File: reg.cpp

package info (click to toggle)
gecode-snapshot 6.2.0%2Bgit20240207-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 35,308 kB
  • sloc: cpp: 475,516; perl: 2,077; makefile: 1,816; sh: 198
file content (896 lines) | stat: -rwxr-xr-x 21,679 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Christian Schulte <schulte@gecode.org>
 *
 *  Copyright:
 *     Christian Schulte, 2004
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <gecode/minimodel.hh>

namespace Gecode {

  namespace MiniModel {

    class PosSet;
    /**
     * \brief Allocator for position sets
     */
    typedef Support::BlockAllocator<PosSet,Region> PosSetAllocator;

    class NodeInfo;
    class PosInfo;

  }

  /// Implementation of the actual expression tree
  class REG::Exp {
  public:
    /// Reference counter
    unsigned int use_cnt;
    /// Number of positions
    int _n_pos;
    /**
     * \brief Type of regular expression
     */
    enum ExpType {
      ET_SYMBOL,
      ET_CONC,
      ET_OR,
      ET_STAR
    };
    /// Type of regular expression
    ExpType type;
    /// Symbol or subexpressions
    union {
      /// Symbol
      int  symbol;
      /// Subexpressions
      Exp* kids[2];
    } data;

    /// Compute the follow positions
    MiniModel::PosSet*
    followpos(MiniModel::PosSetAllocator&,MiniModel::PosInfo*);
    /// Increment use counter of \a e
    static void inc(Exp* e);
    /// Decrement use counter of \a e
    static void dec(Exp* e);
    /// Return number of positions of \a e
    static int n_pos(Exp* e);
    /// Print expression to \a os
    void toString(std::ostringstream& os) const;
    /// Print expression
    std::string toString(void) const;

    static void* operator new(size_t);
    static void  operator delete(void*);
  private:
    /// Deallocate memory
    void dispose(void);
  };


  /*
   * Operations on expression nodes
   *
   */


  forceinline void*
  REG::Exp::operator new(size_t s) {
    return heap.ralloc(s);
  }
  forceinline void
  REG::Exp::operator delete(void*) {
    // Deallocation happens in dispose
  }

  void
  REG::Exp::dispose(void) {
    Region region;
    Support::DynamicStack<Exp*,Region> todo(region);
    todo.push(this);
    while (!todo.empty()) {
      Exp* e = todo.pop();
      switch (e->type) {
      case ET_OR:
      case ET_CONC:
        if ((e->data.kids[1] != nullptr) && (--e->data.kids[1]->use_cnt == 0))
          todo.push(e->data.kids[1]);
        // fall through
      case ET_STAR:
        if ((e->data.kids[0] != nullptr) && (--e->data.kids[0]->use_cnt == 0))
          todo.push(e->data.kids[0]);
      default: ;
      }
      heap.rfree(e);
    }
  }

  forceinline void
  REG::Exp::inc(Exp* e) {
    if (e != nullptr)
      e->use_cnt++;
  }
  forceinline void
  REG::Exp::dec(Exp* e) {
    if ((e != nullptr) && (--e->use_cnt == 0))
      e->dispose();
  }


  forceinline int
  REG::Exp::n_pos(Exp* e) {
    return (e != nullptr) ? e->_n_pos : 0;
  }

  void
  REG::Exp::toString(std::ostringstream& os) const {
    switch (type) {
    case ET_SYMBOL:
      os << "[" << data.symbol << "]";
      return;
    case ET_STAR:
      {
        bool par = ((data.kids[0] != nullptr) &&
                    ((data.kids[0]->type == ET_CONC) ||
                     (data.kids[0]->type == ET_OR)));
        os << (par ? "*(" : "*");
        if (data.kids[0]==nullptr) {
          os << "[]";
        } else {
          data.kids[0]->toString(os);
        }
        os << (par ? ")" : "");
        return;
      }
    case ET_CONC:
      {
        bool par0 = ((data.kids[0] != nullptr) &&
                     (data.kids[0]->type == ET_OR));
        os << (par0 ? "(" : "");
        if (data.kids[0]==nullptr) {
          os << "[]";
        } else {
          data.kids[0]->toString(os);
        }
        os << (par0 ? ")+" : "+");
        bool par1 = ((data.kids[1] != nullptr) &&
                     (data.kids[1]->type == ET_OR));
        os << (par1 ? "(" : "");
        if (data.kids[1]==nullptr) {
          os << "[]";
        } else {
          data.kids[1]->toString(os);
        }
        os << (par1 ? ")" : "");
        return;
      }
    case ET_OR:
      if (data.kids[0]==nullptr) {
        os << "[]";
      } else {
        data.kids[0]->toString(os);
      }
      os << "|";
      if (data.kids[1]==nullptr) {
        os << "[]";
      } else {
        data.kids[1]->toString(os);
      }
      return;
    default: GECODE_NEVER;
    }
    GECODE_NEVER;
    return;
  }

