1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
import gdspy
import numpy
import colorsys
from PIL import Image, ImageDraw, ImageFont
class ColorDict(dict):
def __missing__(self, key):
layer, datatype = key
rgb = tuple(
int(255 * c + 0.5)
for c in colorsys.hsv_to_rgb(
(layer % 3) / 3.0 + (layer % 6 // 3) / 6.0 + (layer // 6) / 11.0,
1 - ((layer + datatype) % 8) / 12.0,
1 - (datatype % 3) / 4.0,
)
)
self[key] = rgb
return rgb
color = ColorDict()
def draw(cell, name=None, width=600, height=400, margin=20):
global color
(ax, ay), (bx, by) = cell.get_bounding_box()
ax = min(0, ax)
ay = min(0, ay)
bx = max(1, bx)
by = max(1, by)
sx = 3 * width - 2 * margin
sy = 3 * height - 2 * margin
bx -= ax
by -= ay
if bx * sy > by * sx:
scale = sx / bx
sy = int(sx * by / bx + 0.5)
else:
scale = sy / by
sx = int(sy * bx / by + 0.5)
ox = margin
oy = sy + margin
width = int((sx + 2 * margin) / 3 + 0.5)
height = int((sy + 2 * margin) / 3 + 0.5)
img = Image.new("RGBA", (3 * width, 3 * height), (0, 0, 0, 0))
for key, polys in cell.get_polygons(by_spec=True).items():
lc = color[key]
fc = color[key] + (128,)
for p in polys:
p[:, 0] = ox + scale * (p[:, 0] - ax)
p[:, 1] = oy - scale * (p[:, 1] - ay)
pts = list(p.flatten())
tmp = Image.new("RGBA", img.size, (0, 0, 0, 0))
dr = ImageDraw.Draw(tmp)
dr.polygon(pts, fill=fc, outline=lc)
img = Image.alpha_composite(img, tmp)
z = ox - scale * ax, oy + scale * ay
p = ox + scale * (1 - ax), oy - scale * (1 - ay)
# n = ox + scale * (-1 - ax), oy - scale * (-1 - ay)
dr = ImageDraw.Draw(img)
dr.line([z[0], z[1], p[0], z[1]], fill=(0, 0, 0, 255), width=3)
dr.line([z[0], z[1], z[0], p[1]], fill=(0, 0, 0, 255), width=3)
labels = cell.get_labels()
if len(labels) > 0:
font = ImageFont.truetype("/user/share/fonts/TTF/DejaVuSans.ttf", 72)
for l in labels:
x = ox + scale * (l.position[0] - ax)
y = oy - scale * (l.position[1] - ay)
dr.text((x, y), l.text, font=font, fill=color[(l.layer, l.texttype)])
img = img.resize((width, height), Image.ANTIALIAS)
name = "docs/_static/" + (cell.name if name is None else name) + ".png"
print("Saving", name)
img.save(name)
if __name__ == "__main__":
# Polygons
# Create a polygon from a list of vertices
points = [(0, 0), (2, 2), (2, 6), (-6, 6), (-6, -6), (-4, -4), (-4, 4), (0, 4)]
poly = gdspy.Polygon(points)
draw(gdspy.Cell("polygons").add(poly))
# Holes
# Manually connect the hole to the outer boundary
cutout = gdspy.Polygon(
[(0, 0), (5, 0), (5, 5), (0, 5), (0, 0), (2, 2), (2, 3), (3, 3), (3, 2), (2, 2)]
)
draw(gdspy.Cell("holes").add(cutout))
# Circles
# Circle centered at (0, 0), with radius 2 and tolerance 0.1
circle = gdspy.Round((0, 0), 2, tolerance=0.01)
