File: linear.hh

package info (click to toggle)
gecode-snapshot 6.2.0%2Bgit20240207-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 35,308 kB
  • sloc: cpp: 475,516; perl: 2,077; makefile: 1,816; sh: 198
file content (1561 lines) | stat: -rwxr-xr-x 54,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Christian Schulte <schulte@gecode.org>
 *     Guido Tack <tack@gecode.org>
 *     Tias Guns <tias.guns@cs.kuleuven.be>
 *
 *  Copyright:
 *     Christian Schulte, 2002
 *     Guido Tack, 2004
 *     Tias Guns, 2009
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#ifndef GECODE_INT_LINEAR_HH
#define GECODE_INT_LINEAR_HH

#include <gecode/int.hh>

/**
 * \namespace Gecode::Int::Linear
 * \brief %Linear propagators
 */

namespace Gecode { namespace Int { namespace Linear {

  /*
   * Binary propagators
   *
   */

  /**
   * \brief Base-class for binary linear propagators
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   */
  template<class Val, class A, class B, PropCond pc>
  class LinBin : public Propagator {
  protected:
    /// View of type \a A
    A x0;
    /// View of type \a B
    B x1;
    /// Value of type \a Val
    Val c;
    /// Constructor for cloning \a p
    LinBin(Space& home, LinBin& p);
    /// Constructor for rewriting \a p during cloning
    LinBin(Space& home, Propagator& p, A x0, B x1, Val c);
    /// Constructor for creation
    LinBin(Home home, A x0, B x1, Val c);
  public:
    /// Cost function (defined as low binary)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };

  /**
   * \brief Base-class for reified binary linear propagators
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   */
  template<class Val, class A, class B, PropCond pc, class Ctrl>
  class ReLinBin : public Propagator {
  protected:
    /// View of type \a A
    A x0;
    /// View of type \a B
    B x1;
    /// Value of type \a Val
    Val c;
    /// Control view for reification
    Ctrl b;
    /// Constructor for cloning \a p
    ReLinBin(Space& home, ReLinBin& p);
    /// Constructor for creation
    ReLinBin(Home home, A x0, B x1, Val c, Ctrl b);
  public:
    /// Cost function (defined as low binary)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };

  /**
   * \brief %Propagator for bounds consistent binary linear equality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B>
  class EqBin : public LinBin<Val,A,B,PC_INT_BND> {
  protected:
    using LinBin<Val,A,B,PC_INT_BND>::x0;
    using LinBin<Val,A,B,PC_INT_BND>::x1;
    using LinBin<Val,A,B,PC_INT_BND>::c;

    /// Constructor for cloning \a p
    EqBin(Space& home, EqBin& p);
    /// Constructor for creation
    EqBin(Home home, A x0, B x1, Val c);
  public:
    /// Constructor for rewriting \a p during cloning
    EqBin(Space& home, Propagator& p, A x0, B x1, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$x_0+x_1 = c\f$
    static ExecStatus post(Home home, A x0, B x1, Val c);
  };

  /**
   * \brief %Propagator for reified bounds consistent binary linear equality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B, class Ctrl, ReifyMode rm>
  class ReEqBin : public ReLinBin<Val,A,B,PC_INT_BND,Ctrl> {
  protected:
    using ReLinBin<Val,A,B,PC_INT_BND,Ctrl>::x0;
    using ReLinBin<Val,A,B,PC_INT_BND,Ctrl>::x1;
    using ReLinBin<Val,A,B,PC_INT_BND,Ctrl>::c;
    using ReLinBin<Val,A,B,PC_INT_BND,Ctrl>::b;

    /// Constructor for cloning \a p
    ReEqBin(Space& home, ReEqBin& p);
    /// Constructor for creation
    ReEqBin(Home home,A,B,Val,Ctrl);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$(x_0+x_1 = c)\equiv \operatorname{rm}(b)\f$
    static ExecStatus post(Home home, A x0, B x1, Val c, Ctrl b);
  };

  /**
   * \brief %Propagator for bounds consistent binary linear disequality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B>
  class NqBin : public LinBin<Val,A,B,PC_INT_VAL> {
  protected:
    using LinBin<Val,A,B,PC_INT_VAL>::x0;
    using LinBin<Val,A,B,PC_INT_VAL>::x1;
    using LinBin<Val,A,B,PC_INT_VAL>::c;

    /// Constructor for cloning \a p
    NqBin(Space& home, NqBin& p);
    /// Constructor for creation
    NqBin(Home home, A x0, B x1, Val c);
  public:
    /// Constructor for rewriting \a p during cloning
    NqBin(Space& home, Propagator& p, A x0, B x1, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Cost function (defined as low unary)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Post propagator for \f$x_0+x_1 \neq c\f$
    static ExecStatus post(Home home, A x0, B x1, Val c);
  };

  /**
   * \brief %Propagator for bounds consistent binary linear less or equal
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B>
  class LqBin : public LinBin<Val,A,B,PC_INT_BND> {
  protected:
    using LinBin<Val,A,B,PC_INT_BND>::x0;
    using LinBin<Val,A,B,PC_INT_BND>::x1;
    using LinBin<Val,A,B,PC_INT_BND>::c;

