1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Contributing authors:
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Mikael Lagerkvist, 2006
* Guido Tack, 2006
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>
using namespace Gecode;
/** \brief Specification of one tile
*
* This structure can be used to specify a tile with specified width
* and height, number of such tiles (all with unique values), and a
* char-array tile showing the tile in row-major order.
*
* \relates Pentominoes
*/
class TileSpec {
public:
int width; ///< Width of tile
int height; ///< Height of tile
int amount; ///< Number of tiles
const char *tile; ///< Picture of tile
};
/** \brief Board specifications
*
* Each board specification repurposes the first two TileSpecs to
* record width and height of the board (TileSpec 0) as well as the
* number of tiles and whether the board is filled (TileSpec 1).
*
* \relates Pentominoes
*/
extern const TileSpec *examples[];
/** \brief Board specification sizes
*
* \relates Pentominoes
*/
extern const int examples_size[];
/** \brief Number of board specifications
*
* \relates Pentominoes
*/
extern const unsigned int n_examples;
namespace {
/** \name Symmetry functions
*
* These functions implement the 8 symmetries of 2D planes. The
* functions are templatized so that they can be used both for the
* pieces (defined using C-strings) and for arrays of variables.
*
* \relates Pentominoes
*/
//@{
/** Return index of (\a h, \a w) in the row-major layout of a matrix with
* width \a w1 and height \a h1.
*/
int pos(int h, int w, int h1, int w1);
/// Type for tile symmetry functions
typedef void (*tsymmfunc)(const char*, int, int, char*, int&, int&);
/// Type for board symmetry functions
typedef void (*bsymmfunc)(const IntVarArgs, int, int, IntVarArgs&, int&, int&);
/// Identity symmetry
template<class CArray, class Array>
void id(CArray t1, int w1, int h1, Array t2, int& w2, int&h2);
/// Rotate 90 degrees
template<class CArray, class Array>
void rot90(CArray t1, int w1, int h1, Array t2, int& w2, int& h2);
/// Rotate 180 degrees
template<class CArray, class Array>
void rot180(CArray t1, int w1, int h1, Array t2, int& w2, int& h2);
/// Rotate 270 degrees
template<class CArray, class Array>
void rot270(CArray t1, int w1, int h1, Array t2, int& w2, int& h2);
/// Flip x-wise
template<class CArray, class Array>
void flipx(CArray t1, int w1, int h1, Array t2, int& w2, int& h2);
/// Flip y-wise
template<class CArray, class Array>
void flipy(CArray t1, int w1, int h1, Array t2, int& w2, int& h2);
/// Flip diagonal 1
template<class CArray, class Array>
void flipd1(CArray t1, int w1, int h1, Array t2, int& w2, int& h2);
/// Flip diagonal 2
template<class CArray, class Array>
void flipd2(CArray t1, int w1, int h1, Array t2, int& w2, int& h2);
//@}
}
/**
* \brief %Example: %Pentominoes
*
* \section ScriptPentominoesProblem The Problem
*
* This example places pieces of a puzzle, where each piece is
* composed of a collection of squares, onto a grid. The pieces may
* all be rotated and flipped freely. The goal is to place all the
* pieces on the grid, without any overlaps. An example piece to be
* placed looks like
* \code
* XXX
* X
* XXX
* \endcode
* in one of its rotations.
*
* The most famous instance of such a puzzle is the Pentominoes
* puzzle, where the pieces are all pieces formed by 5 four-connected
* squares.
*
*
* \section ScriptPentominoesVariables The Variables
*
* The variables for the model is the grid of squares that the pieces
* are placed on, where each of the variables for the squares takes
* the value of the number of the piece which is placed overonto it.