# To create an ellipse, simply pass a list with 2 radii.
# Because the tolerance is small (resulting a large number of
# vertices), the ellipse is fractured in 2 polygons.
ellipse = gdspy.Round((4, 0), [1, 2], tolerance=1e-4)
# Circular arc example
arc = gdspy.Round(
(2, 4),
2,
inner_radius=1,
initial_angle=-0.2 * numpy.pi,
final_angle=1.2 * numpy.pi,
tolerance=0.01,
)
draw(gdspy.Cell("circles").add([circle, ellipse, arc]))
# Curves
# Construct a curve made of a sequence of line segments
c1 = gdspy.Curve(0, 0).L(1, 0, 2, 1, 2, 2, 0, 2)
p1 = gdspy.Polygon(c1.get_points())
# Construct another curve using relative coordinates
c2 = gdspy.Curve(3, 1).l(1, 0, 2, 1, 2, 2, 0, 2)
p2 = gdspy.Polygon(c2.get_points())
draw(gdspy.Cell("curves").add([p1, p2]))
# Curves 1
# Use complex numbers to facilitate writing polar coordinates
c3 = gdspy.Curve(0, 2).l(4 * numpy.exp(1j * numpy.pi / 6))
# Elliptical arcs have syntax similar to gdspy.Round
c3.arc((4, 2), 0.5 * numpy.pi, -0.5 * numpy.pi)
p3 = gdspy.Polygon(c3.get_points())
draw(gdspy.Cell("curves_1").add(p3))
# Curves 2
# Cubic Bezier curves can be easily created with C and c
c4 = gdspy.Curve(0, 0).c(1, 0, 1, 1, 2, 1)
# Smooth continuation with S or s
c4.s(1, 1, 0, 1).S(numpy.exp(1j * numpy.pi / 6), 0, 0)
p4 = gdspy.Polygon(c4.get_points())
# Similarly for quadratic Bezier curves
c5 = gdspy.Curve(5, 3).Q(3, 2, 3, 0, 5, 0, 4.5, 1).T(5, 3)
p5 = gdspy.Polygon(c5.get_points())
# Smooth interpolating curves can be built using I or i, including
# closed shapes
c6 = gdspy.Curve(0, 3).i([(1, 0), (2, 0), (1, -1)], cycle=True)
p6 = gdspy.Polygon(c6.get_points())
draw(gdspy.Cell("curves_2").add([p4, p5, p6]))
# Transformations
poly = gdspy.Rectangle((-2, -2), (2, 2))
poly.rotate(numpy.pi / 4)
poly.scale(1, 0.5)
draw(gdspy.Cell("transformations").add(poly))
# Layer and Datatype
# Layer/datatype definitions for each step in the fabrication
ld_fulletch = {"layer": 1, "datatype": 3}
ld_partetch = {"layer": 2, "datatype": 3}
ld_liftoff = {"layer": 0, "datatype": 7}
p1 = gdspy.Rectangle((-3, -3), (3, 3), **ld_fulletch)
p2 = gdspy.Rectangle((-5, -3), (-3, 3), **ld_partetch)
p3 = gdspy.Rectangle((5, -3), (3, 3), **ld_partetch)
p4 = gdspy.Round((0, 0), 2.5, number_of_points=6, **ld_liftoff)
draw(gdspy.Cell("layer_and_datatype").add([p1, p2, p3, p4]))
# References
# Create a cell with a component that is used repeatedly
contact = gdspy.Cell("CONTACT")
contact.add([p1, p2, p3, p4])
# Create a cell with the complete device
device = gdspy.Cell("DEVICE")
device.add(cutout)
# Add 2 references to the component changing size and orientation
ref1 = gdspy.CellReference(contact, (3.5, 1), magnification=0.25)
ref2 = gdspy.CellReference(contact, (1, 3.5), magnification=0.25, rotation=90)
device.add([ref1, ref2])
# The final layout has several repetitions of the complete device
main = gdspy.Cell("MAIN")
main.add(gdspy.CellArray(device, 3, 2, (6, 7)))
draw(main, "references")
# Polygonal-Only Paths
# Start a path at (0, 0) with width 1
path1 = gdspy.Path(1, (0, 0))
# Add a segment to the path goin in the '+y' direction
path1.segment(4, "+y")
# Further segments or turns will folow the current path direction
# to ensure continuity
path1.turn(2, "r")
path1.segment(1)
path1.turn(3, "rr")
draw(gdspy.Cell("polygonal-only_paths").add(path1))
# Polygonal-Only Paths 1
path2 = gdspy.Path(0.5, (0, 0))
# Start the path with a smooth Bezier S-curve
path2.bezier([(0, 5), (5, 5), (5, 10)])
# We want to add a spiral curve to the path. The spiral is defined
# as a parametric curve. We make sure spiral(0) = (0, 0) so that
# the path is continuous.
def spiral(u):
r = 4 - 3 * u
theta = 5 * u * numpy.pi
x = r * numpy.cos(theta) - 4
y = r * numpy.sin(theta)
return (x, y)
