backupFile, 2);
if (allOK)
allOK = SavePartitionTable(backupFile, 3);
if (allOK) { // writes completed OK
cout << "The operation has completed successfully.\n";
} else {
cerr << "Warning! An error was reported when writing the backup file.\n"
<< "It may not be usable!\n";
} // if/else
backupFile.Close();
} else {
cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
allOK = 0;
} // if/else
return allOK;
} // GPTData::SaveGPTBackup()
// Write a GPT header (main or backup) to the specified sector. Used by both
// the SaveGPTData() and SaveGPTBackup() functions.
// Should be passed an architecture-appropriate header (DO NOT call
// ReverseHeaderBytes() on the header before calling this function)
// Returns 1 on success, 0 on failure
int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
int littleEndian, allOK = 1;
littleEndian = IsLittleEndian();
if (!littleEndian)
ReverseHeaderBytes(header);
if (disk.Seek(sector)) {
if (disk.Write(header, 512) == -1)
allOK = 0;
} else allOK = 0; // if (disk.Seek()...)
if (!littleEndian)
ReverseHeaderBytes(header);
return allOK;
} // GPTData::SaveHeader()
// Save the partitions to the specified sector. Used by both the SaveGPTData()
// and SaveGPTBackup() functions.
// Should be passed an architecture-appropriate header (DO NOT call
// ReverseHeaderBytes() on the header before calling this function)
// Returns 1 on success, 0 on failure
int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
int littleEndian, allOK = 1;
littleEndian = IsLittleEndian();
if (disk.Seek(sector)) {
if (!littleEndian)
ReversePartitionBytes();
if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
allOK = 0;
if (!littleEndian)
ReversePartitionBytes();
} else allOK = 0; // if (myDisk.Seek()...)
return allOK;
} // GPTData::SavePartitionTable()
// Load GPT data from a backup file created by SaveGPTBackup(). This function
// does minimal error checking. It returns 1 if it completed successfully,
// 0 if there was a problem. In the latter case, it creates a new empty
// set of partitions.
int GPTData::LoadGPTBackup(const string & filename) {
int allOK = 1, val, err;
int shortBackup = 0;
DiskIO backupFile;
if (backupFile.OpenForRead(filename)) {
// Let the MBRData class load the saved MBR...
protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
protectiveMBR.SetDisk(&myDisk);
LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
// Check backup file size and rebuild second header if file is right
// size to be direct dd copy of MBR, main header, and main partition
// table; if other size, treat it like a GPT fdisk-generated backup
// file
shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
(mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
if (shortBackup) {
RebuildSecondHeader();
secondCrcOk = mainCrcOk;
} else {
LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
} // if/else
// Return valid headers code: 0 = both headers bad; 1 = main header
// good, backup bad; 2 = backup header good, main header bad;
// 3 = both headers good. Note these codes refer to valid GPT
// signatures and version numbers; more subtle problems will elude
// this check!
if ((val = CheckHeaderValidity()) > 0) {
if (val == 2) { // only backup header seems to be good
SetGPTSize(secondHeader.numParts, 0);
} else { // main header is OK
SetGPTSize(mainHeader.numParts, 0);
} // if/else
if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
cout << "Warning! Current disk size doesn't match that of the backup!\n"
<< "Adjusting sizes to match, but subsequent problems are possible!\n";
MoveSecondHeaderToEnd();
} // if
if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
cerr << "Warning! Read error " << errno
<< " loading partition table; strange behavior now likely!\n";
} else {
allOK = 0;
} // if/else
// Something went badly wrong, so blank out partitions
if (allOK == 0) {
cerr << "Improper backup file! Clearing all partition data!\n";
ClearGPTData();
protectiveMBR.MakeProtectiveMBR();
} // if
} else {
allOK = 0;
cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
} // if/else
return allOK;
} // GPTData::LoadGPTBackup()
int GPTData::SaveMBR(void) {
return protectiveMBR.WriteMBRData(&myDisk);
} // GPTData::SaveMBR()
// This function destroys the on-disk GPT structures, but NOT the on-disk
// MBR.
// Returns 1 if the operation succeeds, 0 if not.
int GPTData::DestroyGPT(void) {
int sum, tableSize, allOK = 1;
uint8_t blankSector[512];
uint8_t* emptyTable;
memset(blankSector, 0, sizeof(blankSector));
ClearGPTData();
if (myDisk.OpenForWrite()) {
if (!myDisk.Seek(mainHeader.currentLBA))
allOK = 0;
if (myDisk.Write(blankSector, 512) != 512) { // blank it out
cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
allOK = 0;
} // if
if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
allOK = 0;
tableSize = numParts * mainHeader.sizeOfPartitionEntries;
emptyTable = new uint8_t[tableSize];
if (emptyTable == NULL) {
cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
exit(1);
} // if
memset(emptyTable, 0, tableSize);
if (allOK) {
sum = myDisk.Write(emptyTable, tableSize);
if (sum != tableSize) {
cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
allOK = 0;
} // if write failed
} // if
if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
allOK = 0;
if (allOK) {
sum = myDisk.Write(emptyTable, tableSize);
if (sum != tableSize) {
cerr << "Warning! GPT backup partition table not overwritten! Error is "
<< errno << "\n";
allOK = 0;
} // if wrong size written
} // if
if (!myDisk.Seek(secondHeader.currentLBA))
allOK = 0;
if (allOK) {
if (myDisk.Write(blankSector, 512) != 512) { // blank it out
cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
allOK = 0;
} // if
} // if
myDisk.DiskSync();
myDisk.Close();
cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
<< "other utilities.\n";
delete[] emptyTable;
} else {
cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
} // if/else (fd != -1)
return (allOK);
} // GPTDataTextUI::DestroyGPT()
// Wipe MBR data from the disk (zero it out completely)
// Returns 1 on success, 0 on failure.