*
*
* \section ScriptPentominoesOnePiece Placing one piece
*
* The constraint for each piece placement uses regular expressions
* (and consequently the extensional constraint) for expressing
* placement of (rotated) pieces on the grid. Consider the simple
* example of placing the piece
* \code
* XX
* X
* X
* \endcode
* onto the 4 by 4 board
* \code
* 0123
* 4567
* 89AB
* CDEF
* \endcode
*
* Let the variables 0-F be 0/1-variables indicating if the piece is
* placed on that position or not. First consider placing the piece on
* some location, say covering 1,2,6, and A. Then, writing the
* sequence of values for the variables 0-F out, we get the string
* 0110001000100000. This string and all other strings corresponding
* to placing the above piece in that particular rotation can be
* described using the regular expression \f$0^*11000100010^*\f$. The
* expression indicates that first comes some number of zeroes, then
* two ones in a row (covering places 1 and 2 in our example
* placement), then comes exactly three 0's (not covering places 3, 4,
* and 5), and so on. The variable number of 0's at the beginning and at the end
* makes the expression match any placement of the piece on the board.
*
* There is one problem with the above constraint, since it allows
* placing the piece covering places 3, 4, 8, and C. That is, the
* piece may wrap around the board. To prohibit this, we add a new
* dummy-column to the board, so that it looks like
* \code
* 0123G
* 4567H
* 89ABI
* CDEFJ
* \endcode
* The variables for places G to J are all set to zero initially, and the
* regular expression for the placement of the piece is modified to
* include the extra column, \f$0^*1100001000010^*\f$.
*
*
* \section ScriptPentominoesRotatingPiece Rotating pieces
*
* To handle rotations of the piece, we can use disjunctions of
* regular expressions for all the relevant rotations. Consider the
* rotated version of the above piece, depicted below.
* \code
* X
* XXX
* \endcode
* The corresponding regular expression for this piece is
* \f$0^*1001110^*\f$. To combine these two regular expressions, we
* can simply use disjunction of regular expressions, arriving at the
* expression \f$0^*1100001000010^*|0^*1001110^*\f$ for enforcing
* the placement of the piece in one of the above two rotations.
*
* There are 8 symmetries for the pieces in general. The 8 disjuncts
* for a particular piece might, however, contain less than 8 distinct
* expressions (for example, any square has only one distinct
* disjunct). This is removed when then automaton for the expression
* is computed, since it is minimized.
*
*
* \section ScriptPentominoesSeveral Placing several pieces
*
* To generalize the above model to several pieces, we let the
* variables range from 0 to n, where n is the number of pieces to
* place. Given that we place three pieces, and that the above shown
* piece is number one, we will replace each \f$0\f$-expression with
* the expression \f$(0|2|3)\f$. Thus, the second regular expression
* becomes \f$(0|2|3)^*1(0|2|3)(0|2|3)111(0|2|3)^*\f$. Additionally,
* the end of line marker gets its own value.
*
* This generalization suffers from the fact that the automata become
* much more complex. This problem can be solved by instead
* projecting out each component, which gives a new board of
* 0/1-variables for each piece to place.
*
*
* \section ScriptPentominoesHeuristic The Branching
*
* This model does not use any advanced heuristic for the
* branching. The variables selection is simply in order, and the
* value selection is minimum value first.
*
* The static value selection allows us to order the pieces in the
* specification of the problem. The pieces are approximately ordered by
* largness or hardness to place.
*
*
* \section ScriptPentominoesSymmetries Removing board symmetries
*
* Especially when searching for all solutions of a puzzle instance,
* we might want to remove the symmetrical boards from the
* solutions-space. This is done using the same symmetry functions as
* for the piece symmetries and lexicographical order constraints.
*
*
* \ingroup Example
*
*/
class Pentominoes : public Script {
public:
/// Choice of propagators
enum {
PROPAGATION_INT, ///< Use integer propagators
PROPAGATION_BOOLEAN, ///< Use Boolean propagators
};
/// Choice of symmetry breaking
enum {
SYMMETRY_NONE, ///< Do not remove symmetric solutions
SYMMETRY_FULL, ///< Remove symmetric solutions
};
private:
/// Specification of the tiles to place.
const TileSpec *spec;
/// Width and height of the board
int width, height;
/// Whether the board is filled or not
bool filled;
/// Number of specifications of tiles to place
int nspecs;
/// Number of tiles to place
int ntiles;
/// The variables for the board.
