File: dfa.cpp

package info (click to toggle)
gecode-snapshot 6.2.0%2Bgit20240207-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 35,308 kB
  • sloc: cpp: 475,516; perl: 2,077; makefile: 1,816; sh: 198
file content (525 lines) | stat: -rwxr-xr-x 16,348 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Christian Schulte <schulte@gecode.org>
 *
 *  Copyright:
 *     Christian Schulte, 2004
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <gecode/int.hh>

namespace Gecode { namespace Int { namespace Extensional {

  /**
   * \brief Sort transition array by input state
   */
  class TransByI_State {
  public:
    forceinline bool
    operator ()(const DFA::Transition& x, const DFA::Transition& y) {
      return x.i_state < y.i_state;
    }
    forceinline static void
    sort(DFA::Transition t[], int n) {
      TransByI_State tbis;
      Support::quicksort<DFA::Transition,TransByI_State>(t,n,tbis);
    }
  };

  /**
   * \brief Sort transition array by symbol (value)
   */
  class TransBySymbol {
  public:
    forceinline bool
    operator ()(const DFA::Transition& x, const DFA::Transition& y) {
      return x.symbol < y.symbol;
    }
    forceinline static void
    sort(DFA::Transition t[], int n) {
      TransBySymbol tbs;
      Support::quicksort<DFA::Transition,TransBySymbol>(t,n,tbs);
    }
  };

  /**
   * \brief Sort transition array by symbol and then input states
   */
  class TransBySymbolI_State {
  public:
    forceinline bool
    operator ()(const DFA::Transition& x, const DFA::Transition& y) {
      return ((x.symbol < y.symbol) ||
              ((x.symbol == y.symbol) && (x.i_state < y.i_state)));
    }
    forceinline static void
    sort(DFA::Transition t[], int n) {
      TransBySymbolI_State tbsi;
      Support::quicksort<DFA::Transition,TransBySymbolI_State>(t,n,tbsi);
    }
  };

  /**
   * \brief Sort transition array by output state
   */
  class TransByO_State {
  public:
    forceinline bool
    operator ()(const DFA::Transition& x, const DFA::Transition& y) {
      return x.o_state < y.o_state;
    }
    forceinline static void
    sort(DFA::Transition t[], int n) {
      TransByO_State tbos;
      Support::quicksort<DFA::Transition,TransByO_State>(t,n,tbos);
    }
  };


  /**
   * \brief Stategroup is used to compute a partition of states
   */
  class StateGroup {
  public:
    int state;
    int group;
  };

  /**
   * \brief Sort groups stated by group and then state
   */
  class StateGroupByGroup {
  public:
    forceinline bool
    operator ()(const StateGroup& x, const StateGroup& y) {
      return ((x.group < y.group) ||
              ((x.group == y.group) && (x.state < y.state)));
    }
    static void
    sort(StateGroup sg[], int n) {
      StateGroupByGroup o;
      Support::quicksort<StateGroup,StateGroupByGroup>(sg,n,o);
    }
  };

  /**
   * \brief %GroupStates is used to index %StateGroup by group
   */
  class GroupStates {
  public:
    StateGroup* fst;
    StateGroup* lst;
  };

  /// Information about states
  enum StateInfo {
    SI_NONE       = 0, ///< State is not reachable
    SI_FROM_START = 1, ///< State is reachable from start state
    SI_TO_FINAL   = 2, ///< Final state is reachable from state
    SI_FINAL      = 4  ///< State is final
  };

}}}

namespace Gecode {

  void
  DFA::init(int start, Transition t_spec[], int f_spec[], bool minimize) {
    using namespace Int;
    using namespace Extensional;
    Region region;

    // Compute number of states and transitions
    int n_states = start;
    int n_trans  = 0;
    for (Transition* t = &t_spec[0]; t->i_state >= 0; t++) {
      n_states = std::max(n_states,t->i_state);
      n_states = std::max(n_states,t->o_state);
      n_trans++;
    }
    for (int* f = &f_spec[0]; *f >= 0; f++)
      n_states = std::max(n_states,*f);
    n_states++;

