1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Guido Tack, 2006
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/gist/visualnode.hh>
#include <gecode/gist/layoutcursor.hh>
#include <gecode/gist/nodevisitor.hh>
#include <utility>
namespace Gecode { namespace Gist {
Shape* Shape::leaf;
Shape* Shape::hidden;
/// Allocate shapes statically
class ShapeAllocator {
public:
/// Constructor
ShapeAllocator(void) {
Shape::leaf = Shape::allocate(1);
(*Shape::leaf)[0] = Extent(Layout::extent);
Shape::leaf->computeBoundingBox();
Shape::hidden = Shape::allocate(2);
(*Shape::hidden)[0] = Extent(Layout::extent);
(*Shape::hidden)[1] = Extent(Layout::extent);
Shape::hidden->computeBoundingBox();
}
~ShapeAllocator(void) {
Shape::deallocate(Shape::leaf);
Shape::deallocate(Shape::hidden);
}
};
/// Allocate shapes statically
ShapeAllocator shapeAllocator;
VisualNode::VisualNode(int p)
: SpaceNode(p)
, offset(0)
{
shape = nullptr;
setDirty(true);
setChildrenLayoutDone(false);
setHidden(false);
setMarked(false);
setOnPath(false);
setBookmarked(false);
}
VisualNode::VisualNode(Space* root)
: SpaceNode(root)
, offset(0)
{
shape = nullptr;
setDirty(true);
setChildrenLayoutDone(false);
setHidden(false);
setMarked(false);
setOnPath(false);
setBookmarked(false);
}
void
VisualNode::dispose(void) {
Shape::deallocate(shape);
SpaceNode::dispose();
}
void
VisualNode::dirtyUp(const NodeAllocator& na) {
VisualNode* cur = this;
while (!cur->isDirty()) {
cur->setDirty(true);
if (! cur->isRoot()) {
cur = cur->getParent(na);
}
}
}
void
VisualNode::layout(const NodeAllocator& na) {
LayoutCursor l(this,na);
PostorderNodeVisitor<LayoutCursor>(l).run();
// int nodesLayouted = 1;
// clock_t t0 = clock();
// while (p.next()) {}
// while (p.next()) { nodesLayouted++; }
// double t = (static_cast<double>(clock()-t0) / CLOCKS_PER_SEC) * 1000.0;
// double nps = static_cast<double>(nodesLayouted) /
// (static_cast<double>(clock()-t0) / CLOCKS_PER_SEC);
// std::cout << "Layout done. " << nodesLayouted << " nodes in "
// << t << " ms. " << nps << " nodes/s." << std::endl;
}
void VisualNode::pathUp(const NodeAllocator& na) {
VisualNode* cur = this;
while (cur) {
cur->setOnPath(true);
cur = cur->getParent(na);
}
}
void VisualNode::unPathUp(const NodeAllocator& na) {
VisualNode* cur = this;
while (!cur->isRoot()) {
cur->setOnPath(false);
cur = cur->getParent(na);
}
}
int
VisualNode::getPathAlternative(const NodeAllocator& na) {
for (int i=getNumberOfChildren(); i--;) {
if (getChild(na,i)->isOnPath())
return i;
}
return -1;
}
void
VisualNode::toggleHidden(const NodeAllocator& na) {
setHidden(!isHidden());
dirtyUp(na);
}
void
VisualNode::hideFailed(const NodeAllocator& na, bool onlyDirty) {
HideFailedCursor c(this,na,onlyDirty);
PreorderNodeVisitor<HideFailedCursor>(c).run();
dirtyUp(na);
}
void
VisualNode::labelBranches(NodeAllocator& na,
BestNode* curBest, int c_d, int a_d) {
bool clear = na.hasLabel(this);
BranchLabelCursor c(this,curBest,c_d,a_d,clear,na);
PreorderNodeVisitor<BranchLabelCursor>(c).run();
dirtyUp(na);
}
void
VisualNode::labelPath(NodeAllocator& na,
BestNode* curBest, int c_d, int a_d) {
if (na.hasLabel(this)) {
// clear labels on path to root
VisualNode* p = this;
while (p) {
na.clearLabel(p);
p = p->getParent(na);
}
} else {
// set labels on path to root
std::vector<std::pair<VisualNode*,int> > path;
VisualNode* p = this;
while (p) {