IntVarArray board;
/// Compute number of tiles
int compute_number_of_tiles(const TileSpec* ts, int nspecs) const {
int res = 0;
for (int i=0; i<nspecs; i++)
res += ts[i].amount;
return res;
}
/// Returns the regular expression for placing a specific tile \a
/// tile in a specific rotation.
REG tile_reg(int twidth, int theight, const char* tile,
REG mark, REG other, REG eol) const {
REG oe = other | eol;
REG res = *oe;
REG color[] = {other, mark};
for (int h = 0; h < theight; ++h) {
for (int w = 0; w < twidth; ++w) {
int which = tile[h*twidth + w] == 'X';
res += color[which];
}
if (h < theight-1) {
res += oe(width-twidth, width-twidth);
}
}
res += *oe + oe;
return res;
}
/// Returns the regular expression for placing tile number \a t in
/// any rotation.
REG get_constraint(int t, REG mark, REG other, REG eol) {
// This should be done for all rotations
REG res;
char *t2 = new char[width*height];
int w2, h2;
tsymmfunc syms[] = {id, flipx, flipy, flipd1, flipd2, rot90, rot180, rot270};
int symscnt = sizeof(syms)/sizeof(tsymmfunc);
for (int i = 0; i < symscnt; ++i) {
syms[i](spec[t].tile, spec[t].width, spec[t].height, t2, w2, h2);
res = res | tile_reg(w2, h2, t2, mark, other, eol);
}
delete [] t2;
return res;
}
public:
/// Construction of the model.
Pentominoes(const SizeOptions& opt)
: Script(opt), spec(examples[opt.size()]),
width(spec[0].width+1), // Add one for extra row at end.
height(spec[0].height),
filled(spec[0].amount),
nspecs(examples_size[opt.size()]-1),
ntiles(compute_number_of_tiles(spec+1, nspecs)),
board(*this, width*height, filled,ntiles+1) {
spec += 1; // No need for the specification-part any longer
// Set end-of-line markers
for (int h = 0; h < height; ++h) {
for (int w = 0; w < width-1; ++w)
rel(*this, board[h*width + w], IRT_NQ, ntiles+1);
rel(*this, board[h*width + width - 1], IRT_EQ, ntiles+1);
}
// Post constraints
if (opt.propagation() == PROPAGATION_INT) {
int tile = 0;
for (int i = 0; i < nspecs; ++i) {
for (int j = 0; j < spec[i].amount; ++j) {
// Color
int col = tile+1;
// Expression for color col
REG mark(col);
// Build expression for complement to color col
REG other;
bool first = true;
for (int j = filled; j <= ntiles; ++j) {
if (j == col) continue;
if (first) {
other = REG(j);
first = false;
} else {
other |= REG(j);
}
}
// End of line marker
REG eol(ntiles+1);
extensional(*this, board, get_constraint(i, mark, other, eol));
++tile;
}
}
} else { // opt.propagation() == PROPAGATION_BOOLEAN
int ncolors = ntiles + 2;
// Boolean variables for channeling
BoolVarArgs p(*this,ncolors * board.size(),0,1);
// Post channel constraints
for (int i=board.size(); i--; ) {
BoolVarArgs c(ncolors);
for (int j=ncolors; j--; )
c[j]=p[i*ncolors+j];
channel(*this, c, board[i]);
}
// For placing tile i, we construct the expression over
// 0/1-variables and apply it to the projection of
// the board on the color for the tile.
