File: propagate.hpp

package info (click to toggle)
gecode-snapshot 6.2.0%2Bgit20240207-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 35,308 kB
  • sloc: cpp: 475,516; perl: 2,077; makefile: 1,816; sh: 198
file content (659 lines) | stat: -rwxr-xr-x 19,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Patrick Pekczynski <pekczynski@ps.uni-sb.de>
 *
 *  Copyright:
 *     Patrick Pekczynski, 2004
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <gecode/int/rel.hh>
#include <gecode/int/distinct.hh>

namespace Gecode { namespace Int { namespace Sorted {


  /*
   * Summary of the propagation algorithm as implemented in the
   * propagate method below:
   *
   * STEP 1: Normalize the domains of the y variables
   * STEP 2: Sort the domains of the x variables according to their lower
   *         and upper endpoints
   * STEP 3: Compute the matchings phi and phiprime with
   *         Glover's matching algorithm
   * STEP 4: Compute the strongly connected components in
   *         the oriented intersection graph
   * STEP 5: Narrow the domains of the variables
   *
   */

  /**
   * \brief Perform bounds consistent sortedness propagation
   *
   * Implements the propagation algorithm for Sorted::Sorted
   * and is provided as separate function, because a second pass of
   * the propagation algorithm is needed in order to achieve idempotency
   * in case explicit permutation variables are provided.
   *
   * If \a Perm is true, permutation variables form the
   * third argument which implies additional inferences,
   * consistency check on the permutation variables and eventually a
   * second pass of the propagation algorithm.
   * Otherwise, the algorithm does not take care of the permutation
   * variables resulting in a better performance.
   */

  template<class View, bool Perm>
  ExecStatus
  bounds_propagation(Space& home, Propagator& p,
                     ViewArray<View>& x,
                     ViewArray<View>& y,
                     ViewArray<View>& z,
                     bool& repairpass,
                     bool& nofix,
                     bool& match_fixed){

    int n = x.size();

    Region r;
    int* tau = r.alloc<int>(n);
    int* phi = r.alloc<int>(n);
    int* phiprime = r.alloc<int>(n);
    OfflineMinItem* sequence = r.alloc<OfflineMinItem>(n);
    int* vertices = r.alloc<int>(n);

    if (match_fixed) {
      // sorting is determined, sigma and tau coincide
      for (int i=0; i<n; i++)
        tau[z[i].val()] = i;
    } else {
      for (int i=0; i<n; i++)
        tau[i] = i;
    }

    if (Perm) {
      // normalized and sorted
      // collect all bounds

      Rank* allbnd = r.alloc<Rank>(x.size());
#ifndef NDEBUG
      for (int i=n; i--;)
        allbnd[i].min = allbnd[i].max = -1;
#endif
      for (int i=n; i--;) {
        int min = x[i].min();
        int max = x[i].max();
        for (int j=0; j<n; j++) {
          if ( (y[j].min() > min) ||
               (y[j].min() <= min && min <= y[j].max()) ) {
            allbnd[i].min = j;
            break;
          }
        }
        for (int j=n; j--;) {
          if (y[j].min() > max) {
            allbnd[i].max = j-1;
            break;
          } else if (y[j].min() <= max && min <= y[j].max()) {
            allbnd[i].max = j;
            break;
          }
        }
      }

      for (int i=0; i<n; i++) {
        // minimum reachable y-variable
        int minr = allbnd[i].min;
        assert(minr != -1);
        int maxr = allbnd[i].max;
        assert(maxr != -1);

        ModEvent me = x[i].gq(home, y[minr].min());
        if (me_failed(me))
          return ES_FAILED;
        nofix |= (me_modified(me) && (x[i].min() != y[minr].min()));

        me = x[i].lq(home, y[maxr].max());
        if (me_failed(me))
          return ES_FAILED;
        nofix |= (me_modified(me) && (x[i].min() != y[maxr].max()));

        me = z[i].gq(home, minr);
        if (me_failed(me))
          return ES_FAILED;
        nofix |= (me_modified(me) &&  (z[i].min() != minr));

        me = z[i].lq(home, maxr);
        if (me_failed(me))
          return ES_FAILED;
        nofix |= (me_modified(me) &&  (z[i].max() != maxr));
      }

