File: cbs.hpp

package info (click to toggle)
gecode-snapshot 6.2.0%2Bgit20240207-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 35,308 kB
  • sloc: cpp: 475,516; perl: 2,077; makefile: 1,816; sh: 198
file content (232 lines) | stat: -rwxr-xr-x 8,189 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Samuel Gagnon <samuel.gagnon92@gmail.com>
 *
 *  Copyright:
 *     Samuel Gagnon, 2018
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#ifdef GECODE_HAS_CBS

#include <limits>
#include <algorithm>

namespace Gecode { namespace Int { namespace Distinct {

  /**
   * \brief Minc and Brégman factors
   *
   * Factors precomputed for every value in the domain of x. Those factors are
   * used to compute the Minc and Brégman upper bound for the permanent in
   * counting base search
   */
  const int MAX_MINC_FACTORS = 400;
  extern const double mincFactors[MAX_MINC_FACTORS];

  forceinline double
  getMincFactor(int domSize) {
    return mincFactors[domSize - 1];
  }

  /**
   * \brief Liang and Bai factors
   *
   * Factors precomputed for every index and domain size in x. Those factors
   * are used to compute the Liang and Bai upper bound for the permanent in
   * counting base search
   */
  const int WIDTH_LIANG_BAI_FACTORS = 400;
  extern const double liangBaiFactors[WIDTH_LIANG_BAI_FACTORS * WIDTH_LIANG_BAI_FACTORS];

  forceinline double
  getLiangBaiFactor(int index, int domSize) {
    return liangBaiFactors[index*WIDTH_LIANG_BAI_FACTORS + domSize - 1];
  }

  /**
   * \brief Mapping of each value to its permanent update
   *
   */
  class ValToUpdate {
  private:
    /// Minimum value of the union of all variable domains in the propagator
    const int minVal;
    /// Minc and Brégman estimation update for each value
    double* mincUpdate;
    /// Liang and Bai estimation update for each value
    double* liangUpdate;
  public:
    template<class View>
    ValToUpdate(const ViewArray<View>& x,
                int minDomVal, int maxDomVal, Region& r);
    /**
     * Gives the update we have to apply to the Minc and Brégman
     * estimation of the permanent if we fix a variable of cardinalty
     * \a varSize to the value \a val.
     */
    double getMincUpdate(int val, unsigned int varSize) const;
    /**
     * Gives the update we have to apply to the Liang and Bai
     * estimation of the
     * permanent if we fix a variable of cardinalty \a varSize
     * to the value "val".
     */
    double getLiangUpdate(int val, unsigned int idx, unsigned int varSize) const;
  };

  template<class View>
  forceinline
  ValToUpdate::ValToUpdate(const ViewArray<View>& x,
                           int minDomVal, int maxDomVal, Region& r)
    : minVal(minDomVal) {
    unsigned int width = maxDomVal - minDomVal + 1;
    mincUpdate = r.alloc<double>(width);
    std::fill(mincUpdate, mincUpdate + width, 1);
    liangUpdate = r.alloc<double>(width);
    std::fill(liangUpdate, liangUpdate + width, 1);

    for (int i=0; i<x.size(); i++) {
      if (x[i].assigned()) continue;
      size_t s = x[i].size();
      for (ViewValues<View> val(x[i]); val(); ++val) {
        int idx = val.val() - minVal;
        mincUpdate[idx] *= getMincFactor(s-1) / getMincFactor(s);
        liangUpdate[idx] *= getLiangBaiFactor(i, s-1) / getLiangBaiFactor(i, s);
      }
    }
  }

  forceinline double
  ValToUpdate::getMincUpdate(int val, unsigned int varSize) const {
    return mincUpdate[val-minVal] / getMincFactor(varSize-1);
  }

  forceinline double
  ValToUpdate::getLiangUpdate(int val, unsigned int idx,
                              unsigned int varSize) const {
    return liangUpdate[val-minVal] / getLiangBaiFactor(idx, varSize-1);
  }


  template<class View>
  void cbsdistinct(Space&, unsigned int prop_id, const ViewArray<View>& x,
                   Propagator::SendMarginal send) {
    // Computation of Minc and Brégman and Liang and Bai upper bounds for
    // the permanent of the whole constraint
    struct UB {
      double minc;
      double liangBai;
    };

    UB ub{1,1};
    for (int i=0; i<x.size(); i++) {
      unsigned int s = x[i].size();
      if ((s >= MAX_MINC_FACTORS) || (s >= WIDTH_LIANG_BAI_FACTORS))
        throw Gecode::Exception("Int::Distinct::cbsdistinct",
                                "Variable cardinality too big for using counting-based"
                                "search with distinct constraints");
      ub.minc *= getMincFactor(s);
      ub.liangBai *= getLiangBaiFactor(i, s);
    }

    // Minimum and maximum value of the union of all variable domains
    int minVal = std::numeric_limits<int>::max();
    int maxVal = std::numeric_limits<int>::min();
    for (const auto& v : x) {
      if (v.assigned()) continue;
      minVal = std::min(v.min(), minVal);
      maxVal = std::max(v.max(), maxVal);
    }

    // For each possible value, we compute the update we have to apply to the
    // permanent of the whole constraint to get the new solution count
    Region r;
    ValToUpdate valToUpdate(x, minVal, maxVal, r);

    // Preallocated memory for holding solution counts for all values of a
    // variable during computation
    double* solCounts = r.alloc<double>(maxVal - minVal + 1);

    for (int i=0; i<x.size(); i++) {
      if (x[i].assigned()) continue;

      // Normalization constant for keeping densities values between 0 and 1
      double normalization = 0;
      // We calculate the density for every possible value assignment
      for (ViewValues<View> val(x[i]); val(); ++val) {
        UB localUB = ub;
        int v = val.val();
        unsigned int s = x[i].size();

        // We update both upper bounds according to the assigned value, yielding
        // two new estimations for the upper bound
        localUB.minc *= valToUpdate.getMincUpdate(v, s);
        localUB.liangBai *= valToUpdate.getLiangUpdate(v, i, s);

        // We take the lower upper bound as our estimation for the permanent
        double lowerUB = std::min(localUB.minc, ::sqrt(localUB.liangBai));
        solCounts[val.val() - minVal] = lowerUB;
        normalization += lowerUB;
      }

      // Because we approximate the permanent of each value for the variable, we
      // assign densities in a separate loop where we normalize solution densities.
      for (ViewValues<View> val(x[i]); val(); ++val) {
        // In practice, send is going to be a function provided by a brancher.
        // Thus, the brancher will receive each computed solution densities via
        // this call. For more details, please see Section 4 of the dissertation
        // "Improvement and Integration of Counting-Based Search Heuristics in
        // Constraint Programming" by Samuel Gagnon.
        send(prop_id,
             x[i].id(),
             x[i].baseval(val.val()),
             solCounts[val.val() - minVal] / normalization);
      }
    }
  }

  template<class View>
  void cbssize(const ViewArray<View>& x, Propagator::InDecision in,
               unsigned int& size, unsigned int& size_b) {
    size = 0;
    size_b = 0;
    for (const auto& v : x) {
      if (!v.assigned()) {
        size += v.size();
        if (in(v.id()))
          size_b += v.size();
      }
    }
  }

}}}

#endif

// STATISTICS: int-prop