int GPTData::DestroyMBR(void) {
int allOK;
uint8_t blankSector[512];
memset(blankSector, 0, sizeof(blankSector));
allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
if (!allOK)
cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
return allOK;
} // GPTData::DestroyMBR(void)
// Tell user whether Apple Partition Map (APM) was discovered....
void GPTData::ShowAPMState(void) {
if (apmFound)
cout << " APM: present\n";
else
cout << " APM: not present\n";
} // GPTData::ShowAPMState()
// Tell user about the state of the GPT data....
void GPTData::ShowGPTState(void) {
switch (state) {
case gpt_invalid:
cout << " GPT: not present\n";
break;
case gpt_valid:
cout << " GPT: present\n";
break;
case gpt_corrupt:
cout << " GPT: damaged\n";
break;
default:
cout << "\a GPT: unknown -- bug!\n";
break;
} // switch
} // GPTData::ShowGPTState()
// Display the basic GPT data
void GPTData::DisplayGPTData(void) {
uint32_t i;
uint64_t temp, totalFree;
cout << "Disk " << device << ": " << diskSize << " sectors, "
<< BytesToIeee(diskSize, blockSize) << "\n";
if (myDisk.GetModel() != "")
cout << "Model: " << myDisk.GetModel() << "\n";
if (physBlockSize > 0)
cout << "Sector size (logical/physical): " << blockSize << "/" << physBlockSize << " bytes\n";
else
cout << "Sector size (logical): " << blockSize << " bytes\n";
cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
cout << "Partition table holds up to " << numParts << " entries\n";
cout << "Main partition table begins at sector " << mainHeader.partitionEntriesLBA
<< " and ends at sector " << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << "\n";
cout << "First usable sector is " << mainHeader.firstUsableLBA
<< ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
totalFree = FindFreeBlocks(&i, &temp);
cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
cout << "Total free space is " << totalFree << " sectors ("
<< BytesToIeee(totalFree, blockSize) << ")\n";
cout << "\nNumber Start (sector) End (sector) Size Code Name\n";
for (i = 0; i < numParts; i++) {
partitions[i].ShowSummary(i, blockSize);
} // for
} // GPTData::DisplayGPTData()
// Show detailed information on the specified partition
void GPTData::ShowPartDetails(uint32_t partNum) {
if ((partNum < numParts) && !IsFreePartNum(partNum)) {
partitions[partNum].ShowDetails(blockSize);
} else {
cout << "Partition #" << partNum + 1 << " does not exist.\n";
} // if
} // GPTData::ShowPartDetails()
/**************************************************************************
* *
* Partition table transformation functions (MBR or BSD disklabel to GPT) *
* (some of these functions may require user interaction) *
* *
**************************************************************************/
// Examines the MBR & GPT data to determine which set of data to use: the
// MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
// a new set of partitions (use_new). A return value of use_abort indicates
// that this function couldn't determine what to do. Overriding functions
// in derived classes may ask users questions in such cases.
WhichToUse GPTData::UseWhichPartitions(void) {
WhichToUse which = use_new;
MBRValidity mbrState;
mbrState = protectiveMBR.GetValidity();
if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
cout << "\n***************************************************************\n"
<< "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
<< "in memory. ";
if (!justLooking) {
cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
<< "typing 'q' if you don't want to convert your MBR partitions\n"
<< "to GPT format!";
} // if
cout << "\n***************************************************************\n\n";
which = use_mbr;
} // if
if ((state == gpt_invalid) && bsdFound) {
cout << "\n**********************************************************************\n"
<< "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
<< "to GPT format.";
if ((!justLooking) && (!beQuiet)) {
cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
<< "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
<< "want to convert your BSD partitions to GPT format!";
} // if
cout << "\n**********************************************************************\n\n";
which = use_bsd;
} // if
if ((state == gpt_valid) && (mbrState == gpt)) {
which = use_gpt;
if (!beQuiet)
cout << "Found valid GPT with protective MBR; using GPT.\n";
} // if
if ((state == gpt_valid) && (mbrState == hybrid)) {
which = use_gpt;
if (!beQuiet)
cout << "Found valid GPT with hybrid MBR; using GPT.\n";
} // if
if ((state == gpt_valid) && (mbrState == invalid)) {
cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
<< "protective MBR on save.\n";
which = use_gpt;
} // if
if ((state == gpt_valid) && (mbrState == mbr)) {
which = use_abort;
} // if
if (state == gpt_corrupt) {
if (mbrState == gpt) {
cout << "\a\a****************************************************************************\n"
<< "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
<< "verification and recovery are STRONGLY recommended.\n"
<< "****************************************************************************\n";
which = use_gpt;
} else {
which = use_abort;
} // if/else MBR says disk is GPT
} // if GPT corrupt
if (which == use_new)
cout << "Creating new GPT entries in memory.\n";
return which;
} // UseWhichPartitions()
// Convert MBR partition table into GPT form.
void GPTData::XFormPartitions(void) {
int i, numToConvert;
uint8_t origType;
// Clear out old data & prepare basics....