      // channel information from x to y through permutation variables in z
      if (!channel(home,x,y,z,nofix))
        return ES_FAILED;
      if (nofix)
        return ES_NOFIX;
    }

    /*
     * STEP 1:
     *  normalization is implemented in "order.hpp"
     *    o  setting the lower bounds of the y_i domains (\lb E_i)
     *       to max(\lb E_{i-1},\lb E_i)
     *    o  setting the upper bounds of the y_i domains (\ub E_i)
     *       to min(\ub E_i,\ub E_{i+1})
     */

    if (!normalize(home, y, x, nofix))
      return ES_FAILED;

    if (Perm) {
      // check consistency of channeling after normalization
      if (!channel(home,x,y,z,nofix))
        return ES_FAILED;
      if (nofix)
        return ES_NOFIX;
    }


    // if bounds have changed we have to recreate sigma to restore
    // optimized dropping of variables

    sort_sigma<View,Perm>(x,z);

    bool subsumed   = true;
    bool array_subs = false;
    int  dropfst  = 0;
    bool noperm_bc = false;

    if (!check_subsumption<View,Perm>(x,y,z,subsumed,dropfst) ||
        !array_assigned<View,Perm>(home,x,y,z,array_subs,match_fixed,nofix,noperm_bc))
      return ES_FAILED;

    if (subsumed || array_subs)
      return home.ES_SUBSUMED(p);

    /*
     * STEP 2: creating tau
     * Sort the domains of the x variables according
     * to their lower bounds, where we use an
     * intermediate array of integers for sorting
     */
    sort_tau<View,Perm>(x,z,tau);

    /*
     * STEP 3:
     *  Compute the matchings \phi and \phi' between
     *  the x and the y variables
     *  with Glover's matching algorithm.
     *        o  phi is computed with the glover function
     *        o  phiprime is computed with the revglover function
     *  glover and revglover are implemented in "matching.hpp"
     */

    if (!match_fixed) {
      if (!glover(x,y,tau,phi,sequence,vertices))
        return ES_FAILED;
    } else {
      for (int i=0; i<x.size(); i++) {
        phi[i]      = z[i].val();
        phiprime[i] = phi[i];
      }
    }

    for (int i = n; i--; )
      if (!y[i].assigned()) {
        // phiprime is not needed to narrow the domains of the x-variables
        if (!match_fixed &&
            !revglover(x,y,tau,phiprime,sequence,vertices))
          return ES_FAILED;

        if (!narrow_domy(home,x,y,phi,phiprime,nofix))
          return ES_FAILED;

        if (nofix && !match_fixed) {
          // data structures (matching) destroyed by domains with holes

          for (int j = y.size(); j--; )
            phi[j]=phiprime[j]=0;

          if (!glover(x,y,tau,phi,sequence,vertices))
            return ES_FAILED;

          if (!revglover(x,y,tau,phiprime,sequence,vertices))
            return ES_FAILED;

          if (!narrow_domy(home,x,y,phi,phiprime,nofix))
            return ES_FAILED;
        }
        break;
      }

    if (Perm) {
      // check consistency of channeling after normalization
      if (!channel(home,x,y,z,nofix))
        return ES_FAILED;
      if (nofix)
        return ES_NOFIX;
    }

    /*
     * STEP 4:
     *  Compute the strongly connected components in
     *  the oriented intersection graph
     *  the computation of the sccs is implemented in
     *  "narrowing.hpp" in the function narrow_domx
     */

    int* scclist = r.alloc<int>(n);
    SccComponent* sinfo = r.alloc<SccComponent>(n);

    for(int i = n; i--; )
      sinfo[i].left=sinfo[i].right=sinfo[i].rightmost=sinfo[i].leftmost= i;

    computesccs(x,y,phi,sinfo,scclist);

    /*
     * STEP 5:
     *  Narrow the domains of the variables
     *  Also implemented in "narrowing.hpp"
     *  in the functions narrow_domx and narrow_domy
     */

    if (!narrow_domx<View,Perm>(home,x,y,z,tau,phi,scclist,sinfo,nofix))
      return ES_FAILED;

    if (Perm) {
      if (!noperm_bc &&
          !perm_bc<View>
          (home, tau, sinfo, scclist, x,z, repairpass, nofix))
          return ES_FAILED;