    /// Constructor for cloning \a p
    LqBin(Space& home, LqBin& p);
    /// Constructor for creation
    LqBin(Home home, A x0, B x1, Val c);
  public:
    /// Constructor for rewriting \a p during cloning
    LqBin(Space& home, Propagator& p, A x0, B x1, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$x_0+x_1 \leq c\f$
    static ExecStatus post(Home home, A x0, B x1, Val c);
  };

  /**
   * \brief %Propagator for bounds consistent binary linear greater or equal
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B>
  class GqBin : public LinBin<Val,A,B,PC_INT_BND> {
  protected:
    using LinBin<Val,A,B,PC_INT_BND>::x0;
    using LinBin<Val,A,B,PC_INT_BND>::x1;
    using LinBin<Val,A,B,PC_INT_BND>::c;

    /// Constructor for cloning \a p
    GqBin(Space& home, GqBin& p);
    /// Constructor for creation
    GqBin(Home home, A x0, B x1, Val c);
  public:
    /// Constructor for rewriting \a p during cloning
    GqBin(Space& home, Propagator& p, A x0, B x1, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$x_0+x_1 \geq c\f$
    static ExecStatus post(Home home, A x0, B x1, Val c);
  };

  /**
   * \brief %Propagator for reified bounds consistent binary linear less or equal
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A and \a B
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B, ReifyMode rm>
  class ReLqBin : public ReLinBin<Val,A,B,PC_INT_BND,BoolView> {
  protected:
    using ReLinBin<Val,A,B,PC_INT_BND,BoolView>::x0;
    using ReLinBin<Val,A,B,PC_INT_BND,BoolView>::x1;
    using ReLinBin<Val,A,B,PC_INT_BND,BoolView>::c;
    using ReLinBin<Val,A,B,PC_INT_BND,BoolView>::b;

    /// Constructor for cloning \a p
    ReLqBin(Space& home, ReLqBin& p);
    /// Constructor for creation
    ReLqBin(Home home, A x0, B x1, Val c, BoolView b);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$(x_0+x_1 \leq c)\equiv \operatorname{rm}(b)\f$
    static ExecStatus post(Home home, A x0, B x1, Val c, BoolView b);
  };

}}}

#include <gecode/int/linear/int-bin.hpp>

namespace Gecode { namespace Int { namespace Linear {

  /*
   * Ternary propagators
   *
   */

  /**
   * \brief Base-class for ternary linear propagators
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A, \a B,
   * and \a C give the types of the views.
   *
   * The propagation condition \a pc refers to all three views.
   */
  template<class Val, class A, class B, class C, PropCond pc>
  class LinTer : public Propagator {
  protected:
    /// View of type \a A
    A x0;
    /// View of type \a B
    B x1;
    /// View of type \a C
    C x2;
    /// Value of type \a Val
    Val c;
    /// Constructor for cloning \a p
    LinTer(Space& home, LinTer& p);
    /// Constructor for creation
    LinTer(Home home, A x0, B x1, C x2, Val c);
    /// Constructor for rewriting \a p during cloning
    LinTer(Space& home, Propagator& p, A x0, B x1, C x2, Val c);
  public:
    /// Cost function (defined as low ternary)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };

  /**
   * \brief %Propagator for bounds consistent ternary linear equality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A, \a B,
   * and \a C give the types of the views.
   *
   * The propagation condition \a pc refers to all three views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B, class C>
  class EqTer : public LinTer<Val,A,B,C,PC_INT_BND> {
  protected:
    using LinTer<Val,A,B,C,PC_INT_BND>::x0;
    using LinTer<Val,A,B,C,PC_INT_BND>::x1;
    using LinTer<Val,A,B,C,PC_INT_BND>::x2;
    using LinTer<Val,A,B,C,PC_INT_BND>::c;

    /// Constructor for cloning \a p
    EqTer(Space& home, EqTer& p);
    /// Constructor for creation
    EqTer(Home home, A x0, B x1, C x2, Val c);
  public:
    /// Constructor for rewriting \a p during cloning
    EqTer(Space& home, Propagator& p, A x0, B x1, C x2, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$x_0+x_1+x_2 = c\f$
    static ExecStatus post(Home home, A x0, B x1, C x2, Val c);
  };

  /**
   * \brief %Propagator for bounds consistent ternary linear disquality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A, \a B,
   * and \a C give the types of the views.
   *
   * The propagation condition \a pc refers to all three views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B, class C>
  class NqTer : public LinTer<Val,A,B,C,PC_INT_VAL> {
  protected:
    using LinTer<Val,A,B,C,PC_INT_VAL>::x0;
    using LinTer<Val,A,B,C,PC_INT_VAL>::x1;
    using LinTer<Val,A,B,C,PC_INT_VAL>::x2;
    using LinTer<Val,A,B,C,PC_INT_VAL>::c;

    /// Constructor for cloning \a p
    NqTer(Space& home, NqTer& p);
    /// Constructor for creation
    NqTer(Home home, A x0, B x1, C x2, Val c);
  public:
    /// Constructor for rewriting \a p during cloning
    NqTer(Space& home, Propagator& p, A x0, B x1, C x2, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$x_0+x_1+x_2 \neq c\f$
    static ExecStatus post(Home home, A x0, B x1, C x2, Val c);
  };