path.push_back(std::pair<VisualNode*,int>(p,p->getAlternative(na)));
p = p->getParent(na);
}
while (!path.empty()) {
std::pair<VisualNode*,int> cur = path.back(); path.pop_back();
if (p) {
std::string l =
cur.first->getBranchLabel(na,p,p->getChoice(),
curBest,c_d,a_d,cur.second);
na.setLabel(cur.first,QString(l.c_str()));
}
p = cur.first;
}
}
dirtyUp(na);
}
void
VisualNode::unhideAll(const NodeAllocator& na) {
UnhideAllCursor c(this,na);
PreorderNodeVisitor<UnhideAllCursor>(c).run();
dirtyUp(na);
}
void
VisualNode::toggleStop(const NodeAllocator& na) {
if (getStatus() == STOP)
setStatus(UNSTOP);
else if (getStatus() == UNSTOP)
setStatus(STOP);
dirtyUp(na);
}
void
VisualNode::unstopAll(const NodeAllocator& na) {
UnstopAllCursor c(this,na);
PreorderNodeVisitor<UnstopAllCursor>(c).run();
dirtyUp(na);
}
void
VisualNode::changedStatus(const NodeAllocator& na) { dirtyUp(na); }
bool
VisualNode::containsCoordinateAtDepth(int x, int depth) {
BoundingBox box = getShape()->getBoundingBox();
if (x < box.left ||
x > box.right ||
depth >= getShape()->depth()) {
return false;
}
Extent theExtent;
if (getShape()->getExtentAtDepth(depth, theExtent)) {
return (theExtent.l <= x && x <= theExtent.r);
} else {
return false;
}
}
VisualNode*
VisualNode::findNode(const NodeAllocator& na, int x, int y) {
VisualNode* cur = this;
int depth = y / Layout::dist_y;
while (depth > 0 && cur != nullptr) {
if (cur->isHidden()) {
break;
}
VisualNode* oldCur = cur;
cur = nullptr;
for (unsigned int i=0; i<oldCur->getNumberOfChildren(); i++) {
VisualNode* nextChild = oldCur->getChild(na,i);
int newX = x - nextChild->getOffset();
if (nextChild->containsCoordinateAtDepth(newX, depth - 1)) {
cur = nextChild;
x = newX;
break;
}
}
depth--;
y -= Layout::dist_y;
}
if(cur == this && !cur->containsCoordinateAtDepth(x, 0)) {
return nullptr;
}
return cur;
}
std::string
VisualNode::toolTip(NodeAllocator&, BestNode*, int, int) {
return "";
}
std::string
VisualNode::getBranchLabel(NodeAllocator& na,
VisualNode* p, const Choice* c,
BestNode* curBest, int c_d, int a_d, int alt) {
std::ostringstream oss;
p->acquireSpace(na,curBest,c_d,a_d);
p->getWorkingSpace()->print(*c,alt,oss);
return oss.str();
}
/// \brief Helper functions for the layout algorithm
class Layouter {
public:
/// Compute distance needed between \a shape1 and \a shape2
template<class S1, class S2>
static int getAlpha(const S1& shape1, int depth1,
const S2& shape2, int depth2);
/// Merge \a shape1 and \a shape2 into \a result with distance \a alpha
template<class S1, class S2>
static void merge(Extent* result,
const S1& shape1, int depth1,
const S2& shape2, int depth2, int alpha);
};
template<class S1, class S2>
int
Layouter::getAlpha(const S1& shape1, int depth1,
const S2& shape2, int depth2) {
int alpha = Layout::minimalSeparation;
int extentR = 0;
int extentL = 0;
for (int i=0; i<depth1 && i<depth2; i++) {
extentR += shape1[i].r;
extentL += shape2[i].l;
alpha = std::max(alpha, extentR - extentL + Layout::minimalSeparation);
}
return alpha;
}
template<class S1, class S2>
void
Layouter::merge(Extent* result,
const S1& shape1, int depth1,
const S2& shape2, int depth2, int alpha) {
if (depth1 == 0) {
for (int i=depth2; i--;)
result[i] = shape2[i];
} else if (depth2 == 0) {
for (int i=depth1; i--;)
result[i] = shape1[i];
} else {
// Extend the topmost right extent by alpha. This, in effect,
// moves the second shape to the right by alpha units.