# It is recommended to also define the derivative of the parametric
# curve, otherwise this derivative must be calculated nummerically.
# The derivative is used to define the side boundaries of the path,
# so, in this case, to ensure continuity with the existing S-curve,
# we make sure the the direction at the start of the spiral is
# pointing exactly upwards, as if is radius were constant.
# Additionally, the exact magnitude of the derivative is not
# important; gdspy only uses its direction.
def dspiral_dt(u):
theta = 5 * u * numpy.pi
dx_dt = -numpy.sin(theta)
dy_dt = numpy.cos(theta)
return (dx_dt, dy_dt)
# Add the parametric spiral to the path
path2.parametric(spiral, dspiral_dt)
draw(gdspy.Cell("polygonal-only_paths_1").add(path2))
# Polygonal-Only Paths 2
# Start 3 parallel paths with center-to-center distance of 1.5
path3 = gdspy.Path(0.1, (-5.5, 3), number_of_paths=3, distance=1.5)
# Add a segment tapering the widths up to 0.5
path3.segment(2, "-y", final_width=0.5)
# Add a bezier curve decreasing the distance between paths to 0.75
path3.bezier([(0, -2), (1, -3), (3, -3)], final_distance=0.75)
# Add a parametric section to modulate the width with a sinusoidal
# shape. Note that the algorithm that determines the number of
# evaluations of the parametric curve does not take the width into
# consideration, so we have to manually increase this parameter.
path3.parametric(
lambda u: (5 * u, 0),
lambda u: (1, 0),
final_width=lambda u: 0.4 + 0.1 * numpy.cos(10 * numpy.pi * u),
number_of_evaluations=256,
)
# Add a circular turn and a final tapering segment.
path3.turn(3, "l")
path3.segment(2, final_width=1, final_distance=1.5)
draw(gdspy.Cell("polygonal-only_paths_2").add(path3))
# Flexible Paths
# Path defined by a sequence of points and stored as a GDSII path
sp1 = gdspy.FlexPath(
[(0, 0), (3, 0), (3, 2), (5, 3), (3, 4), (0, 4)], 1, gdsii_path=True
)
# Other construction methods can still be used
sp1.smooth([(0, 2), (2, 2), (4, 3), (5, 1)], relative=True)
# Multiple parallel paths separated by 0.5 with different widths,
# end caps, and joins. Because of the join specification, they
# cannot be stared as GDSII paths, only as polygons.
sp2 = gdspy.FlexPath(
[(12, 0), (8, 0), (8, 3), (10, 2)],
[0.3, 0.2, 0.4],
0.5,
ends=["extended", "flush", "round"],
corners=["bevel", "miter", "round"],
)
sp2.arc(2, -0.5 * numpy.pi, 0.5 * numpy.pi)
sp2.arc(1, 0.5 * numpy.pi, 1.5 * numpy.pi)
draw(gdspy.Cell("flexible_paths").add([sp1, sp2]))
# Flexible Paths 1
# Path corners and end caps can be custom functions.
# This corner function creates 'broken' joins.
def broken(p0, v0, p1, v1, p2, w):
# Calculate intersection point p between lines defined by
# p0 + u0 * v0 (for all u0) and p1 + u1 * v1 (for all u1)
den = v1[1] * v0[0] - v1[0] * v0[1]
lim = 1e-12 * (v0[0] ** 2 + v0[1] ** 2) * (v1[0] ** 2 + v1[1] ** 2)
if den ** 2 < lim:
# Lines are parallel: use mid-point
u0 = u1 = 0
p = 0.5 * (p0 + p1)
else:
dx = p1[0] - p0[0]
dy = p1[1] - p0[1]
u0 = (v1[1] * dx - v1[0] * dy) / den
u1 = (v0[1] * dx - v0[0] * dy) / den
p = 0.5 * (p0 + v0 * u0 + p1 + v1 * u1)
if u0 <= 0 and u1 >= 0:
# Inner corner
return [p]
# Outer corner
return [p0, p2, p1]
# This end cap function creates pointy caps.
def pointy(p0, v0, p1, v1):
r = 0.5 * numpy.sqrt(numpy.sum((p0 - p1) ** 2))
v0 /= numpy.sqrt(numpy.sum(v0 ** 2))
v1 /= numpy.sqrt(numpy.sum(v1 ** 2))
return [p0, 0.5 * (p0 + p1) + 0.5 * (v0 - v1) * r, p1]