REG other(0), mark(1);
int tile = 0;
for (int i = 0; i < nspecs; ++i) {
for (int j = 0; j < spec[i].amount; ++j) {
int col = tile+1;
// Projection for color col
BoolVarArgs c(board.size());
for (int k = board.size(); k--; ) {
c[k] = p[k*ncolors+col];
}
extensional(*this, c, get_constraint(i, mark, other, other));
++tile;
}
}
}
if (opt.symmetry() == SYMMETRY_FULL) {
// Remove symmetrical boards
IntVarArgs orig(board.size()-height), symm(board.size()-height);
int pos = 0;
for (int i = 0; i < board.size(); ++i) {
if ((i+1)%width==0) continue;
orig[pos++] = board[i];
}
int w2, h2;
bsymmfunc syms[] = {flipx, flipy, flipd1, flipd2, rot90, rot180, rot270};
int symscnt = sizeof(syms)/sizeof(bsymmfunc);
for (int i = 0; i < symscnt; ++i) {
syms[i](orig, width-1, height, symm, w2, h2);
if (width-1 == w2 && height == h2)
rel(*this, orig, IRT_LQ, symm);
}
}
// Install branching
branch(*this, board, INT_VAR_NONE(), INT_VAL_MIN());
}
/// Constructor for cloning \a s
Pentominoes(Pentominoes& s) :
Script(s), spec(s.spec), width(s.width), height(s.height),
filled(s.filled), nspecs(s.nspecs) {
board.update(*this, s.board);
}
/// Copy space during cloning
virtual Space*
copy(void) {
return new Pentominoes(*this);
}
/// Print solution
virtual void
print(std::ostream& os) const {
for (int h = 0; h < height; ++h) {
os << "\t";
for (int w = 0; w < width-1; ++w) {
int val = board[h*width + w].val();
char c = val < 10 ? '0'+val : 'A' + (val-10);
os << c;
}
os << std::endl;
}
os << std::endl;
}
};
/** \brief Main-function
* \relates Pentominoes
*/
int
main(int argc, char* argv[]) {
SizeOptions opt("Pentominoes");
opt.size(1);
opt.symmetry(Pentominoes::SYMMETRY_FULL);
opt.symmetry(Pentominoes::SYMMETRY_NONE,
"none", "do not remove symmetric solutions");
opt.symmetry(Pentominoes::SYMMETRY_FULL,
"full", "remove symmetric solutions");
opt.propagation(Pentominoes::PROPAGATION_BOOLEAN);
opt.propagation(Pentominoes::PROPAGATION_INT,
"int", "use integer propagators");
opt.propagation(Pentominoes::PROPAGATION_BOOLEAN,
"bool", "use Boolean propagators");
opt.parse(argc,argv);
if (opt.size() >= n_examples) {
std::cerr << "Error: size must be between 0 and "
<< n_examples-1 << std::endl;
return 1;
}
Script::run<Pentominoes,DFS,SizeOptions>(opt);
return 0;
}
/** \name Puzzle specifications
*
* \relates Pentominoes
*/
//@{
/// Small specification
static const TileSpec puzzle0[] =
{
// Width and height of board
{4, 4, true, ""},
{2, 3, 1,
"XX"
"X "
"X "},
{2, 1, 1,
"XX"},
{3, 3, 1,
" XX"
" X"
"XXX"},
{1, 1, 1,
"X"},
{3, 1, 1,
"XXX"}
};
/// Standard specification
static const TileSpec puzzle1[] =
{
// Width and height of board
{8, 8, true, ""},
{3, 3, 1,
"XXX"
"XXX"
"XX "},
{5, 3, 1,
" XXX"
" X "
"XXX "},