int topmostL = shape1[0].l;
int topmostR = shape2[0].r;
int backoffTo1 =
shape1[0].r - alpha - shape2[0].r;
int backoffTo2 =
shape2[0].l + alpha - shape1[0].l;
result[0] = Extent(topmostL, topmostR+alpha);
// Now, since extents are given in relative units, in order to
// compute the extents of the merged shape, we can just collect the
// extents of shape1 and shape2, until one of the shapes ends. If
// this happens, we need to "back-off" to the axis of the deeper
// shape in order to properly determine the remaining extents.
int i=1;
for (; i<depth1 && i<depth2; i++) {
Extent currentExtent1 = shape1[i];
Extent currentExtent2 = shape2[i];
int newExtentL = currentExtent1.l;
int newExtentR = currentExtent2.r;
result[i] = Extent(newExtentL, newExtentR);
backoffTo1 += currentExtent1.r - currentExtent2.r;
backoffTo2 += currentExtent2.l - currentExtent1.l;
}
// If shape1 is deeper than shape2, back off to the axis of shape1,
// and process the remaining extents of shape1.
if (i<depth1) {
Extent currentExtent1 = shape1[i];
int newExtentL = currentExtent1.l;
int newExtentR = currentExtent1.r;
result[i] = Extent(newExtentL, newExtentR+backoffTo1);
++i;
for (; i<depth1; i++) {
result[i] = shape1[i];
}
}
// Vice versa, if shape2 is deeper than shape1, back off to the
// axis of shape2, and process the remaining extents of shape2.
if (i<depth2) {
Extent currentExtent2 = shape2[i];
int newExtentL = currentExtent2.l;
int newExtentR = currentExtent2.r;
result[i] = Extent(newExtentL+backoffTo2, newExtentR);
++i;
for (; i<depth2; i++) {
result[i] = shape2[i];
}
}
}
}
void
VisualNode::setShape(Shape* s) {
if (shape != s)
Shape::deallocate(shape);
shape = s;
shape->computeBoundingBox();
}
void
VisualNode::computeShape(const NodeAllocator& na) {
int numberOfShapes = getNumberOfChildren();
Extent extent;
if (na.hasLabel(this)) {
int ll = na.getLabel(this).length();
ll *= 7;
VisualNode* p = getParent(na);
int alt = 0;
int n_alt = 1;
if (p) {
alt = getAlternative(na);
n_alt = p->getNumberOfChildren();
}
extent = Extent(Layout::extent);
if (alt==0 && n_alt > 1) {
extent.l = std::min(extent.l, -ll);
} else if (alt==n_alt-1 && n_alt > 1) {
extent.r = std::max(extent.r, ll);
} else {
extent.l = std::min(extent.l, -ll);
extent.r = std::max(extent.r, ll);
}
} else {
if (numberOfShapes==0) {
setShape(Shape::leaf);
return;
} else {
extent = Extent(Layout::extent);
}
}
int maxDepth = 0;
for (int i = numberOfShapes; i--;)
maxDepth = std::max(maxDepth, getChild(na,i)->getShape()->depth());
Shape* mergedShape;
if (getShape() && getShape() != Shape::leaf &&
getShape()->depth() >= maxDepth+1) {
mergedShape = getShape();
mergedShape->setDepth(maxDepth+1);
} else {
mergedShape = Shape::allocate(maxDepth+1);
}
(*mergedShape)[0] = extent;
if (numberOfShapes < 1) {
setShape(mergedShape);
} else if (numberOfShapes == 1) {
getChild(na,0)->setOffset(0);
const Shape* childShape = getChild(na,0)->getShape();
for (int i=childShape->depth(); i--;)
(*mergedShape)[i+1] = (*childShape)[i];
(*mergedShape)[1].extend(- extent.l, - extent.r);
setShape(mergedShape);
} else {
// alpha stores the necessary distances between the
// axes of the shapes in the list: alpha[i].first gives the distance
// between shape[i] and shape[i-1], when shape[i-1] and shape[i]
// are merged left-to-right; alpha[i].second gives the distance between
// shape[i] and shape[i+1], when shape[i] and shape[i+1] are merged
// right-to-left.