ClearGPTData();
// Convert the smaller of the # of GPT or MBR partitions
if (numParts > MAX_MBR_PARTS)
numToConvert = MAX_MBR_PARTS;
else
numToConvert = numParts;
for (i = 0; i < numToConvert; i++) {
origType = protectiveMBR.GetType(i);
// don't waste CPU time trying to convert extended, hybrid protective, or
// null (non-existent) partitions
if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
(origType != 0x00) && (origType != 0xEE))
partitions[i] = protectiveMBR.AsGPT(i);
} // for
// Convert MBR into protective MBR
protectiveMBR.MakeProtectiveMBR();
// Record that all original CRCs were OK so as not to raise flags
// when doing a disk verification
mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
} // GPTData::XFormPartitions()
// Transforms BSD disklabel on the specified partition (numbered from 0).
// If an invalid partition number is given, the program does nothing.
// Returns the number of new partitions created.
int GPTData::XFormDisklabel(uint32_t partNum) {
uint32_t low, high;
int goOn = 1, numDone = 0;
BSDData disklabel;
if (GetPartRange(&low, &high) == 0) {
goOn = 0;
cout << "No partitions!\n";
} // if
if (partNum > high) {
goOn = 0;
cout << "Specified partition is invalid!\n";
} // if
// If all is OK, read the disklabel and convert it.
if (goOn) {
goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
partitions[partNum].GetLastLBA());
if ((goOn) && (disklabel.IsDisklabel())) {
numDone = XFormDisklabel(&disklabel);
if (numDone == 1)
cout << "Converted 1 BSD partition.\n";
else
cout << "Converted " << numDone << " BSD partitions.\n";
} else {
cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
} // if/else
} // if
if (numDone > 0) { // converted partitions; delete carrier
partitions[partNum].BlankPartition();
} // if
return numDone;
} // GPTData::XFormDisklabel(uint32_t i)
// Transform the partitions on an already-loaded BSD disklabel...
int GPTData::XFormDisklabel(BSDData* disklabel) {
int i, partNum = 0, numDone = 0;
if (disklabel->IsDisklabel()) {
for (i = 0; i < disklabel->GetNumParts(); i++) {
partNum = FindFirstFreePart();
if (partNum >= 0) {
partitions[partNum] = disklabel->AsGPT(i);
if (partitions[partNum].IsUsed())
numDone++;
} // if
} // for
if (partNum == -1)
cerr << "Warning! Too many partitions to convert!\n";
} // if
// Record that all original CRCs were OK so as not to raise flags
// when doing a disk verification
mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
return numDone;
} // GPTData::XFormDisklabel(BSDData* disklabel)
// Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
// partition has the active/bootable flag UNset and uses the GPT fdisk
// type code divided by 0x0100 as the MBR type code.
// Returns 1 if operation was 100% successful, 0 if there were ANY
// problems.
int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
int allOK = 1;
if ((mbrPart < 0) || (mbrPart > 3)) {
cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
allOK = 0;
} // if
if (gptPart >= numParts) {
cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
allOK = 0;
} // if
if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
allOK = 0;
} // if
if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
(partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
cout << "Caution: Partition end point past 32-bit pointer boundary;"
<< " some OSes may\nreact strangely.\n";
} // if
protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
(uint32_t) partitions[gptPart].GetLengthLBA(),
partitions[gptPart].GetHexType() / 256, 0);
} else { // partition out of range
if (allOK) // Display only if "else" triggered by out-of-bounds condition
cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
<< "partitions, or is\n too big; omitting it.\n";
allOK = 0;
} // if/else
return allOK;
} // GPTData::OnePartToMBR()
/**********************************************************************
* *
* Functions that adjust GPT data structures WITHOUT user interaction *
* (they may display information for the user's benefit, though) *
* *
**********************************************************************/
// Resizes GPT to specified number of entries. Creates a new table if
// necessary, copies data if it already exists. If fillGPTSectors is 1
// (the default), rounds numEntries to fill all the sectors necessary to
// hold the GPT.
// Returns 1 if all goes well, 0 if an error is encountered.
int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
GPTPart* newParts;
uint32_t i, high, copyNum, entriesPerSector;
int allOK = 1;
// First, adjust numEntries upward, if necessary, to get a number
// that fills the allocated sectors
entriesPerSector = blockSize / GPT_SIZE;
if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
cout << "Adjusting GPT size from " << numEntries << " to ";
numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
cout << numEntries << " to fill the sector\n";
} // if
// Do the work only if the # of partitions is changing. Along with being
// efficient, this prevents mucking with the location of the secondary
// partition table, which causes problems when loading data from a RAID
// array that's been expanded because this function is called when loading
// data.