{3, 4, 1,
"XXX"
"XXX"
" X"
" X"},
{3, 4, 1,
"XXX"
" X"
" X"
" X"},
{2, 5, 1,
" X"
" X"
" X"
"XX"
"XX"},
{4, 2, 1,
"XX "
"XXXX"},
{3, 3, 1,
"XXX"
" X"
" X"},
{2, 3, 1,
"XX"
"X "
"X "},
{2, 4, 1,
"XX"
"XX"
"XX"
"XX"},
{3, 2, 1,
"XX "
"XXX"}
};
// Perfect square number 2 from examples/perfect-square.cc
static const TileSpec square2[] =
{
// Width and height of board
{10, 10, true, ""},
{6, 6, 1,
"XXXXXX"
"XXXXXX"
"XXXXXX"
"XXXXXX"
"XXXXXX"
"XXXXXX"
},
{4, 4, 3,
"XXXX"
"XXXX"
"XXXX"
"XXXX"},
{2, 2, 4,
"XX"
"XX"}
};
// Perfect square number 3 from examples/perfect-square.cc
static const TileSpec square3[] =
{
// Width and height of board
{20, 20, true, ""},
{9, 9, 1,
"XXXXXXXXX"
"XXXXXXXXX"
"XXXXXXXXX"
"XXXXXXXXX"
"XXXXXXXXX"
"XXXXXXXXX"
"XXXXXXXXX"
"XXXXXXXXX"
"XXXXXXXXX"
},
{8, 8, 2,
"XXXXXXXX"
"XXXXXXXX"
"XXXXXXXX"
"XXXXXXXX"
"XXXXXXXX"
"XXXXXXXX"
"XXXXXXXX"
"XXXXXXXX"
},
{7, 7, 1,
"XXXXXXX"
"XXXXXXX"
"XXXXXXX"
"XXXXXXX"
"XXXXXXX"
"XXXXXXX"
"XXXXXXX"
},
{5, 5, 1,
"XXXXX"
"XXXXX"
"XXXXX"
"XXXXX"
"XXXXX"
},
{4, 4, 5,
"XXXX"
"XXXX"
"XXXX"
"XXXX"},
{3, 3, 3,
"XXX"
"XXX"
"XXX"},
{2, 2, 2,
"XX"
"XX"},
{1, 1, 2,
"X"}
};
static const TileSpec pentomino6x10[] =
{
// Width and height of board
{10, 6, true, ""},
{2, 4, 1,
"X "
"X "
"X "
"XX"},
{3,3, 1,
"XX "
" XX"
" X "},
{3,3, 1,
"XXX"
" X "
" X "},
{3,3, 1,
" X"
" XX"
"XX "},
{2,4, 1,
" X"
"XX"
" X"
" X"},
{5,1, 1,
"XXXXX"},
{3,3, 1,
"X "
"XXX"
" X"},
{4,2, 1,
" XXX"
"XX "},
{2,3, 1,
"XX"
"XX"
" X"},
{3,2, 1,
"X X"
"XXX"},
{3,3, 1,
" X "
"XXX"
" X "},
{3,3, 1,
" X"
" X"
"XXX"}
};
static const TileSpec pentomino5x12[] =
{
// Width and height of board
{12, 5, true, ""},
{2, 4, 1,
"X "
"X "
"X "
"XX"},
{3,3, 1,
"XX "
" XX"
" X "},
{3,3, 1,
"XXX"
" X "
" X "},
{3,3, 1,
" X"
" XX"
"XX "},
{2,4, 1,
" X"
"XX"
" X"
" X"},
{5,1, 1,
"XXXXX"},
{3,3, 1,
"X "
"XXX"
" X"},
{4,2, 1,
" XXX"
"XX "},
{2,3, 1,
"XX"
"XX"
" X"},
{3,2, 1,
"X X"
"XXX"},
{3,3, 1,
" X "
"XXX"
" X "},
{3,3, 1,
" X"
" X"
"XXX"}
};
static const TileSpec pentomino4x15[] =
{
// Width and height of board
{15, 4, true, ""},
{2, 4, 1,
"X "
"X "
"X "
"XX"},
{3,3, 1,
"XX "
" XX"
" X "},
{3,3, 1,
"XXX"
" X "
" X "},
{3,3, 1,
" X"
" XX"
"XX "},
{2,4, 1,
" X"
"XX"
" X"
" X"},
{5,1, 1,
"XXXXX"},
{3,3, 1,
"X "
"XXX"
" X"},
{4,2, 1,
" XXX"
"XX "},
{2,3, 1,
"XX"
"XX"
" X"},
{3,2, 1,
"X X"
"XXX"},
{3,3, 1,
" X "
"XXX"
" X "},
{3,3, 1,
" X"
" X"
"XXX"}
};
static const TileSpec pentomino3x20[] =
{
// Width and height of board
{20, 3, true, ""},
{2, 4, 1,
"X "
"X "
"X "
"XX"},
{3,3, 1,
"XX "
" XX"
" X "},
{3,3, 1,
"XXX"
" X "
" X "},
{3,3, 1,
" X"
" XX"
"XX "},
{2,4, 1,
" X"
"XX"
" X"
" X"},
{5,1, 1,
"XXXXX"},
{3,3, 1,
"X "
"XXX"
" X"},
{4,2, 1,
" XXX"
"XX "},
{2,3, 1,
"XX"
"XX"
" X"},
{3,2, 1,