  /**
   * \brief %Propagator for bounds consistent ternary linear less or equal
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a A, \a B,
   * and \a C give the types of the views.
   *
   * The propagation condition \a pc refers to all three views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class A, class B, class C>
  class LqTer : public LinTer<Val,A,B,C,PC_INT_BND> {
  protected:
    using LinTer<Val,A,B,C,PC_INT_BND>::x0;
    using LinTer<Val,A,B,C,PC_INT_BND>::x1;
    using LinTer<Val,A,B,C,PC_INT_BND>::x2;
    using LinTer<Val,A,B,C,PC_INT_BND>::c;

    /// Constructor for cloning \a p
    LqTer(Space& home, LqTer& p);
    /// Constructor for creation
    LqTer(Home home, A x0, B x1, C x2, Val c);
  public:
    /// Constructor for rewriting \a p during cloning
    LqTer(Space& home, Propagator& p, A x0, B x1, C x2, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$x_0+x_1+x_2 \leq c\f$
    static ExecStatus post(Home home, A x0, B x1, C x2, Val c);
  };

}}}

#include <gecode/int/linear/int-ter.hpp>

namespace Gecode { namespace Int { namespace Linear {

  /*
   * n-ary propagators
   *
   */

  /**
   * \brief Base-class for n-ary linear propagators
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. Positive views are of
   * type \a P whereas negative views are of type \a N.
   *
   * The propagation condition \a pc refers to all views.
   */
  template<class Val, class P, class N, PropCond pc>
  class Lin : public Propagator {
  protected:
    /// Array of positive views
    ViewArray<P> x;
    /// Array of negative views
    ViewArray<N> y;
    /// Constant value
    Val c;

    /// Constructor for cloning \a p
    Lin(Space& home, Lin<Val,P,N,pc>& p);
    /// Constructor for creation
    Lin(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c);
  public:
    /// Cost function (defined as low linear)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };

  /**
   * \brief Base-class for reified n-ary linear propagators
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. Positive views are of
   * type \a P whereas negative views are of type \a N.
   *
   * The propagation condition \a pc refers to all views.
   */
  template<class Val, class P, class N, PropCond pc, class Ctrl>
  class ReLin : public Lin<Val,P,N,pc> {
  protected:
    using Lin<Val,P,N,pc>::x;
    using Lin<Val,P,N,pc>::y;
    /// Control view for reification
    Ctrl b;
    /// Constructor for cloning \a p
    ReLin(Space& home, ReLin& p);
    /// Constructor for creation
    ReLin(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b);
  public:
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };

  /**
   * \brief Compute bounds information for positive views
   *
   * \relates Lin
   */
  template<class Val, class View>
  void bounds_p(ModEventDelta med, ViewArray<View>& x,
                Val& c, Val& sl, Val& su);

  /**
   * \brief Compute bounds information for negative views
   *
   * \relates Lin
   */
  template<class Val, class View>
  void bounds_n(ModEventDelta med, ViewArray<View>& y,
                Val& c, Val& sl, Val& su);

  /**
   * \brief %Propagator for bounds consistent n-ary linear equality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a P and \a N
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class P, class N>
  class Eq : public Lin<Val,P,N,PC_INT_BND> {
  protected:
    using Lin<Val,P,N,PC_INT_BND>::x;
    using Lin<Val,P,N,PC_INT_BND>::y;
    using Lin<Val,P,N,PC_INT_BND>::c;

    /// Constructor for cloning \a p
    Eq(Space& home, Eq& p);
  public:
    /// Constructor for creation
    Eq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i-\sum_{i=0}^{|y|-1}y_i=c\f$
    static ExecStatus
    post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c);
  };

  /**
   * \brief %Propagator for domain consistent n-ary linear equality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a View
   * give the type of the view.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class View>
  class DomEq
    : public Lin<Val,View,View,PC_INT_DOM> {
  protected:
    using Lin<Val,View,View,PC_INT_DOM>::x;
    using Lin<Val,View,View,PC_INT_DOM>::y;
    using Lin<Val,View,View,PC_INT_DOM>::c;

    /// Constructor for cloning \a p
    DomEq(Space& home, DomEq& p);
  public:
    /// Constructor for creation
    DomEq(Home home, ViewArray<View>& x, ViewArray<View>& y, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /**
     * \brief Cost function
     *
     * If in stage for bounds propagation, the cost is
     * low linear. Otherwise it is high crazy.
     */
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i-\sum_{i=0}^{|y|-1}y_i=c\f$
    static ExecStatus
    post(Home home, ViewArray<View>& x, ViewArray<View>& y, Val c);
  };

  /**
   * \brief %Propagator for reified bounds consistent n-ary linear equality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a P and \a N
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class P, class N, class Ctrl, ReifyMode rm>
  class ReEq : public ReLin<Val,P,N,PC_INT_BND,Ctrl> {
  protected:
    using ReLin<Val,P,N,PC_INT_BND,Ctrl>::x;
    using ReLin<Val,P,N,PC_INT_BND,Ctrl>::y;
    using ReLin<Val,P,N,PC_INT_BND,Ctrl>::c;
    using ReLin<Val,P,N,PC_INT_BND,Ctrl>::b;

    /// Constructor for cloning \a p
    ReEq(Space& home, ReEq& p);
  public:
    /// Constructor for creation
    ReEq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\left(\sum_{i=0}^{|x|-1}x_i-\sum_{i=0}^{|y|-1}y_i=c\right)\equiv \operatorname{rm}(b)\f$
    static ExecStatus
    post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c, Ctrl b);
  };