# Paths with arbitrary offsets from the center and multiple layers.
sp3 = gdspy.FlexPath(
[(0, 0), (0, 1)],
[0.1, 0.3, 0.5],
offset=[-0.2, 0, 0.4],
layer=[0, 1, 2],
corners=broken,
ends=pointy,
)
sp3.segment((3, 3), offset=[-0.5, -0.1, 0.5])
sp3.segment((4, 1), width=[0.2, 0.2, 0.2], offset=[-0.2, 0, 0.2])
sp3.segment((0, -1), relative=True)
draw(gdspy.Cell("flexible_paths_1").add(sp3))
# Flexible Paths 2
# Path created with automatic bends of radius 5
points = [(0, 0), (0, 10), (20, 0), (18, 15), (8, 15)]
sp4 = gdspy.FlexPath(
points, 0.5, corners="circular bend", bend_radius=5, gdsii_path=True
)
# Same path, generated with natural corners, for comparison
sp5 = gdspy.FlexPath(points, 0.5, layer=1, gdsii_path=True)
draw(gdspy.Cell("flexible_paths_2").add([sp4, sp5]))
# Robust Paths
# Create 4 parallel paths in different layers
lp = gdspy.RobustPath(
(50, 0),
[2, 0.5, 1, 1],
[0, 0, -1, 1],
ends=["extended", "round", "flush", "flush"],
layer=[0, 2, 1, 1],
)
lp.segment((45, 0))
lp.segment(
(5, 0),
width=[lambda u: 2 + 16 * u * (1 - u), 0.5, 1, 1],
offset=[
0,
lambda u: 8 * u * (1 - u) * numpy.cos(12 * numpy.pi * u),
lambda u: -1 - 8 * u * (1 - u),
lambda u: 1 + 8 * u * (1 - u),
],
)
lp.segment((0, 0))
lp.smooth(
[(5, 10)],
angles=[0.5 * numpy.pi, 0],
width=0.5,
offset=[-0.25, 0.25, -0.75, 0.75],
)
lp.parametric(
lambda u: numpy.array((45 * u, 4 * numpy.sin(6 * numpy.pi * u))),
offset=[
lambda u: -0.25 * numpy.cos(24 * numpy.pi * u),
lambda u: 0.25 * numpy.cos(24 * numpy.pi * u),
-0.75,
0.75,
],
)
draw(gdspy.Cell("robust_paths").add(lp))
# Boolean Operations
# Create some text
text = gdspy.Text("GDSPY", 4, (0, 0))
# Create a rectangle extending the text's bounding box by 1
bb = numpy.array(text.get_bounding_box())
rect = gdspy.Rectangle(bb[0] - 1, bb[1] + 1)
# Subtract the text from the rectangle
inv = gdspy.boolean(rect, text, "not")
draw(gdspy.Cell("boolean_operations").add(inv))
# Slice Operation
ring1 = gdspy.Round((-6, 0), 6, inner_radius=4)
ring2 = gdspy.Round((0, 0), 6, inner_radius=4)
ring3 = gdspy.Round((6, 0), 6, inner_radius=4)
# Slice the first ring across x=-3, the second ring across x=-3
# and x=3, and the third ring across x=3
slices1 = gdspy.slice(ring1, -3, axis=0)
slices2 = gdspy.slice(ring2, [-3, 3], axis=0)
slices3 = gdspy.slice(ring3, 3, axis=0)
slices = gdspy.Cell("SLICES")
# Keep only the left side of slices1, the center part of slices2
# and the right side of slices3
slices.add(slices1[0])
slices.add(slices2[1])
slices.add(slices3[1])
draw(slices, "slice_operation")
# Offset Operation
rect1 = gdspy.Rectangle((-4, -4), (1, 1))
rect2 = gdspy.Rectangle((-1, -1), (4, 4))
# Offset both polygons
# Because we join them first, a single polygon is created.
outer = gdspy.offset([rect1, rect2], 0.5, join_first=True, layer=1)
draw(gdspy.Cell("offset_operation").add([outer, rect1, rect2]))
# Fillet Operation
multi_path = gdspy.Path(2, (-3, -2))
multi_path.segment(4, "+x")
multi_path.turn(2, "l").turn(2, "r")
multi_path.segment(4)
# Create a copy with joined polygons and no fracturing
joined = gdspy.boolean(multi_path, None, "or", max_points=0)
joined.translate(0, -5)
# Fillet applied to each polygon in the path
multi_path.fillet(0.5)
# Fillet applied to the joined copy
joined.fillet(0.5)
draw(gdspy.Cell("fillet_operation").add([joined, multi_path]))
# Text
# Label anchored at (1, 3) by its north-west corner
label = gdspy.Label("Sample label", (1, 3), "nw")
# Horizontal text with height 2.25
htext = gdspy.Text("12345", 2.25, (0.25, 6))
# Vertical text with height 1.5
vtext = gdspy.Text("ABC", 1.5, (10.5, 4), horizontal=False)
rect = gdspy.Rectangle((0, 0), (10, 6), layer=10)
draw(gdspy.Cell("text").add([htext, vtext, label, rect]))
|