      // channeling also needed after normal propagation steps
      // in order to ensure consistency after possible modification in perm_bc
      if (!channel(home,x,y,z,nofix))
        return ES_FAILED;
      if (nofix)
        return ES_NOFIX;
    }

    sort_tau<View,Perm>(x,z,tau);

    if (Perm) {
      // special case of sccs of size 2 denoted by permutation variables
      // used to enforce consistency from x to y
      // case of the upper bound ordering tau
      for (int i = x.size() - 1; i--; ) {
        // two x variables are in the same scc of size 2
        if (z[tau[i]].min() == z[tau[i+1]].min() &&
            z[tau[i]].max() == z[tau[i+1]].max() &&
            z[tau[i]].size() == 2 && z[tau[i]].range()) {
          // if bounds are strictly smaller
          if (x[tau[i]].max() < x[tau[i+1]].max()) {
            ModEvent me = y[z[tau[i]].min()].lq(home, x[tau[i]].max());
            if (me_failed(me))
              return ES_FAILED;
            nofix |= (me_modified(me) &&
                      y[z[tau[i]].min()].max() != x[tau[i]].max());

            me = y[z[tau[i+1]].max()].lq(home, x[tau[i+1]].max());
            if (me_failed(me))
              return ES_FAILED;
            nofix |= (me_modified(me) &&
                      y[z[tau[i+1]].max()].max() != x[tau[i+1]].max());
          }
        }
      }
    }
    return nofix ? ES_NOFIX : ES_FIX;
  }

  template<class View, bool Perm>
  forceinline Sorted<View,Perm>::
  Sorted(Space& home, Sorted<View,Perm>& p):
    Propagator(home, p),
    reachable(p.reachable) {
    x.update(home, p.x);
    y.update(home, p.y);
    z.update(home, p.z);
    w.update(home, p.w);
  }

  template<class View, bool Perm>
  Sorted<View,Perm>::
  Sorted(Home home,
         ViewArray<View>& x0, ViewArray<View>& y0, ViewArray<View>& z0) :
    Propagator(home), x(x0), y(y0), z(z0), w(home,y0), reachable(-1) {
    x.subscribe(home, *this, PC_INT_BND);
    y.subscribe(home, *this, PC_INT_BND);
    if (Perm)
      z.subscribe(home, *this, PC_INT_BND);
  }

  template<class View, bool Perm>
  forceinline size_t
  Sorted<View,Perm>::dispose(Space& home) {
    x.cancel(home,*this, PC_INT_BND);
    y.cancel(home,*this, PC_INT_BND);
    if (Perm)
      z.cancel(home,*this, PC_INT_BND);
    (void) Propagator::dispose(home);
    return sizeof(*this);
  }

  template<class View, bool Perm>
  Actor* Sorted<View,Perm>::copy(Space& home) {
    return new (home) Sorted<View,Perm>(home, *this);
  }

  template<class View, bool Perm>
  PropCost Sorted<View,Perm>::cost(const Space&, const ModEventDelta&) const {
    return PropCost::linear(PropCost::LO, x.size());
  }

  template<class View, bool Perm>
  void
  Sorted<View,Perm>::reschedule(Space& home) {
    x.reschedule(home, *this, PC_INT_BND);
    y.reschedule(home, *this, PC_INT_BND);
    if (Perm)
      z.reschedule(home, *this, PC_INT_BND);
  }

  template<class View, bool Perm>
  ExecStatus
  Sorted<View,Perm>::propagate(Space& home, const ModEventDelta&) {
    int  n           = x.size();
    bool secondpass  = false;
    bool nofix       = false;
    int  dropfst     = 0;

    bool subsumed    = false;
    bool array_subs  = false;
    bool match_fixed = false;

    // normalization of x and y
    if (!normalize(home, y, x, nofix))
      return ES_FAILED;