    // Temporary structure for transitions
    Transition* trans = region.alloc<Transition>(n_trans);
    for (int i=0; i<n_trans; i++)
      trans[i] = t_spec[i];
    // Temporary structures for finals
    int* final = region.alloc<int>(n_states+1);
    bool* is_final = region.alloc<bool>(n_states+1);
    int n_finals = 0;
    for (int i=0; i<n_states+1; i++)
      is_final[i] = false;
    for (int* f = &f_spec[0]; *f != -1; f++) {
      is_final[*f]      = true;
      final[n_finals++] = *f;
    }

    if (minimize) {
      // Sort transitions by symbol and i_state
      TransBySymbolI_State::sort(trans, n_trans);
      Transition** idx = region.alloc<Transition*>(n_trans+1);
      //  idx[i]...idx[i+1]-1 gives where transitions for symbol i start
      int n_symbols = 0;
      {
        int j = 0;
        while (j < n_trans) {
          idx[n_symbols++] = &trans[j];
          int s = trans[j].symbol;
          while ((j < n_trans) && (s == trans[j].symbol))
            j++;
        }
        idx[n_symbols] = &trans[j];
        assert(j == n_trans);
      }
      // Map states to groups
      int* s2g = region.alloc<int>(n_states+1);
      StateGroup* part = region.alloc<StateGroup>(n_states+1);
      GroupStates* g2s = region.alloc<GroupStates>(n_states+1);
      // Initialize: final states is group one, all other group zero
      for (int i=0; i<n_states+1; i++) {
        part[i].state = i;
        part[i].group = is_final[i] ? 1 : 0;
        s2g[i]        = part[i].group;
      }
      // Important: the state n_state is the dead state, conceptually
      // if there is no transition for a symbol and input state, it is
      // assumed that there is an implicit transition to n_state

      // Set up the indexing data structure, sort by group
      StateGroupByGroup::sort(part,n_states+1);
      int n_groups;
      if (part[0].group == part[n_states].group) {
        // No final states, just one group
        g2s[0].fst = &part[0]; g2s[0].lst = &part[n_states+1];
        n_groups = 1;
      } else  {
        int i = 0;
        assert(part[0].group == 0);
        do i++; while (part[i].group == 0);
        g2s[0].fst = &part[0]; g2s[0].lst = &part[i];
        g2s[1].fst = &part[i]; g2s[1].lst = &part[n_states+1];
        n_groups = 2;
      }

      // Do the refinement
      {
        int m_groups;
        do {
          m_groups = n_groups;
          // Iterate over symbols
          for (int sidx = n_symbols; sidx--; ) {
            // Iterate over groups
            for (int g = n_groups; g--; ) {
              // Ignore singleton groups
              if (g2s[g].lst-g2s[g].fst > 1) {
                // Apply transitions to group states
                // This exploits that both transitions as well as
                // stategroups are sorted by (input) state
                Transition* t     = idx[sidx];
                Transition* t_lst = idx[sidx+1];
                for (StateGroup* sg = g2s[g].fst; sg<g2s[g].lst; sg++) {
                  while ((t < t_lst) && (t->i_state < sg->state))
                    t++;
                  // Compute group resulting from transition
                  if ((t < t_lst) && (t->i_state == sg->state))
                    sg->group = s2g[t->o_state];
                  else
                    sg->group = s2g[n_states]; // Go to dead state
                }
                // Sort group by groups from transitions
                StateGroupByGroup::sort(g2s[g].fst,
                                        static_cast<int>(g2s[g].lst-g2s[g].fst));
                // Group must be split?
                if (g2s[g].fst->group != (g2s[g].lst-1)->group) {
                  // Skip first group
                  StateGroup* sg = g2s[g].fst+1;
                  while ((sg-1)->group == sg->group)
                    sg++;
                  // Start splitting
                  StateGroup* lst = g2s[g].lst;
                  g2s[g].lst = sg;
                  while (sg < lst) {
                    s2g[sg->state] = n_groups;
                    g2s[n_groups].fst  = sg++;
                    while ((sg < lst) && ((sg-1)->group == sg->group)) {
                      s2g[sg->state] = n_groups; sg++;
                    }
                    g2s[n_groups++].lst = sg;
                  }
                }
              }
            }
          }
        } while (n_groups != m_groups);
        // New start state
        start = s2g[start];
        // Compute new final states
        n_finals = 0;
        for (int g = n_groups; g--; )
          for (StateGroup* sg = g2s[g].fst; sg < g2s[g].lst; sg++)
            if (is_final[sg->state]) {
              final[n_finals++] = g;
              break;
            }
        // Compute representatives
        int* s2r = region.alloc<int>(n_states+1);
        for (int i=0; i<n_states+1; i++)
          s2r[i] = -1;
        for (int g=0; g<n_groups; g++)
          s2r[g2s[g].fst->state] = g;
        // Clean transitions
        int j = 0;
        for (int i = 0; i<n_trans; i++)
          if (s2r[trans[i].i_state] != -1) {
            trans[j].i_state = s2g[trans[i].i_state];
            trans[j].symbol  = trans[i].symbol;
            trans[j].o_state = s2g[trans[i].o_state];
            j++;
          }
        n_trans  = j;
        n_states = n_groups;
      }
    }