  /**
   * \brief %Propagator for bounds consistent n-ary linear disequality
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a P and \a N
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class P, class N>
  class Nq : public Lin<Val,P,N,PC_INT_VAL> {
  protected:
    using Lin<Val,P,N,PC_INT_VAL>::x;
    using Lin<Val,P,N,PC_INT_VAL>::y;
    using Lin<Val,P,N,PC_INT_VAL>::c;

    /// Constructor for cloning \a p
    Nq(Space& home, Nq& p);
  public:
    /// Constructor for creation
    Nq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i-\sum_{i=0}^{|y|-1}y_i\neq c\f$
    static ExecStatus
    post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c);
  };

  /**
   * \brief %Propagator for bounds consistent n-ary linear less or equal
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a P and \a N
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class P, class N>
  class Lq : public Lin<Val,P,N,PC_INT_BND> {
  protected:
    using Lin<Val,P,N,PC_INT_BND>::x;
    using Lin<Val,P,N,PC_INT_BND>::y;
    using Lin<Val,P,N,PC_INT_BND>::c;

    /// Constructor for cloning \a p
    Lq(Space& home, Lq& p);
  public:
    /// Constructor for creation
    Lq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i-\sum_{i=0}^{|y|-1}y_i\leq c\f$
    static ExecStatus
    post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c);
  };

  /**
   * \brief %Propagator for reified bounds consistent n-ary linear less or equal
   *
   * The type \a Val can be either \c long long int or \c int, defining the
   * numerical precision during propagation. The types \a P and \a N
   * give the types of the views.
   *
   * The propagation condition \a pc refers to both views.
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class Val, class P, class N, ReifyMode rm>
  class ReLq : public ReLin<Val,P,N,PC_INT_BND,BoolView> {
  protected:
    using ReLin<Val,P,N,PC_INT_BND,BoolView>::x;
    using ReLin<Val,P,N,PC_INT_BND,BoolView>::y;
    using ReLin<Val,P,N,PC_INT_BND,BoolView>::c;
    using ReLin<Val,P,N,PC_INT_BND,BoolView>::b;

    /// Constructor for cloning \a p
    ReLq(Space& home, ReLq& p);
  public:
    /// Constructor for creation
    ReLq(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c, BoolView b);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\left(\sum_{i=0}^{|x|-1}x_i-\sum_{i=0}^{|y|-1}y_i\leq c\right)\equiv \operatorname{rm}(b)\f$
    static ExecStatus
    post(Home home, ViewArray<P>& x, ViewArray<N>& y, Val c, BoolView b);
  };

}}}

#include <gecode/int/linear/int-nary.hpp>
#include <gecode/int/linear/int-dom.hpp>

namespace Gecode { namespace Int { namespace Linear {

  /*
   * Boolean linear propagators
   *
   */

  /**
   * \brief Baseclass for integer Boolean sum
   *
   */
  template<class VX>
  class LinBoolInt : public Propagator {
  protected:
    /// Council for managing single advisor
    Council<Advisor> co;
    /// Boolean views
    ViewArray<VX> x;
    /// Number of active subscriptions
    int n_as;
    /// Number of views that have or had subscriptions
    int n_hs;
    /// Righthandside
    int c;
    /// Normalize by removing unused views
    void normalize(void);
    /// Constructor for cloning \a p
    LinBoolInt(Space& home, LinBoolInt& p);
    /// Constructor for creation
    LinBoolInt(Home home, ViewArray<VX>& x, int n_s, int c);
  public:
    /// Cost function (defined as high unary)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };

  /**
   * \brief %Propagator for integer equal to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class VX>
  class EqBoolInt : public LinBoolInt<VX> {
  protected:
    using LinBoolInt<VX>::co;
    using LinBoolInt<VX>::x;
    using LinBoolInt<VX>::n_as;
    using LinBoolInt<VX>::n_hs;
    using LinBoolInt<VX>::c;
    using LinBoolInt<VX>::disabled;
    /// Constructor for cloning \a p
    EqBoolInt(Space& home, EqBoolInt& p);
    /// Constructor for creation
    EqBoolInt(Home home, ViewArray<VX>& x, int c);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Give advice to propagator
    virtual ExecStatus advise(Space& home, Advisor& a, const Delta& d);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i = c\f$
    static ExecStatus post(Home home, ViewArray<VX>& x, int c);
  };

  /**
   * \brief %Propagator for integer less or equal to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class VX>
  class GqBoolInt : public LinBoolInt<VX> {
  protected:
    using LinBoolInt<VX>::co;
    using LinBoolInt<VX>::x;
    using LinBoolInt<VX>::n_as;
    using LinBoolInt<VX>::n_hs;
    using LinBoolInt<VX>::c;
    using LinBoolInt<VX>::disabled;
    /// Constructor for cloning \a p
    GqBoolInt(Space& home, GqBoolInt& p);
    /// Constructor for creation
    GqBoolInt(Home home, ViewArray<VX>& x, int c);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Give advice to propagator
    virtual ExecStatus advise(Space& home, Advisor& a, const Delta& d);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i \geq c\f$
    static ExecStatus post(Home home, ViewArray<VX>& x, int c);
  };

