1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
*
* Copyright:
* Patrick Pekczynski, 2004
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Int { namespace Sorted {
/**
* \brief Glover's maximum matching in a bipartite graph
*
* Compute a matching in the bipartite convex intersection graph with
* one partition containing the x views and the other containing
* the y views. The algorithm works with an implicit array structure
* of the intersection graph.
*
* Union-Find Implementation of F.Glover's matching algorithm.
*
* The idea is to mimic a priority queue storing x-indices
* \f$[i_0,\dots, i_{n-1}]\f$, s.t. the upper domain bounds are sorted
* \f$D_{i_0} \leq\dots\leq D_{i_{n-1}}\f$ where \f$ D_{i_0}\f$
* is the top element
*
*/
template<class View>
inline bool
glover(ViewArray<View>& x, ViewArray<View>& y,
int tau[], int phi[], OfflineMinItem sequence[], int vertices[]) {
int xs = x.size();
OfflineMin seq(sequence, vertices, xs);
int s = 0;
seq.makeset();
for (int z = 0; z < xs; z++) { // forall y nodes
int maxy = y[z].max();
// creating the sequence of inserts and extractions from the queue
for( ; s <xs && x[s].min() <= maxy; s++) {
seq[s].iset = z;
seq[z].rank++;
}
}
// offline-min-procedure
for (int i = 0; i < xs; i++) {
// the upper bound of the x-node should be minimal
int perm = tau[i];
// find the iteration where \tau(i) became a matching candidate
int iter = seq[perm].iset;
if (iter<0)
return false;
int j = 0;
j = seq.find_pc(iter);
// check whether the sequence is valid
if (j >= xs)
return false;
// if there is no intersection between the matching candidate
// and the y node then there exists NO perfect matching
if (x[perm].max() < y[j].min())
return false;
phi[j] = perm;
seq[perm].iset = -5; //remove from candidate set
int sqjsucc = seq[j].succ;
if (sqjsucc < xs) {
seq.unite(j,sqjsucc,sqjsucc);
} else {
seq[seq[j].root].name = sqjsucc; // end of sequence achieved
}
// adjust tree list
int pr = seq[j].pred;
if (pr != -1)
seq[pr].succ = sqjsucc;
if (sqjsucc != xs)
seq[sqjsucc].pred = pr;
}
return true;
}
/**
* \brief Symmetric glover function for the upper domain bounds
*
*/
template<class View>
inline bool
revglover(ViewArray<View>& x, ViewArray<View>& y,
int tau[], int phiprime[], OfflineMinItem sequence[],
int vertices[]) {
int xs = x.size();
OfflineMin seq(sequence, vertices, xs);
int s = xs - 1;
seq.makeset();
int miny = 0;
for (int z = xs; z--; ) { // forall y nodes
miny = y[z].min();
// creating the sequence of inserts and extractions from the queue
for ( ; s > -1 && x[tau[s]].max() >= miny; s--) {
seq[tau[s]].iset = z;
seq[z].rank++;
}
}
// offline-min-procedure
for (int i = xs; i--; ) {
int perm = i;
int iter = seq[perm].iset;
if (iter < 0)
return false;
int j = 0;
j = seq.find_pc(iter);
if (j <= -1)
return false;
// if there is no intersection between the matching candidate
// and the y node then there exists NO perfect matching
if (x[perm].min() > y[j].max())
return false;
phiprime[j] = perm;
seq[perm].iset = -5;
int sqjsucc = seq[j].pred;
if (sqjsucc >= 0) {
seq.unite(j, sqjsucc, sqjsucc);
} else {
seq[seq[j].root].name = sqjsucc; // end of sequence achieved
}
// adjust tree list
int pr = seq[j].succ;
if (pr != xs)
seq[pr].pred = sqjsucc;
if (sqjsucc != -1)
seq[sqjsucc].succ = pr;
}
return true;
}
}}}
// STATISTICS: int-prop
|