    // Do a reachability analysis for all states starting from start state
    Gecode::Support::StaticStack<int,Region> visit(region,n_states);
    int* state = region.alloc<int>(n_states);
    for (int i=0; i<n_states; i++)
      state[i] = SI_NONE;

    Transition** idx = region.alloc<Transition*>(n_states+1);
    {
      // Sort all transitions according to i_state and create index structure
      //  idx[i]...idx[i+1]-1 gives where transitions for state i start
      TransByI_State::sort(trans, n_trans);
      {
        int j = 0;
        for (int i=0; i<n_states; i++) {
          idx[i] = &trans[j];
          while ((j < n_trans) && (i == trans[j].i_state))
            j++;
        }
        idx[n_states] = &trans[j];
        assert(j == n_trans);
      }

      state[start] = SI_FROM_START;
      visit.push(start);
      while (!visit.empty()) {
        int s = visit.pop();
        for (Transition* t = idx[s]; t < idx[s+1]; t++)
          if (!(state[t->o_state] & SI_FROM_START)) {
            state[t->o_state] |= SI_FROM_START;
            visit.push(t->o_state);
          }
      }
    }

    // Do a reachability analysis for all states to a final state
    {
      // Sort all transitions according to o_state and create index structure
      //  idx[i]...idx[i+1]-1 gives where transitions for state i start
      TransByO_State::sort(trans, n_trans);
      {
        int j = 0;
        for (int i=0; i<n_states; i++) {
          idx[i] = &trans[j];
          while ((j < n_trans) && (i == trans[j].o_state))
            j++;
        }
        idx[n_states] = &trans[j];
        assert(j == n_trans);
      }

      for (int i=0; i<n_finals; i++) {
        state[final[i]] |= (SI_TO_FINAL | SI_FINAL);
        visit.push(final[i]);
      }
      while (!visit.empty()) {
        int s = visit.pop();
        for (Transition* t = idx[s]; t < idx[s+1]; t++)
          if (!(state[t->i_state] & SI_TO_FINAL)) {
            state[t->i_state] |= SI_TO_FINAL;
            visit.push(t->i_state);
          }
      }
    }

    // Now all reachable states are known (also the final ones)
    int* re = region.alloc<int>(n_states);
    for (int i=0; i<n_states; i++)
      re[i] = -1;

    // Renumber states
    int m_states = 0;
    // Start state gets zero
    re[start] = m_states++;

    // Renumber final states
    for (int i=n_states; i--; )
      if ((state[i] == (SI_FINAL | SI_FROM_START | SI_TO_FINAL)) && (re[i] < 0))
        re[i] = m_states++;
    // If start state is final, final states start from zero, otherwise from one
    int final_fst = (state[start] & SI_FINAL) ? 0 : 1;
    int final_lst = m_states;
    // final_fst...final_lst-1 are the final states