Region r;
std::pair<int,int>* alpha =
r.alloc<std::pair<int,int> >(numberOfShapes);
// distance between the leftmost and the rightmost axis in the list
int width = 0;
Extent* currentShapeL = r.alloc<Extent>(maxDepth);
int ldepth = getChild(na,0)->getShape()->depth();
for (int i=ldepth; i--;)
currentShapeL[i] = (*getChild(na,0)->getShape())[i];
// After merging, we can pick the result of either merging left or right
// Here we chose the result of merging right
Shape* rShape = getChild(na,numberOfShapes-1)->getShape();
int rdepth = rShape->depth();
for (int i=rdepth; i--;)
(*mergedShape)[i+1] = (*rShape)[i];
Extent* currentShapeR = &(*mergedShape)[1];
for (int i = 1; i < numberOfShapes; i++) {
// Merge left-to-right. Note that due to the asymmetry of the
// merge operation, nextAlphaL is the distance between the
// *leftmost* axis in the shape list, and the axis of
// nextShapeL; what we are really interested in is the distance
// between the *previous* axis and the axis of nextShapeL.
// This explains the correction.
Shape* nextShapeL = getChild(na,i)->getShape();
int nextAlphaL =
Layouter::getAlpha<Extent*,Shape>(¤tShapeL[0], ldepth,
*nextShapeL, nextShapeL->depth());
Layouter::merge<Extent*,Shape>(¤tShapeL[0],
¤tShapeL[0], ldepth,
*nextShapeL, nextShapeL->depth(),
nextAlphaL);
ldepth = std::max(ldepth,nextShapeL->depth());
alpha[i].first = nextAlphaL - width;
width = nextAlphaL;
// Merge right-to-left. Here, a correction of nextAlphaR is
// not required.
Shape* nextShapeR = getChild(na,numberOfShapes-1-i)->getShape();
int nextAlphaR =
Layouter::getAlpha<Shape,Extent*>(*nextShapeR, nextShapeR->depth(),
¤tShapeR[0], rdepth);
Layouter::merge<Shape,Extent*>(¤tShapeR[0],
*nextShapeR, nextShapeR->depth(),
¤tShapeR[0], rdepth,
nextAlphaR);
rdepth = std::max(rdepth,nextShapeR->depth());
alpha[numberOfShapes - i].second = nextAlphaR;
}
// The merged shape has to be adjusted to its topmost extent
(*mergedShape)[1].extend(- extent.l, - extent.r);
// After the loop, the merged shape has the same axis as the
// leftmost shape in the list. What we want is to move the axis
// such that it is the center of the axis of the leftmost shape in
// the list and the axis of the rightmost shape.
int halfWidth = false ? 0 : width / 2;
(*mergedShape)[1].move(- halfWidth);
// Finally, for the offset lists. Now that the axis of the merged
// shape is at the center of the two extreme axes, the first shape
// needs to be offset by -halfWidth units with respect to the new
// axis. As for the offsets for the other shapes, we take the
// median of the alphaL and alphaR values, as suggested in
// Kennedy's paper.
int offset = - halfWidth;
getChild(na,0)->setOffset(offset);
for (int i = 1; i < numberOfShapes; i++) {
offset += (alpha[i].first + alpha[i].second) / 2;
getChild(na,i)->setOffset(offset);
}
setShape(mergedShape);
}
}
}}
// STATISTICS: gist-any
|