if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
newParts = new GPTPart [numEntries];
if (newParts != NULL) {
if (partitions != NULL) { // existing partitions; copy them over
GetPartRange(&i, &high);
if (numEntries < (high + 1)) { // Highest entry too high for new #
cout << "The highest-numbered partition is " << high + 1
<< ", which is greater than the requested\n"
<< "partition table size of " << numEntries
<< "; cannot resize. Perhaps sorting will help.\n";
allOK = 0;
delete[] newParts;
} else { // go ahead with copy
if (numEntries < numParts)
copyNum = numEntries;
else
copyNum = numParts;
for (i = 0; i < copyNum; i++) {
newParts[i] = partitions[i];
} // for
delete[] partitions;
partitions = newParts;
} // if
} else { // No existing partition table; just create it
partitions = newParts;
} // if/else existing partitions
numParts = numEntries;
mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
MoveSecondHeaderToEnd();
if (diskSize > 0)
CheckGPTSize();
} else { // Bad memory allocation
cerr << "Error allocating memory for partition table! Size is unchanged!\n";
allOK = 0;
} // if/else
} // if/else
mainHeader.numParts = numParts;
secondHeader.numParts = numParts;
return (allOK);
} // GPTData::SetGPTSize()
// Change the start sector for the main partition table.
// Returns 1 on success, 0 on failure
int GPTData::MoveMainTable(uint64_t pteSector) {
uint64_t pteSize = GetTableSizeInSectors();
int retval = 1;
if ((pteSector >= 2) && ((pteSector + pteSize) <= FindFirstUsedLBA())) {
mainHeader.partitionEntriesLBA = pteSector;
mainHeader.firstUsableLBA = pteSector + pteSize;
RebuildSecondHeader();
} else {
cerr << "Unable to set the main partition table's location to " << pteSector << "!\n";
retval = 0;
} // if/else
return retval;
} // GPTData::MoveMainTable()
// Change the start sector for the secondary partition table.
// Returns 1 on success, 0 on failure
int GPTData::MoveSecondTable(uint64_t pteSector) {
uint64_t pteSize = GetTableSizeInSectors();
int retval = 1;
if ((pteSector > FindLastUsedLBA()) && ((pteSector + pteSize) < diskSize)) {
secondHeader.partitionEntriesLBA = pteSector; // (RebuildSecondHeader actually replaces this with lastUsableLBA+1)
mainHeader.lastUsableLBA = secondHeader.partitionEntriesLBA - UINT64_C(1);
RebuildSecondHeader();
} else {
cerr << "Unable to set the secondary partition table's location to " << pteSector << "!\n";
retval = 0;
} // if/else
return retval;
} // GPTData::MoveSecondTable()
// Blank the partition array
void GPTData::BlankPartitions(void) {
uint32_t i;
for (i = 0; i < numParts; i++) {
partitions[i].BlankPartition();
} // for
} // GPTData::BlankPartitions()
// Delete a partition by number. Returns 1 if successful,
// 0 if there was a problem. Returns 1 if partition was in
// range, 0 if it was out of range.
int GPTData::DeletePartition(uint32_t partNum) {
uint64_t startSector, length;
uint32_t low, high, numUsedParts, retval = 1;;
numUsedParts = GetPartRange(&low, &high);
if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
// In case there's a protective MBR, look for & delete matching
// MBR partition....
startSector = partitions[partNum].GetFirstLBA();
length = partitions[partNum].GetLengthLBA();
protectiveMBR.DeleteByLocation(startSector, length);
// Now delete the GPT partition
partitions[partNum].BlankPartition();
} else {
cerr << "Partition number " << partNum + 1 << " out of range!\n";
retval = 0;
} // if/else
return retval;
} // GPTData::DeletePartition(uint32_t partNum)
// Non-interactively create a partition.
// Returns 1 if the operation was successful, 0 if a problem was discovered.
uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
int retval = 1; // assume there'll be no problems
uint64_t origSector = startSector;
if (IsFreePartNum(partNum)) {
if (Align(&startSector)) {
cout << "Information: Moved requested sector from " << origSector << " to "
<< startSector << " in\norder to align on " << sectorAlignment
<< "-sector boundaries.\n";
} // if
if (IsFree(startSector) && (startSector <= endSector)) {
if (FindLastInFree(startSector) >= endSector) {
partitions[partNum].SetFirstLBA(startSector);
partitions[partNum].SetLastLBA(endSector);
partitions[partNum].SetType(DEFAULT_GPT_TYPE);
partitions[partNum].RandomizeUniqueGUID();
} else retval = 0; // if free space until endSector
} else retval = 0; // if startSector is free
} else retval = 0; // if legal partition number
return retval;
} // GPTData::CreatePartition(partNum, startSector, endSector)
// Sort the GPT entries, eliminating gaps and making for a logical
// ordering.
void GPTData::SortGPT(void) {
if (numParts > 0)
sort(partitions, partitions + numParts);
} // GPTData::SortGPT()
// Swap the contents of two partitions.
// Returns 1 if successful, 0 if either partition is out of range
// (that is, not a legal number; either or both can be empty).
// Note that if partNum1 = partNum2 and this number is in range,
// it will be considered successful.
int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
GPTPart temp;
int allOK = 1;
if ((partNum1 < numParts) && (partNum2 < numParts)) {
if (partNum1 != partNum2) {
temp = partitions[partNum1];
partitions[partNum1] = partitions[partNum2];
partitions[partNum2] = temp;
} // if
} else allOK = 0; // partition numbers are valid
return allOK;
} // GPTData::SwapPartitions()
// Set up data structures for entirely new set of partitions on the
// specified device. Returns 1 if OK, 0 if there were problems.