    // create sigma sorting
    sort_sigma<View,Perm>(x,z);

    bool noperm_bc = false;
    if (!array_assigned<View,Perm>
        (home, x, y, z, array_subs, match_fixed, nofix, noperm_bc))
      return ES_FAILED;

    if (array_subs)
      return home.ES_SUBSUMED(*this);

    sort_sigma<View,Perm>(x,z);

    // in this case check_subsumptions is guaranteed to find
    // the xs ordered by sigma

    if (!check_subsumption<View,Perm>(x,y,z,subsumed,dropfst))
      return ES_FAILED;

    if (subsumed)
      return home.ES_SUBSUMED(*this);

    if (Perm) {
      // dropping possibly yields inconsistent indices on permutation variables
      if (dropfst) {
        reachable = w[dropfst - 1].max();
        bool unreachable = true;
        for (int i = x.size(); unreachable && i-- ; ) {
          unreachable &= (reachable < x[i].min());
        }

        if (unreachable) {
          x.drop_fst(dropfst, home, *this, PC_INT_BND);
          y.drop_fst(dropfst, home, *this, PC_INT_BND);
          z.drop_fst(dropfst, home, *this, PC_INT_BND);
        } else {
          dropfst = 0;
        }
      }

      n = x.size();

      if (n < 2) {
        if (x[0].max() < y[0].min() || y[0].max() < x[0].min())
          return ES_FAILED;
        if (Perm) {
          GECODE_ME_CHECK(z[0].eq(home, w.size() - 1));
        }
        GECODE_REWRITE(*this,(Rel::EqBnd<View,View>::post(home(*this), x[0], y[0])));
      }

      // check whether shifting the permutation variables
      // is necessary after dropping x and y vars
      // highest reachable index
      int  valid = n - 1;
      int  index = 0;
      int  shift = 0;

      for (int i = n; i--; ){
        if (z[i].max() > index)
          index = z[i].max();
        if (index > valid)
          shift = index - valid;
      }

      if (shift) {
        ViewArray<OffsetView> ox(home,n), oy(home,n), oz(home,n);

        for (int i = n; i--; ) {
          GECODE_ME_CHECK(z[i].gq(home, shift));

          oz[i] = OffsetView(z[i], -shift);
          ox[i] = OffsetView(x[i], 0);
          oy[i] = OffsetView(y[i], 0);
        }

        GECODE_ES_CHECK((bounds_propagation<OffsetView,Perm>
                         (home,*this,ox,oy,oz,secondpass,nofix,match_fixed)));

        if (secondpass) {
          GECODE_ES_CHECK((bounds_propagation<OffsetView,Perm>
                           (home,*this,ox,oy,oz,secondpass,nofix,match_fixed)));
        }
      } else {
        GECODE_ES_CHECK((bounds_propagation<View,Perm>
                         (home,*this,x,y,z,secondpass,nofix,match_fixed)));

        if (secondpass) {
          GECODE_ES_CHECK((bounds_propagation<View,Perm>
                           (home,*this,x,y,z,secondpass,nofix,match_fixed)));
        }
      }
    } else {
      // dropping has no consequences
      if (dropfst) {
        x.drop_fst(dropfst, home, *this, PC_INT_BND);
        y.drop_fst(dropfst, home, *this, PC_INT_BND);
      }

      n = x.size();

      if (n < 2) {
        if (x[0].max() < y[0].min() || y[0].max() < x[0].min())
          return ES_FAILED;
        GECODE_REWRITE(*this,(Rel::EqBnd<View,View>::post(home(*this), x[0], y[0])));
      }

      GECODE_ES_CHECK((bounds_propagation<View,Perm>
                       (home, *this, x, y, z,secondpass, nofix, match_fixed)));
      // no second pass possible if there are no permvars
    }

    if (!normalize(home, y, x, nofix))
      return ES_FAILED;