"X X"
"XXX"},
{3,3, 1,
" X "
"XXX"
" X "},
{3,3, 1,
" X"
" X"
"XXX"}
};
/// List of specifications
const TileSpec *examples[] = {puzzle0, puzzle1, square2, square3,
pentomino6x10,pentomino5x12,
pentomino4x15,pentomino3x20};
const int examples_size[] = {sizeof(puzzle0)/sizeof(TileSpec),
sizeof(puzzle1)/sizeof(TileSpec),
sizeof(square2)/sizeof(TileSpec),
sizeof(square3)/sizeof(TileSpec),
sizeof(pentomino6x10)/sizeof(TileSpec),
sizeof(pentomino5x12)/sizeof(TileSpec),
sizeof(pentomino4x15)/sizeof(TileSpec),
sizeof(pentomino3x20)/sizeof(TileSpec)};
/// Number of specifications
const unsigned n_examples = sizeof(examples)/sizeof(TileSpec*);
//@}
// Symmetry functions
namespace {
int pos(int h, int w, int h1, int w1) {
if (!(0 <= h && h < h1) ||
!(0 <= w && w < w1)) {
std::cerr << "Cannot place (" << h << "," << w
<< ") on board of size " << h1 << "x" << w1 << std::endl;
}
return h * w1 + w;
}
template<class CArray, class Array>
void id(CArray t1, int w1, int h1, Array t2, int& w2, int&h2) {
w2 = w1; h2 = h1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(h, w, h2, w2)] = t1[pos(h, w, h1, w1)];
}
template<class CArray, class Array>
void rot90(CArray t1, int w1, int h1, Array t2, int& w2, int& h2) {
w2 = h1; h2 = w1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(w, w2-h-1, h2, w2)] = t1[pos(h, w, h1, w1)];
}
template<class CArray, class Array>
void rot180(CArray t1, int w1, int h1, Array t2, int& w2, int& h2) {
w2 = w1; h2 = h1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(h2-h-1, w2-w-1, h2, w2)] = t1[pos(h, w, h1, w1)];
}
template<class CArray, class Array>
void rot270(CArray t1, int w1, int h1, Array t2, int& w2, int& h2) {
w2 = h1; h2 = w1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(h2-w-1, h, h2, w2)] = t1[pos(h, w, h1, w1)];
}
template<class CArray, class Array>
void flipx(CArray t1, int w1, int h1, Array t2, int& w2, int& h2) {
w2 = w1; h2 = h1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(h, w2-w-1, h2, w2)] = t1[pos(h, w, h1, w1)];
}
template<class CArray, class Array>
void flipy(CArray t1, int w1, int h1, Array t2, int& w2, int& h2) {
w2 = w1; h2 = h1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(h2-h-1, w, h2, w2)] = t1[pos(h, w, h1, w1)];
}
template<class CArray, class Array>
void flipd1(CArray t1, int w1, int h1, Array t2, int& w2, int& h2) {
w2 = h1; h2 = w1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(w, h, h2, w2)] = t1[pos(h, w, h1, w1)];
}
template<class CArray, class Array>
void flipd2(CArray t1, int w1, int h1, Array t2, int& w2, int& h2) {
w2 = h1; h2 = w1;
for (int h = 0; h < h1; ++h)
for (int w = 0; w < w1; ++w)
t2[pos(h2-w-1, w2-h-1, h2, w2)] = t1[pos(h, w, h1, w1)];
}
}
// STATISTICS: example-any
|