// Note that this function does NOT clear the protectiveMBR data
// structure, since it may hold the original MBR partitions if the
// program was launched on an MBR disk, and those may need to be
// converted to GPT format.
int GPTData::ClearGPTData(void) {
int goOn = 1, i;
// Set up the partition table....
delete[] partitions;
partitions = NULL;
SetGPTSize(NUM_GPT_ENTRIES);
// Now initialize a bunch of stuff that's static....
mainHeader.signature = GPT_SIGNATURE;
mainHeader.revision = 0x00010000;
mainHeader.headerSize = HEADER_SIZE;
mainHeader.reserved = 0;
mainHeader.currentLBA = UINT64_C(1);
mainHeader.partitionEntriesLBA = (uint64_t) 2;
mainHeader.sizeOfPartitionEntries = GPT_SIZE;
mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
for (i = 0; i < GPT_RESERVED; i++) {
mainHeader.reserved2[i] = '\0';
} // for
if (blockSize > 0)
sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
else
sectorAlignment = DEFAULT_ALIGNMENT;
// Now some semi-static items (computed based on end of disk)
mainHeader.backupLBA = diskSize - UINT64_C(1);
mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
// Set a unique GUID for the disk, based on random numbers
mainHeader.diskGUID.Randomize();
// Copy main header to backup header
RebuildSecondHeader();
// Blank out the partitions array....
BlankPartitions();
// Flag all CRCs as being OK....
mainCrcOk = 1;
secondCrcOk = 1;
mainPartsCrcOk = 1;
secondPartsCrcOk = 1;
return (goOn);
} // GPTData::ClearGPTData()
// Set the location of the second GPT header data to the end of the disk.
// If the disk size has actually changed, this also adjusts the protective
// entry in the MBR, since it's probably no longer correct.
// Used internally and called by the 'e' option on the recovery &
// transformation menu, to help users of RAID arrays who add disk space
// to their arrays or to adjust data structures in restore operations
// involving unequal-sized disks.
void GPTData::MoveSecondHeaderToEnd() {
mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
if (protectiveMBR.GetValidity() == hybrid) {
protectiveMBR.OptimizeEESize();
RecomputeCHS();
} // if
if (protectiveMBR.GetValidity() == gpt)
MakeProtectiveMBR();
} // if
mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
// TODO: Whenever this gets called, it moves the backup table to be the same distance from the backup header as the primary one it from its header. This seems highly problematic, since MoveMainTable does not call this, but then further actions may or may not do so. Moving the primary table may thus imply moving the backup table, or it may leave it where it was. There is also no guarantee that the space where the backup table is moved to is actually available.
} // GPTData::FixSecondHeaderLocation()
// Sets the partition's name to the specified UnicodeString without
// user interaction.
// Returns 1 on success, 0 on failure (invalid partition number).
int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
int retval = 1;
if (IsUsedPartNum(partNum))
partitions[partNum].SetName(theName);
else
retval = 0;
return retval;
} // GPTData::SetName
// Set the disk GUID to the specified value. Note that the header CRCs must
// be recomputed after calling this function.
void GPTData::SetDiskGUID(GUIDData newGUID) {
mainHeader.diskGUID = newGUID;
secondHeader.diskGUID = newGUID;
} // SetDiskGUID()
// Set the unique GUID of the specified partition. Returns 1 on
// successful completion, 0 if there were problems (invalid
// partition number).
int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
int retval = 0;
if (pn < numParts) {
if (partitions[pn].IsUsed()) {
partitions[pn].SetUniqueGUID(theGUID);
retval = 1;
} // if
} // if
return retval;
} // GPTData::SetPartitionGUID()
// Set new random GUIDs for the disk and all partitions. Intended to be used
// after disk cloning or similar operations that don't randomize the GUIDs.
void GPTData::RandomizeGUIDs(void) {
uint32_t i;
mainHeader.diskGUID.Randomize();
secondHeader.diskGUID = mainHeader.diskGUID;
for (i = 0; i < numParts; i++)
if (partitions[i].IsUsed())
partitions[i].RandomizeUniqueGUID();
} // GPTData::RandomizeGUIDs()
// Change partition type code non-interactively. Returns 1 if
// successful, 0 if not....
int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
int retval = 1;
if (!IsFreePartNum(partNum)) {
partitions[partNum].SetType(theGUID);
} else retval = 0;
return retval;
} // GPTData::ChangePartType()
// Recompute the CHS values of all the MBR partitions. Used to reset
// CHS values that some BIOSes require, despite the fact that the
// resulting CHS values violate the GPT standard.
void GPTData::RecomputeCHS(void) {
int i;
for (i = 0; i < 4; i++)
protectiveMBR.RecomputeCHS(i);
} // GPTData::RecomputeCHS()
// Adjust sector number so that it falls on a sector boundary that's a
// multiple of sectorAlignment. This is done to improve the performance
// of Western Digital Advanced Format disks and disks with similar
// technology from other companies, which use 4096-byte sectors
// internally although they translate to 512-byte sectors for the
// benefit of the OS. If partitions aren't properly aligned on these
// disks, some filesystem data structures can span multiple physical
// sectors, degrading performance. This function should be called
// only on the FIRST sector of the partition, not the last!