    Region r;
    int* tau = r.alloc<int>(n);
    if (match_fixed) {
      // sorting is determined
      // sigma and tau coincide
      for (int i = x.size(); i--; ) {
        int pi = z[i].val();
        tau[pi] = i;
      }
    } else {
      for (int i = n; i--; ) {
        tau[i] = i;
      }
    }

    sort_tau<View,Perm>(x,z,tau);
    // recreate consistency for already assigned subparts
    // in order of the upper bounds starting at the end of the array
    bool xbassigned = true;
    for (int i = x.size(); i--; ) {
      if (x[tau[i]].assigned() && xbassigned) {
        GECODE_ME_CHECK(y[i].eq(home, x[tau[i]].val()));
      } else {
        xbassigned = false;
      }
    }

    subsumed   = true;
    array_subs = false;
    noperm_bc  = false;

    // creating sorting anew
    sort_sigma<View,Perm>(x,z);

    if (Perm) {
      for (int i = 0; i < x.size() - 1; i++) {
        // special case of subsccs of size2 for the lower bounds
        // two x variables are in the same scc of size 2
        if (z[i].min() == z[i+1].min() &&
            z[i].max() == z[i+1].max() &&
            z[i].size() == 2 && z[i].range()) {
          if (x[i].min() < x[i+1].min()) {
            ModEvent me = y[z[i].min()].gq(home, x[i].min());
            GECODE_ME_CHECK(me);
            nofix |= (me_modified(me) &&
                      y[z[i].min()].min() != x[i].min());

            me = y[z[i+1].max()].gq(home, x[i+1].min());
            GECODE_ME_CHECK(me);
            nofix |= (me_modified(me) &&
                      y[z[i+1].max()].min() != x[i+1].min());
          }
        }
      }
    }

    // check assigned
    // should be sorted
    bool xassigned = true;
    for (int i = 0; i < x.size(); i++) {
      if (x[i].assigned() && xassigned) {
        GECODE_ME_CHECK(y[i].eq(home,x[i].val()));
      } else {
        xassigned = false;
      }
    }

    // sorted check bounds
    // final check that variables are consistent with least and greatest possible
    // values
    int tlb = std::min(x[0].min(), y[0].min());
    int tub = std::max(x[x.size() - 1].max(), y[y.size() - 1].max());
    for (int i = x.size(); i--; ) {
      ModEvent me = y[i].lq(home, tub);
      GECODE_ME_CHECK(me);
      nofix |= me_modified(me) && (y[i].max() != tub);

      me = y[i].gq(home, tlb);
      GECODE_ME_CHECK(me);
      nofix |= me_modified(me) && (y[i].min() != tlb);

      me = x[i].lq(home, tub);
      GECODE_ME_CHECK(me);
      nofix |= me_modified(me) && (x[i].max() != tub);

      me = x[i].gq(home, tlb);
      GECODE_ME_CHECK(me);
      nofix |= me_modified(me) && (x[i].min() != tlb);
    }

    if (!array_assigned<View,Perm>
        (home, x, y, z, array_subs, match_fixed, nofix, noperm_bc))
      return ES_FAILED;

    if (array_subs)
      return home.ES_SUBSUMED(*this);

    if (!check_subsumption<View,Perm>(x,y,z,subsumed,dropfst))
      return ES_FAILED;

    if (subsumed)
      return home.ES_SUBSUMED(*this);

    return nofix ? ES_NOFIX : ES_FIX;
  }

  template<class View, bool Perm>
  ExecStatus
  Sorted<View,Perm>::
  post(Home home,
       ViewArray<View>& x0, ViewArray<View>& y0, ViewArray<View>& z0) {
    int n = x0.size();
    if (n < 2) {
      if ((x0[0].max() < y0[0].min()) || (y0[0].max() < x0[0].min()))
        return ES_FAILED;
      GECODE_ES_CHECK((Rel::EqBnd<View,View>::post(home,x0[0],y0[0])));
      if (Perm) {
        GECODE_ME_CHECK(z0[0].eq(home,0));
      }
    } else {
      if (Perm) {
        ViewArray<View> z(home,n);
        for (int i=n; i--; ) {
          z[i]=z0[i];
          GECODE_ME_CHECK(z[i].gq(home,0));
          GECODE_ME_CHECK(z[i].lq(home,n-1));
        }
        GECODE_ES_CHECK(Distinct::Bnd<View>::post(home,z));
      }
      new (home) Sorted<View,Perm>(home,x0,y0,z0);
    }
    return ES_OK;
  }

}}}

// STATISTICS: int-prop