    // Renumber remaining states
    for (int i=n_states; i--; )
      if ((state[i] == (SI_FROM_START | SI_TO_FINAL)) && (re[i] < 0))
        re[i] = m_states++;

    // Count number of remaining transitions
    int m_trans = 0;
    for (int i=n_trans; i--; )
      if ((re[trans[i].i_state] >= 0) && (re[trans[i].o_state] >= 0))
        m_trans++;

    // All done... Construct the automaton
    DFAI* d = new DFAI(m_trans);
    d->n_states  = m_states;
    d->n_trans   = m_trans;
    d->final_fst = final_fst;
    d->final_lst = final_lst;
    {
      int j = 0;
      Transition* r = &d->trans[0];
      for (int i = 0; i<n_trans; i++)
        if ((re[trans[i].i_state] >= 0) && (re[trans[i].o_state] >= 0)) {
          r[j].symbol  = trans[i].symbol;
          r[j].i_state = re[trans[i].i_state];
          r[j].o_state = re[trans[i].o_state];
          j++;
        }
      TransBySymbol::sort(r,m_trans);
    }
    {
      // Count number of symbols
      unsigned int n_symbols = 0;
      for (int i = 0; i<m_trans; ) {
        int s = d->trans[i++].symbol;
        n_symbols++;
        while ((i<m_trans) && (d->trans[i].symbol == s))
          i++;
      }
      d->n_symbols = n_symbols;
    }
    {
      // Compute maximal degree
      unsigned int max_degree = 0;
      unsigned int* deg = region.alloc<unsigned int>(m_states);

      // Compute in-degree per state
      for (int i=0; i<m_states; i++)
        deg[i] = 0;
      for (int i=0; i<m_trans; i++)
        deg[d->trans[i].o_state]++;
      for (int i=0; i<m_states; i++)
        max_degree = std::max(max_degree,deg[i]);

      // Compute out-degree per state
      for (int i=0; i<m_states; i++)
        deg[i] = 0;
      for (int i=0; i<m_trans; i++)
        deg[d->trans[i].i_state]++;
      for (int i=0; i<m_states; i++)
        max_degree = std::max(max_degree,deg[i]);

      // Compute transitions per symbol
      {
        int i=0;
        while (i < m_trans) {
          int j=i++;
          while ((i < m_trans) &&
                 (d->trans[j].symbol == d->trans[i].symbol))
            i++;
          max_degree = std::max(max_degree,static_cast<unsigned int>(i-j));
        }
      }

      d->max_degree = max_degree;
    }

    d->fill();
    object(d);
  }

  DFA::DFA(int start, Transition t_spec[], int f_spec[], bool minimize) {
    init(start,t_spec,f_spec,minimize);
  }

  DFA::DFA(int start, std::initializer_list<Transition> tl,
           std::initializer_list<int> fl, bool minimize) {
    Region reg;
    int nt = static_cast<int>(tl.size());
    int nf = static_cast<int>(fl.size());
    Transition* ts = reg.alloc<Transition>(nt + 1);
    {
      int i=0;
      for (const Transition& t : tl)
        ts[i++] = t;
      ts[nt].i_state = -1;
    }
    int* fs = reg.alloc<int>(nf + 1);
    {
      int i=0;
      for (const int& f : fl)
        fs[i++] = f;
      fs[nf] = -1;
    }
    init(start,ts,fs,minimize);
  }

  bool
  DFA::equal(const DFA& d) const {
    assert(n_states() == d.n_states());
    assert(n_transitions() == d.n_transitions());
    assert(n_symbols() == d.n_symbols());
    assert(final_fst() == d.final_fst());
    assert(final_lst() == d.final_lst());
    DFA::Transitions me(*this);
    DFA::Transitions they(d);
    while (me()) {
      if (me.i_state() != they.i_state())
        return false;
      if (me.symbol() != they.symbol())
        return false;
      if (me.o_state() != they.o_state())
        return false;
      ++me;
      ++they;
    }
    return true;
  }

}

// STATISTICS: int-prop