// This function returns 1 if the alignment was altered, 0 if it
// was unchanged.
int GPTData::Align(uint64_t* sector) {
int retval = 0, sectorOK = 0;
uint64_t earlier, later, testSector;
if ((*sector % sectorAlignment) != 0) {
earlier = (*sector / sectorAlignment) * sectorAlignment;
later = earlier + (uint64_t) sectorAlignment;
// Check to see that every sector between the earlier one and the
// requested one is clear, and that it's not too early....
if (earlier >= mainHeader.firstUsableLBA) {
testSector = earlier;
do {
sectorOK = IsFree(testSector++);
} while ((sectorOK == 1) && (testSector < *sector));
if (sectorOK == 1) {
*sector = earlier;
retval = 1;
} // if
} // if firstUsableLBA check
// If couldn't move the sector earlier, try to move it later instead....
if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
testSector = later;
do {
sectorOK = IsFree(testSector--);
} while ((sectorOK == 1) && (testSector > *sector));
if (sectorOK == 1) {
*sector = later;
retval = 1;
} // if
} // if
} // if
return retval;
} // GPTData::Align()
/********************************************************
* *
* Functions that return data about GPT data structures *
* (most of these are inline in gpt.h) *
* *
********************************************************/
// Find the low and high used partition numbers (numbered from 0).
// Return value is the number of partitions found. Note that the
// *low and *high values are both set to 0 when no partitions
// are found, as well as when a single partition in the first
// position exists. Thus, the return value is the only way to
// tell when no partitions exist.
int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
uint32_t i;
int numFound = 0;
*low = numParts + 1; // code for "not found"
*high = 0;
for (i = 0; i < numParts; i++) {
if (partitions[i].IsUsed()) { // it exists
*high = i; // since we're counting up, set the high value
// Set the low value only if it's not yet found...
if (*low == (numParts + 1)) *low = i;
numFound++;
} // if
} // for
// Above will leave *low pointing to its "not found" value if no partitions
// are defined, so reset to 0 if this is the case....
if (*low == (numParts + 1))
*low = 0;
return numFound;
} // GPTData::GetPartRange()
// Returns the value of the first free partition, or -1 if none is
// unused.
int GPTData::FindFirstFreePart(void) {
int i = 0;
if (partitions != NULL) {
while ((i < (int) numParts) && (partitions[i].IsUsed()))
i++;
if (i >= (int) numParts)
i = -1;
} else i = -1;
return i;
} // GPTData::FindFirstFreePart()
// Returns the number of defined partitions.
uint32_t GPTData::CountParts(void) {
uint32_t i, counted = 0;
for (i = 0; i < numParts; i++) {
if (partitions[i].IsUsed())
counted++;
} // for
return counted;
} // GPTData::CountParts()
/****************************************************
* *
* Functions that return data about disk free space *
* *
****************************************************/
// Find the first available block after the starting point; returns 0 if
// there are no available blocks left
uint64_t GPTData::FindFirstAvailable(uint64_t start) {
uint64_t first;
uint32_t i;
int firstMoved = 0;
// Begin from the specified starting point or from the first usable
// LBA, whichever is greater...
if (start < mainHeader.firstUsableLBA)
first = mainHeader.firstUsableLBA;
else
first = start;
// ...now search through all partitions; if first is within an
// existing partition, move it to the next sector after that
// partition and repeat. If first was moved, set firstMoved
// flag; repeat until firstMoved is not set, so as to catch
// cases where partitions are out of sequential order....
do {
firstMoved = 0;
for (i = 0; i < numParts; i++) {
if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
(first <= partitions[i].GetLastLBA())) { // in existing part.
first = partitions[i].GetLastLBA() + 1;
firstMoved = 1;
} // if
} // for
} while (firstMoved == 1);
if (first > mainHeader.lastUsableLBA)
first = 0;
return (first);
} // GPTData::FindFirstAvailable()
// Returns the LBA of the start of the first partition on the disk (by
// sector number), or UINT64_MAX if there are no partitions defined.
uint64_t GPTData::FindFirstUsedLBA(void) {
uint32_t i;
uint64_t firstFound = UINT64_MAX;
for (i = 0; i < numParts; i++) {
if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() < firstFound)) {
firstFound = partitions[i].GetFirstLBA();
} // if
} // for
return firstFound;
} // GPTData::FindFirstUsedLBA()
// Returns the LBA of the end of the last partition on the disk (by
// sector number), or 0 if there are no partitions defined.
uint64_t GPTData::FindLastUsedLBA(void) {
uint32_t i;
uint64_t lastFound = 0;
for (i = 0; i < numParts; i++) {
if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() > lastFound)) {
lastFound = partitions[i].GetLastLBA();
} // if
} // for
return lastFound;
} // GPTData::FindLastUsedLBA()
// Finds the first available sector in the largest block of unallocated
// space on the disk. Returns 0 if there are no available blocks left
uint64_t GPTData::FindFirstInLargest(void) {
uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
start = 0;
do {
firstBlock = FindFirstAvailable(start);
if (firstBlock != UINT32_C(0)) { // something's free...
lastBlock = FindLastInFree(firstBlock);
segmentSize = lastBlock - firstBlock + UINT32_C(1);
if (segmentSize > selectedSize) {
selectedSize = segmentSize;
selectedSegment = firstBlock;
} // if
start = lastBlock + 1;
} // if
} while (firstBlock != 0);
return selectedSegment;
} // GPTData::FindFirstInLargest()
// Find the last available block on the disk.