  /**
   * \brief %Propagator for integer disequal to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class VX>
  class NqBoolInt : public BinaryPropagator<VX,PC_INT_VAL> {
  protected:
    using BinaryPropagator<VX,PC_INT_VAL>::x0;
    using BinaryPropagator<VX,PC_INT_VAL>::x1;
    /// Views not yet subscribed to
    ViewArray<VX> x;
    /// Righthandside
    int c;
    /// Update subscription
    bool resubscribe(Space& home, VX& y);
    /// Constructor for posting
    NqBoolInt(Home home,  ViewArray<VX>& b, int c);
    /// Constructor for cloning \a p
    NqBoolInt(Space& home, NqBoolInt<VX>& p);
  public:
    /// Copy propagator during cloning
    virtual Actor* copy(Space& home);
    /// Cost function (defined as low linear)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i \neq c\f$
    static  ExecStatus post(Home home, ViewArray<VX>& b, int c);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };


  /**
   * \brief Baseclass for reified integer Boolean sum
   *
   */
  template<class VX, class VB>
  class ReLinBoolInt : public Propagator {
  protected:
    /// Council for single advisor
    Council<Advisor> co;
    /// Views
    ViewArray<VX> x;
    /// Number of subscriptions
    int n_s;
    /// Righthandside
    int c;
    /// Control variable
    VB b;
    /// Normalize by removing unused views
    void normalize(void);
    /// Constructor for cloning \a p
    ReLinBoolInt(Space& home, ReLinBoolInt& p);
    /// Constructor for creation
    ReLinBoolInt(Home home, ViewArray<VX>& x, int c, VB b);
  public:
    /// Cost function (defined as high unary)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };


  /**
   * \brief Traits for Boolean negation view
   */
  template<class BV>
  class BoolNegTraits {};

  /**
   * \brief %Propagator for reified integer less or equal to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class VX, class VB, ReifyMode rm>
  class ReGqBoolInt : public ReLinBoolInt<VX,VB> {
  protected:
    using ReLinBoolInt<VX,VB>::co;
    using ReLinBoolInt<VX,VB>::x;
    using ReLinBoolInt<VX,VB>::c;
    using ReLinBoolInt<VX,VB>::b;
    using ReLinBoolInt<VX,VB>::n_s;
    using ReLinBoolInt<VX,VB>::normalize;
    /// Constructor for cloning \a p
    ReGqBoolInt(Space& home, ReGqBoolInt& p);
    /// Constructor for creation
    ReGqBoolInt(Home home, ViewArray<VX>& x, int c, VB b);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Give advice to propagator
    virtual ExecStatus advise(Space& home, Advisor& a, const Delta& d);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\left(\sum_{i=0}^{|x|-1}x_i \geq\right) c \equiv \operatorname{rm}(b)\f$
    static ExecStatus post(Home home, ViewArray<VX>& x, int c, VB b);
  };

  /**
   * \brief %Propagator for reified integer equal to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class VX, class VB, ReifyMode rm>
  class ReEqBoolInt : public ReLinBoolInt<VX,VB> {
  protected:
    using ReLinBoolInt<VX,VB>::co;
    using ReLinBoolInt<VX,VB>::x;
    using ReLinBoolInt<VX,VB>::c;
    using ReLinBoolInt<VX,VB>::b;
    using ReLinBoolInt<VX,VB>::n_s;
    using ReLinBoolInt<VX,VB>::normalize;
    /// Constructor for cloning \a p
    ReEqBoolInt(Space& home, ReEqBoolInt& p);
    /// Constructor for creation
    ReEqBoolInt(Home home, ViewArray<VX>& x, int c, VB b);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Give advice to propagator
    virtual ExecStatus advise(Space& home, Advisor& a, const Delta& d);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\left(\sum_{i=0}^{|x|-1}x_i = c\right)\equiv \operatorname{rm}(b)\f$
    static ExecStatus post(Home home, ViewArray<VX>& x, int c, VB b);
  };

}}}

#include <gecode/int/linear/bool-int.hpp>

namespace Gecode { namespace Int { namespace Linear {

  /**
   * \brief Base-class for Boolean linear propagators
   *
   */
  template<class XV, class YV>
  class LinBoolView : public Propagator {
  protected:
    /// Boolean views
    ViewArray<XV> x;
    /// View to compare number of assigned Boolean views to
    YV y;
    /// Righthandside (constant part from Boolean views assigned to 1)
    int c;
    /// Constructor for cloning \a p
    LinBoolView(Space& home, LinBoolView& p);
    /// Constructor for creation
    LinBoolView(Home home, ViewArray<XV>& x, YV y, int c);
  public:
    /// Cost function (defined as low linear)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };


  /**
   * \brief %Propagator for equality to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class XV, class YV>
  class EqBoolView : public LinBoolView<XV,YV> {
  protected:
    using LinBoolView<XV,YV>::x;
    using LinBoolView<XV,YV>::y;
    using LinBoolView<XV,YV>::c;

    /// Constructor for cloning \a p
    EqBoolView(Space& home, EqBoolView& p);
    /// Constructor for creation
    EqBoolView(Home home, ViewArray<XV>& x, YV y, int c);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i = y+c\f$
    static ExecStatus post(Home home, ViewArray<XV>& x, YV y, int c);
  };

  /**
   * \brief %Propagator for disequality to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class XV, class YV>
  class NqBoolView : public LinBoolView<XV,YV> {
  protected:
    using LinBoolView<XV,YV>::x;
    using LinBoolView<XV,YV>::y;
    using LinBoolView<XV,YV>::c;

