1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Patrick Pekczynski <pekczynski@ps.uni-sb.de>
*
* Copyright:
* Patrick Pekczynski, 2004
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
namespace Gecode { namespace Int { namespace Sorted {
/**
* \brief Compute the sccs of the oriented intersection-graph
*
* An y-node \f$y_j\f$ and its corresponding matching mate
* \f$x_{\phi(j)}\f$ form the smallest possible scc, since both
* edges \f$e_1(y_j, x_{\phi(j)})\f$ and \f$e_2(x_{\phi(j)},y_j)\f$
* are both contained in the oriented intersection graph.
*
* Hence a scc containing more than two nodes is represented as an
* array of SccComponent entries,
* \f$[ y_{j_0},x_{\phi(j_0)},\dots,y_{j_k},x_{\phi(j_k)}]\f$.
*
* Parameters
* scclist ~ resulting sccs
*/
template<class View>
inline void
computesccs(ViewArray<View>& x, ViewArray<View>& y,
int phi[], SccComponent sinfo[], int scclist[]) {
// number of sccs is bounded by xs (number of x-nodes)
int xs = x.size();
Region r;
Support::StaticStack<int,Region> cs(r,xs);
//select an y node from the graph
for (int j = 0; j < xs; j++) {
int yjmin = y[j].min(); // the processed min
while (!cs.empty() && x[phi[sinfo[cs.top()].rightmost]].max() < yjmin) {
// the topmost scc cannot "reach" y_j or a node to the right of it
cs.pop();
}
// a component has the form C(y-Node, matching x-Node)
// C is a minimal scc in the oriented intersection graph
// we only store y_j-Node, since \phi(j) gives the matching X-node
int i = phi[j];
int ximin = x[i].min();
while (!cs.empty() && ximin <= y[sinfo[cs.top()].rightmost].max()) {
// y_j can "reach" cs.top() ,
// i.e. component c can reach component cs.top()
// merge c and cs.top() into new component
int top = cs.top();
// connecting
sinfo[sinfo[j].leftmost].left = top;
sinfo[top].right = sinfo[j].leftmost;
// moving leftmost
sinfo[j].leftmost = sinfo[top].leftmost;
// moving rightmost
sinfo[sinfo[top].leftmost].rightmost = j;
cs.pop();
}
cs.push(j);
}
cs.reset();
// now we mark all components with the respective scc-number
// labeling is bound by O(k) which is bound by O(n)
for (int i = 0; i < xs; i++) {
if (sinfo[i].left == i) { // only label variables in sccs
int scc = sinfo[i].rightmost;
int z = i;
//bound by the size of the largest scc = k
while (sinfo[z].right != z) {
sinfo[z].rightmost = scc;
scclist[phi[z]] = scc;
z = sinfo[z].right;
}
sinfo[z].rightmost = scc;
scclist[phi[z]] = scc;
}
}
}
/**
* \brief Narrowing the domains of the x variables
*
* Due to the correspondence between perfect matchings in the "reduced"
* intersection graph of \a x and \a y views and feasible
* assignments for the sorted constraint the new domain bounds for
* views in \a x are computed as
* - lower bounds:
* \f$ S_i \geq E_l \f$
* where \f$y_l\f$ is the leftmost neighbour of \f$x_i\f$
* - upper bounds:
* \f$ S_i \leq E_h \f$
* where \f$y_h\f$ is the rightmost neighbour of \f$x_i\f$
*/
template<class View, bool Perm>
inline bool
narrow_domx(Space& home,
ViewArray<View>& x,
ViewArray<View>& y,
ViewArray<View>& z,
int tau[],
int[],
int scclist[],
SccComponent sinfo[],
bool& nofix) {
int xs = x.size();
// For every x node
for (int i = 0; i < xs; i++) {
int xmin = x[i].min();
/*
* take the scc-list for the current x node
* start from the leftmost reachable y node of the scc
* and check which Y node in the scc is
* really the rightmost node intersecting x, i.e.
* search for the greatest lower bound of x
*/
int start = sinfo[scclist[i]].leftmost;
while (y[start].max() < xmin) {
start = sinfo[start].right;
}
if (Perm) {
// start is the leftmost-position for x_i
// that denotes the lower bound on p_i
ModEvent me_plb = z[i].gq(home, start);
if (me_failed(me_plb)) {
return false;
}
nofix |= (me_modified(me_plb) && start != z[i].min());
}
ModEvent me_lb = x[i].gq(home, y[start].min());
if (me_failed(me_lb)) {
return false;
}
nofix |= (me_modified(me_lb) &&
y[start].min() != x[i].min());
int ptau = tau[xs - 1 - i];
int xmax = x[ptau].max();
/*
* take the scc-list for the current x node
* start from the rightmost reachable node and check which
* y node in the scc is
* really the rightmost node intersecting x, i.e.
* search for the smallest upper bound of x
*/
start = sinfo[scclist[ptau]].rightmost;
while (y[start].min() > xmax) {
start = sinfo[start].left;
}
if (Perm) {
//start is the rightmost-position for x_i
//that denotes the upper bound on p_i
ModEvent me_pub = z[ptau].lq(home, start);
if (me_failed(me_pub)) {
return false;
}
nofix |= (me_modified(me_pub) && start != z[ptau].max());
}
ModEvent me_ub = x[ptau].lq(home, y[start].max());
if (me_failed(me_ub)) {
return false;
}
nofix |= (me_modified(me_ub) &&
y[start].max() != x[ptau].max());
}
return true;
}
/**
* \brief Narrowing the domains of the y views
*
* analogously to the x views we take
* - for the upper bounds the matching \f$\phi\f$ computed in glover
* and compute the new upper bound by \f$T_j=min(E_j, D_{\phi(j)})\f$
* - for the lower bounds the matching \f$\phi'\f$ computed in revglover
* and update the new lower bound by \f$T_j=max(E_j, D_{\phi'(j)})\f$
*/
template<class View>
inline bool
narrow_domy(Space& home,
ViewArray<View>& x, ViewArray<View>& y,
int phi[], int phiprime[], bool& nofix) {
for (int i=x.size(); i--; ) {
ModEvent me_lb = y[i].gq(home, x[phiprime[i]].min());
if (me_failed(me_lb)) {
return false;
}
nofix |= (me_modified(me_lb) &&
x[phiprime[i]].min() != y[i].min());
ModEvent me_ub = y[i].lq(home, x[phi[i]].max());
if (me_failed(me_ub)) {
return false;
}
nofix |= (me_modified(me_ub) &&
x[phi[i]].max() != y[i].max());
}
return true;
}
}}}
// STATISTICS: int-prop
|