// Returns 0 if there are no available sectors
uint64_t GPTData::FindLastAvailable(void) {
uint64_t last;
uint32_t i;
int lastMoved = 0;
// Start by assuming the last usable LBA is available....
last = mainHeader.lastUsableLBA;
// ...now, similar to algorithm in FindFirstAvailable(), search
// through all partitions, moving last when it's in an existing
// partition. Set the lastMoved flag so we repeat to catch cases
// where partitions are out of logical order.
do {
lastMoved = 0;
for (i = 0; i < numParts; i++) {
if ((last >= partitions[i].GetFirstLBA()) &&
(last <= partitions[i].GetLastLBA())) { // in existing part.
last = partitions[i].GetFirstLBA() - 1;
lastMoved = 1;
} // if
} // for
} while (lastMoved == 1);
if (last < mainHeader.firstUsableLBA)
last = 0;
return (last);
} // GPTData::FindLastAvailable()
// Find the last available block in the free space pointed to by start.
// If align == true, returns the last sector that's aligned on the
// system alignment value (unless that's less than the start value);
// if align == false, returns the last available block regardless of
// alignment. (The align variable is set to false by default.)
uint64_t GPTData::FindLastInFree(uint64_t start, bool align) {
uint64_t nearestEnd, endPlus;
uint32_t i;
nearestEnd = mainHeader.lastUsableLBA;
for (i = 0; i < numParts; i++) {
if ((nearestEnd > partitions[i].GetFirstLBA()) &&
(partitions[i].GetFirstLBA() > start)) {
nearestEnd = partitions[i].GetFirstLBA() - 1;
} // if
} // for
if (align) {
endPlus = nearestEnd + 1;
if (Align(&endPlus) && IsFree(endPlus - 1) && (endPlus > start)) {
nearestEnd = endPlus - 1;
} // if
} // if
return (nearestEnd);
} // GPTData::FindLastInFree()
// Finds the total number of free blocks, the number of segments in which
// they reside, and the size of the largest of those segments
uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
uint64_t start = UINT64_C(0); // starting point for each search
uint64_t totalFound = UINT64_C(0); // running total
uint64_t firstBlock; // first block in a segment
uint64_t lastBlock; // last block in a segment
uint64_t segmentSize; // size of segment in blocks
uint32_t num = 0;
*largestSegment = UINT64_C(0);
if (diskSize > 0) {
do {
firstBlock = FindFirstAvailable(start);
if (firstBlock != UINT64_C(0)) { // something's free...
lastBlock = FindLastInFree(firstBlock);
segmentSize = lastBlock - firstBlock + UINT64_C(1);
if (segmentSize > *largestSegment) {
*largestSegment = segmentSize;
} // if
totalFound += segmentSize;
num++;
start = lastBlock + 1;
} // if
} while (firstBlock != 0);
} // if
*numSegments = num;
return totalFound;
} // GPTData::FindFreeBlocks()
// Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
// If it's allocated, return the partition number to which it's allocated
// in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
// returned in partNum if the sector is in use by basic GPT data structures.)
int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
int isFree = 1;
uint32_t i;
for (i = 0; i < numParts; i++) {
if ((sector >= partitions[i].GetFirstLBA()) &&
(sector <= partitions[i].GetLastLBA())) {
isFree = 0;
if (partNum != NULL)
*partNum = i;
} // if
} // for
if ((sector < mainHeader.firstUsableLBA) ||
(sector > mainHeader.lastUsableLBA)) {
isFree = 0;
if (partNum != NULL)
*partNum = UINT32_MAX;
} // if
return (isFree);
} // GPTData::IsFree()
// Returns 1 if partNum is unused AND if it's a legal value.
int GPTData::IsFreePartNum(uint32_t partNum) {
return ((partNum < numParts) && (partitions != NULL) &&
(!partitions[partNum].IsUsed()));
} // GPTData::IsFreePartNum()
// Returns 1 if partNum is in use.
int GPTData::IsUsedPartNum(uint32_t partNum) {
return ((partNum < numParts) && (partitions != NULL) &&
(partitions[partNum].IsUsed()));
} // GPTData::IsUsedPartNum()
/***********************************************************
* *
* Change how functions work or return information on them *
* *
***********************************************************/
// Set partition alignment value; partitions will begin on multiples of
// the specified value, and the default end values will be set so that
// partition sizes are multiples of this value in cgdisk and gdisk, too.
// (In sgdisk, end-alignment is done only if the '-I' command-line option
// is used.)
void GPTData::SetAlignment(uint32_t n) {
if (n > 0) {
sectorAlignment = n;
if ((physBlockSize > 0) && (n % (physBlockSize / blockSize) != 0)) {
cout << "Warning: Setting alignment to a value that does not match the disk's\n"
<< "physical block size! Performance degradation may result!\n"
<< "Physical block size = " << physBlockSize << "\n"
<< "Logical block size = " << blockSize << "\n"
<< "Optimal alignment = " << physBlockSize / blockSize << " or multiples thereof.\n";
} // if
} else {
cerr << "Attempt to set partition alignment to 0!\n";
} // if/else
} // GPTData::SetAlignment()
// Compute sector alignment based on the current partitions (if any). Each
// partition's starting LBA is examined, and if it's divisible by a power-of-2
// value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
// sector size), but not by the previously-located alignment value, then the
// alignment value is adjusted down. If the computed alignment is less than 8
// and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
// is a safety measure for Advanced Format drives. If no partitions are
// defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
// adjustment of that based on the current sector size). The result is that new
// drives are aligned to 2048-sector multiples but the program won't complain
// about other alignments on existing disks unless a smaller-than-8 alignment
// is used on big disks (as safety for Advanced Format drives).