    /// Constructor for cloning \a p
    NqBoolView(Space& home, NqBoolView& p);
    /// Constructor for creation
    NqBoolView(Home home, ViewArray<XV>& x, YV y, int c);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i \neq y+c\f$
    static ExecStatus post(Home home, ViewArray<XV>& x, YV y, int c);
  };

  /**
   * \brief %Propagator for greater or equal to Boolean sum (cardinality)
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class XV, class YV>
  class GqBoolView : public LinBoolView<XV,YV> {
  protected:
    using LinBoolView<XV,YV>::x;
    using LinBoolView<XV,YV>::y;
    using LinBoolView<XV,YV>::c;

    /// Constructor for cloning \a p
    GqBoolView(Space& home, GqBoolView& p);
    /// Constructor for creation
    GqBoolView(Home home, ViewArray<XV>& x, YV y, int c);
  public:
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator for \f$\sum_{i=0}^{|x|-1}x_i \geq y+c\f$
    static ExecStatus post(Home home, ViewArray<XV>& x, YV y, int c);
  };

}}}

#include <gecode/int/linear/bool-view.hpp>

namespace Gecode { namespace Int { namespace Linear {

  /// Coefficient and Boolean view
  class ScaleBool {
  public:
    /// Integer coefficient
    int      a;
    /// Boolean view
    BoolView x;
  };

  /// Array of scale Boolean views
  class ScaleBoolArray {
  private:
    /// First entry in array
    ScaleBool* _fst;
    /// One after last entry in array
    ScaleBool* _lst;
  public:
    /// Default constructor
    ScaleBoolArray(void);
    /// Create array with \a n elements
    ScaleBoolArray(Space& home, int n);
    /// Subscribe propagator \a p
    void subscribe(Space& home, Propagator& p);
    /// Cancel propagator \a p
    void cancel(Space& home, Propagator& p);
    /// Schedule propagator \a p
    void reschedule(Space& home, Propagator& p);
    /// Update \a sba during copying
    void update(Space& home, ScaleBoolArray& sba);
    /// Return pointer to first element
    ScaleBool* fst(void) const;
    /// Return pointer after last element
    ScaleBool* lst(void) const;
    /// Set pointer to first element
    void fst(ScaleBool* f);
    /// Set pointer after last element
    void lst(ScaleBool* l);
    /// Test whether array is empty
    bool empty(void) const;
    /// Return number of elements
    int size(void) const;
  private:
    /// For sorting array in decreasing order of coefficients
    class ScaleDec {
    public:
      bool
      operator ()(const ScaleBool& x, const ScaleBool& y);
    };
  public:
    /// Sort array in decreasing order of coefficients
    void sort(void);
  };


  /// Empty array of scale Boolean views
  class EmptyScaleBoolArray {
  public:
    /// Default constructor
    EmptyScaleBoolArray(void);
    /// Create array with \a n elements
    EmptyScaleBoolArray(Space& home, int n);
    /// Subscribe propagator \a p
    void subscribe(Space& home, Propagator& p);
    /// Cancel propagator \a p
    void cancel(Space& home, Propagator& p);
    /// Schedule propagator \a p
    void reschedule(Space& home, Propagator& p);
    /// Update \a sba during copying
    void update(Space& home, EmptyScaleBoolArray& esba);
    /// Return pointer to first element
    ScaleBool* fst(void) const;
    /// Return pointer after last element
    ScaleBool* lst(void) const;
    /// Set pointer to first element
    void fst(ScaleBool* f);
    /// Set pointer after last element
    void lst(ScaleBool* l);
    /// Test whether array is empty
    bool empty(void) const;
    /// Return number of elements
    int size(void) const;
    /// Sort array in decreasing order of coefficients
    void sort(void);
  };


  /**
   * \brief Base class for linear Boolean constraints with coefficients
   *
   */
  template<class SBAP, class SBAN, class VX, PropCond pcx>
  class LinBoolScale : public Propagator {
  protected:
    /// Positive Boolean views with coefficients on left-hand side
    SBAP p;
    /// Negative Boolean views with coefficients on left-hand side
    SBAN n;
    /// Integer view on right-hand side
    VX   x;
    /// Integer constant on right-hand side
    int  c;
  public:
    /// Constructor for creation
    LinBoolScale(Home home, SBAP& p, SBAN& n, VX x, int c);
    /// Constructor for cloning \a pr
    LinBoolScale(Space& home, Propagator& pr,
                 SBAP& p, SBAN& n, VX x, int c);
    /// Cost function (defined as low linear)
    virtual PropCost cost(const Space& home, const ModEventDelta& med) const;
    /// Schedule function
    virtual void reschedule(Space& home);
    /// Delete propagator and return its size
    virtual size_t dispose(Space& home);
  };

  /**
   * \brief %Propagator for equality to Boolean sum with coefficients
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class SBAP, class SBAN, class VX>
  class EqBoolScale : public LinBoolScale<SBAP,SBAN,VX,PC_INT_BND> {
  protected:
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::p;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::n;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::x;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::c;
  public:
    /// Constructor for creation
    EqBoolScale(Home home, SBAP& p, SBAN& n, VX x, int c);
    /// Constructor for cloning \a pr
    EqBoolScale(Space& home, Propagator& pr,
                SBAP& p, SBAN& n, VX x, int c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator
    static ExecStatus post(Home home, SBAP& p, SBAN& n, VX x, int c);
  };

  /**
   * \brief %Propagator for inequality to Boolean sum with coefficients
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class SBAP, class SBAN, class VX>
  class LqBoolScale : public LinBoolScale<SBAP,SBAN,VX,PC_INT_BND> {
  protected:
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::p;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::n;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::x;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_BND>::c;
  public:
    /// Constructor for creation
    LqBoolScale(Home home, SBAP& p, SBAN& n, VX x, int c);
    /// Constructor for cloning \a pr
    LqBoolScale(Space& home, Propagator& pr,
                SBAP& p, SBAN& n, VX x, int c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator
    static ExecStatus post(Home home, SBAP& p, SBAN& n, VX x, int c);
  };

  /**
   * \brief %Propagator for disequality to Boolean sum with coefficients
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  template<class SBAP, class SBAN, class VX>
  class NqBoolScale : public LinBoolScale<SBAP,SBAN,VX,PC_INT_VAL> {
  protected:
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_VAL>::p;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_VAL>::n;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_VAL>::x;
    using LinBoolScale<SBAP,SBAN,VX,PC_INT_VAL>::c;
  public:
    /// Constructor for creation
    NqBoolScale(Home home, SBAP& p, SBAN& n, VX x, int c);
    /// Constructor for cloning \a pr
    NqBoolScale(Space& home, Propagator& pr,
                SBAP& p, SBAN& n, VX x, int c);
    /// Create copy during cloning
    virtual Actor* copy(Space& home);
    /// Perform propagation
    virtual ExecStatus propagate(Space& home, const ModEventDelta& med);
    /// Post propagator
    static ExecStatus post(Home home, SBAP& p, SBAN& n, VX x, int c);
  };

}}}

#include <gecode/int/linear/bool-scale.hpp>

namespace Gecode { namespace Int { namespace Linear {

  /**
   * \brief Class for describing linear term \f$a\cdot x\f$
   *
   */
  template<class View>
  class Term {
  public:
    /// Coefficient
    int a;
    /// View
    View x;
    /// Original position in array (for sorting into canonical order)
    int p;
  };

  /** \brief Estimate lower and upper bounds
   *
   * Estimates the boundaries for a linear expression
   * \f$\sum_{i=0}^{n-1}t_i + c\f$. If the boundaries exceed
   * the limits as defined in Limits::Int, these boundaries
   * are returned.
   *
   * \param t array of linear terms
   * \param n size of array
   * \param c constant
   * \param l lower bound
   * \param u upper bound
   *
   */
  template<class View>
  void estimate(Term<View>* t, int n, int c,
                int& l, int& u);

  /**
   * \brief Post propagator for linear constraint over integers
   * \param home current space
   * \param t array of linear terms over integers
   * \param n size of array
   * \param irt type of relation
   * \param c result of linear constraint
   *
   * All variants for linear constraints share the following properties:
   *  - Variables occurring multiply in the term array are replaced
   *    by a single occurrence: for example, \f$ax+bx\f$ becomes
   *    \f$(a+b)x\f$.
   *  - If in the above simplification the value for \f$(a+b)\f$ (or for
   *    \f$a\f$ and \f$b\f$) exceeds the limits for integers as
   *    defined in Limits::Int, an exception of type
   *    Int::NumericalOverflow is thrown.
   *  - Assume linear terms for the constraint
   *    \f$\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_{irt} c\f$.
   *    If  \f$|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i\f$ exceeds the limits
   *    for long long ints as defined in Limits::Int, an exception of
   *    type Int::NumericalOverflow is thrown.
   *  - In all other cases, the created propagators are accurate (that
   *    is, they will not silently overflow during propagation).
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  GECODE_INT_EXPORT void
  post(Home home, Term<IntView>* t, int n, IntRelType irt, int c,
       IntPropLevel=IPL_DEF);

  /**
   * \brief Post reified propagator for linear constraint
   * \param home current space
   * \param t array of linear terms
   * \param n size of array
   * \param irt type of relation
   * \param c result of linear constraint
   * \param r reification specification
   *
   * All variants for linear constraints share the following properties:
   *  - Only bounds consistency is supported.
   *  - Variables occurring multiply in the term array are replaced
   *    by a single occurrence: for example, \f$ax+bx\f$ becomes
   *    \f$(a+b)x\f$.
   *  - If in the above simplification the value for \f$(a+b)\f$ (or for
   *    \f$a\f$ and \f$b\f$) exceeds the limits for integers as
   *    defined in Limits::Int, an exception of type
   *    Int::NumericalOverflow is thrown.
   *  - Assume linear terms for the constraint
   *    \f$\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_{irt} c\f$.
   *    If  \f$|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i\f$ exceeds the limits
   *    for long long ints as defined in Limits::Int, an exception of
   *    type Int::NumericalOverflow is thrown.
   *  - In all other cases, the created propagators are accurate (that
   *    is, they will not silently overflow during propagation).
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  GECODE_INT_EXPORT void
  post(Home home, Term<IntView>* t, int n, IntRelType irt, int c, Reify r,
       IntPropLevel=IPL_DEF);