// Returns the computed alignment value.
uint32_t GPTData::ComputeAlignment(void) {
uint32_t i = 0, found, exponent;
uint32_t align = DEFAULT_ALIGNMENT;
if (blockSize > 0)
align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
exponent = (uint32_t) log2(align);
for (i = 0; i < numParts; i++) {
if (partitions[i].IsUsed()) {
found = 0;
while (!found) {
align = UINT64_C(1) << exponent;
if ((partitions[i].GetFirstLBA() % align) == 0) {
found = 1;
} else {
exponent--;
} // if/else
} // while
} // if
} // for
if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
align = MIN_AF_ALIGNMENT;
sectorAlignment = align;
return align;
} // GPTData::ComputeAlignment()
/********************************
* *
* Endianness support functions *
* *
********************************/
void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
ReverseBytes(&header->signature, 8);
ReverseBytes(&header->revision, 4);
ReverseBytes(&header->headerSize, 4);
ReverseBytes(&header->headerCRC, 4);
ReverseBytes(&header->reserved, 4);
ReverseBytes(&header->currentLBA, 8);
ReverseBytes(&header->backupLBA, 8);
ReverseBytes(&header->firstUsableLBA, 8);
ReverseBytes(&header->lastUsableLBA, 8);
ReverseBytes(&header->partitionEntriesLBA, 8);
ReverseBytes(&header->numParts, 4);
ReverseBytes(&header->sizeOfPartitionEntries, 4);
ReverseBytes(&header->partitionEntriesCRC, 4);
ReverseBytes(header->reserved2, GPT_RESERVED);
} // GPTData::ReverseHeaderBytes()
// Reverse byte order for all partitions.
void GPTData::ReversePartitionBytes() {
uint32_t i;
for (i = 0; i < numParts; i++) {
partitions[i].ReversePartBytes();
} // for
} // GPTData::ReversePartitionBytes()
// Validate partition number
bool GPTData::ValidPartNum (const uint32_t partNum) {
if (partNum >= numParts) {
cerr << "Partition number out of range: " << partNum << "\n";
return false;
} // if
return true;
} // GPTData::ValidPartNum
// Return a single partition for inspection (not modification!) by other
// functions.
const GPTPart & GPTData::operator[](uint32_t partNum) const {
if (partNum >= numParts) {
cerr << "Partition number out of range (" << partNum << " requested, but only "
<< numParts << " available)\n";
exit(1);
} // if
if (partitions == NULL) {
cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
exit(1);
} // if
return partitions[partNum];
} // operator[]
// Return (not for modification!) the disk's GUID value
const GUIDData & GPTData::GetDiskGUID(void) const {
return mainHeader.diskGUID;
} // GPTData::GetDiskGUID()
// Manage attributes for a partition, based on commands passed to this function.
// (Function is non-interactive.)
// Returns 1 if a modification command succeeded, 0 if the command should not have
// modified data, and -1 if a modification command failed.
int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
int retval = 0;
Attributes theAttr;
if (partNum >= (int) numParts) {
cerr << "Invalid partition number (" << partNum + 1 << ")\n";
retval = -1;
} else {
if (command == "show") {
ShowAttributes(partNum);
} else if (command == "get") {
GetAttribute(partNum, bits);
} else {
theAttr = partitions[partNum].GetAttributes();
if (theAttr.OperateOnAttributes(partNum, command, bits)) {
partitions[partNum].SetAttributes(theAttr.GetAttributes());
retval = 1;
} else {
retval = -1;
} // if/else
} // if/elseif/else
} // if/else invalid partition #
return retval;
} // GPTData::ManageAttributes()
// Show all attributes for a specified partition....
void GPTData::ShowAttributes(const uint32_t partNum) {
if ((partNum < numParts) && partitions[partNum].IsUsed())
partitions[partNum].ShowAttributes(partNum);
} // GPTData::ShowAttributes
// Show whether a single attribute bit is set (terse output)...
void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
if (partNum < numParts)
partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
} // GPTData::GetAttribute
/******************************************
* *
* Additional non-class support functions *
* *
******************************************/
// Check to be sure that data type sizes are correct. The basic types (uint*_t) should
// never fail these tests, but the struct types may fail depending on compile options.
// Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
// sizes.
int SizesOK(void) {
int allOK = 1;
if (sizeof(uint8_t) != 1) {
cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
allOK = 0;
} // if
if (sizeof(uint16_t) != 2) {
cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(uint32_t) != 4) {
cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(uint64_t) != 8) {
cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(struct MBRRecord) != 16) {
cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(struct TempMBR) != 512) {
cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(struct GPTHeader) != 512) {
cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(GPTPart) != 128) {
cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(GUIDData) != 16) {
cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
allOK = 0;
} // if
if (sizeof(PartType) != 16) {
cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
allOK = 0;
} // if
return (allOK);
} // SizesOK()
|