  /**
   * \brief Post propagator for linear constraint over Booleans
   * \param home current space
   * \param t array of linear terms over Booleans
   * \param n size of array
   * \param irt type of relation
   * \param c result of linear constraint
   *
   * All variants for linear constraints share the following properties:
   *  - Variables occurring multiply in the term array are replaced
   *    by a single occurrence: for example, \f$ax+bx\f$ becomes
   *    \f$(a+b)x\f$.
   *  - If in the above simplification the value for \f$(a+b)\f$ (or for
   *    \f$a\f$ and \f$b\f$) exceeds the limits for integers as
   *    defined in Limits::Int, an exception of type
   *    Int::NumericalOverflow is thrown.
   *  - Assume linear terms for the constraint
   *    \f$\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_{irt} c\f$.
   *    If  \f$|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i\f$ exceeds the limits
   *    for integers as defined in Limits::Int, an exception of
   *    type Int::NumericalOverflow is thrown.
   *  - In all other cases, the created propagators are accurate (that
   *    is, they will not silently overflow during propagation).
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  GECODE_INT_EXPORT void
  post(Home home, Term<BoolView>* t, int n, IntRelType irt, int c,
       IntPropLevel=IPL_DEF);

  /**
   * \brief Post propagator for reified linear constraint over Booleans
   * \param home current space
   * \param t array of linear terms over Booleans
   * \param n size of array
   * \param irt type of relation
   * \param c result of linear constraint
   * \param r reification specification
   *
   * All variants for linear constraints share the following properties:
   *  - Variables occurring multiply in the term array are replaced
   *    by a single occurrence: for example, \f$ax+bx\f$ becomes
   *    \f$(a+b)x\f$.
   *  - If in the above simplification the value for \f$(a+b)\f$ (or for
   *    \f$a\f$ and \f$b\f$) exceeds the limits for integers as
   *    defined in Limits::Int, an exception of type
   *    Int::NumericalOverflow is thrown.
   *  - Assume linear terms for the constraint
   *    \f$\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_{irt} c\f$.
   *    If  \f$|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i\f$ exceeds the limits
   *    for integers as defined in Limits::Int, an exception of
   *    type Int::NumericalOverflow is thrown.
   *  - In all other cases, the created propagators are accurate (that
   *    is, they will not silently overflow during propagation).
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  GECODE_INT_EXPORT void
  post(Home home, Term<BoolView>* t, int n, IntRelType irt, int c, Reify r,
       IntPropLevel=IPL_DEF);

  /**
   * \brief Post propagator for linear constraint over Booleans
   * \param home current space
   * \param t array of linear terms over Booleans
   * \param n size of array
   * \param irt type of relation
   * \param y variable right hand side of linear constraint
   * \param c constant right hand side of linear constraint
   *
   * All variants for linear constraints share the following properties:
   *  - Variables occurring multiply in the term array are replaced
   *    by a single occurrence: for example, \f$ax+bx\f$ becomes
   *    \f$(a+b)x\f$.
   *  - If in the above simplification the value for \f$(a+b)\f$ (or for
   *    \f$a\f$ and \f$b\f$) exceeds the limits for integers as
   *    defined in Limits::Int, an exception of type
   *    Int::NumericalOverflow is thrown.
   *  - Assume linear terms for the constraint
   *    \f$\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_{irt} c\f$.
   *    If  \f$|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i\f$ exceeds the limits
   *    for integers as defined in Limits::Int, an exception of
   *    type Int::NumericalOverflow is thrown.
   *  - In all other cases, the created propagators are accurate (that
   *    is, they will not silently overflow during propagation).
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  GECODE_INT_EXPORT void
  post(Home home, Term<BoolView>* t, int n, IntRelType irt, IntView y, int c=0,
       IntPropLevel=IPL_DEF);

  /**
   * \brief Post propagator for reified linear constraint over Booleans
   * \param home current space
   * \param t array of linear terms over Booleans
   * \param n size of array
   * \param irt type of relation
   * \param y variable right hand side of linear constraint
   * \param r reification specification
   *
   * All variants for linear constraints share the following properties:
   *  - Variables occurring multiply in the term array are replaced
   *    by a single occurrence: for example, \f$ax+bx\f$ becomes
   *    \f$(a+b)x\f$.
   *  - If in the above simplification the value for \f$(a+b)\f$ (or for
   *    \f$a\f$ and \f$b\f$) exceeds the limits for integers as
   *    defined in Limits::Int, an exception of type
   *    Int::NumericalOverflow is thrown.
   *  - Assume linear terms for the constraint
   *    \f$\sum_{i=0}^{|x|-1}a_i\cdot x_i\sim_{irt} c\f$.
   *    If  \f$|c|+\sum_{i=0}^{|x|-1}a_i\cdot x_i\f$ exceeds the limits
   *    for integers as defined in Limits::Int, an exception of
   *    type Int::NumericalOverflow is thrown.
   *  - In all other cases, the created propagators are accurate (that
   *    is, they will not silently overflow during propagation).
   *
   * Requires \code #include <gecode/int/linear.hh> \endcode
   * \ingroup FuncIntProp
   */
  GECODE_INT_EXPORT void
  post(Home home, Term<BoolView>* t, int n, IntRelType irt, IntView y,
       Reify r, IntPropLevel=IPL_DEF);

}}}

#include <gecode/int/linear/post.hpp>

#endif

// STATISTICS: int-prop