  std::string
  REG::Exp::toString(void) const {
    std::ostringstream os;
    toString(os);
    return os.str();
  }


  /*
   * Regular expressions
   *
   */

  forceinline
  REG::REG(Exp* f) : e(f) {}

  REG::REG(void) : e(nullptr) {}

  REG::REG(const REG& r) : e(r.e) {
    REG::Exp::inc(e);
  }

  const REG&
  REG::operator =(const REG& r) {
    if (&r != this) {
      REG::Exp::inc(r.e);
      REG::Exp::dec(e);
      e = r.e;
    }
    return *this;
  }

  REG::~REG(void) {
    REG::Exp::dec(e);
  }

  REG::REG(int s) : e(new Exp) {
    e->use_cnt     = 1;
    e->_n_pos      = 1;
    e->type        = REG::Exp::ET_SYMBOL;
    e->data.symbol = s;
  }

  REG::REG(const IntArgs& x) {
    int n = x.size();
    if (n < 1)
      throw MiniModel::TooFewArguments("REG");
    Region region;
    Exp** a = region.alloc<Exp*>(n);
    // Initialize with symbols
    for (int i=n; i--; ) {
      a[i] = new Exp();
      a[i]->use_cnt     = 1;
      a[i]->_n_pos      = 1;
      a[i]->type        = REG::Exp::ET_SYMBOL;
      a[i]->data.symbol = x[i];
    }
    // Build a balanced tree of alternative nodes
    for (int m=n; m>1; ) {
      if (m & 1) {
        m -= 1;
        Exp* e1 = a[m];
        Exp* e2 = a[0];
        a[0] = new Exp;
        a[0]->use_cnt      = 1;
        a[0]->_n_pos       = REG::Exp::n_pos(e1) + REG::Exp::n_pos(e2);
        a[0]->type         = REG::Exp::ET_OR;
        a[0]->data.kids[0] = e1;
        a[0]->data.kids[1] = e2;
      } else {
        m >>= 1;
        for (int i=0; i<m; i++) {
          Exp* e1 = a[2*i];
          Exp* e2 = a[2*i+1];
          a[i] = new Exp;
          a[i]->use_cnt      = 1;
          a[i]->_n_pos       = REG::Exp::n_pos(e1) + REG::Exp::n_pos(e2);
          a[i]->type         = REG::Exp::ET_OR;
          a[i]->data.kids[0] = e1;
          a[i]->data.kids[1] = e2;
        }
      }
    }
    e = a[0];
  }

  REG
  REG::operator |(const REG& r2) {
    if (e == r2.e)
      return *this;
    Exp* f = new Exp();
    f->use_cnt      = 1;
    f->_n_pos       = REG::Exp::n_pos(e) + REG::Exp::n_pos(r2.e);
    f->type         = REG::Exp::ET_OR;
    f->data.kids[0] = e;    REG::Exp::inc(e);
    f->data.kids[1] = r2.e; REG::Exp::inc(r2.e);
    REG r(f);
    return r;
  }

  REG&
  REG::operator |=(const REG& r2) {
    if (e == r2.e)
      return *this;
    Exp* f = new Exp();
    f->use_cnt      = 1;
    f->_n_pos       = REG::Exp::n_pos(e) + REG::Exp::n_pos(r2.e);
    f->type         = REG::Exp::ET_OR;
    f->data.kids[0] = e;
    f->data.kids[1] = r2.e; REG::Exp::inc(r2.e);
    e=f;
    return *this;
  }

  REG
  REG::operator +(const REG& r2) {
    if (e == nullptr)    return r2;
    if (r2.e == nullptr) return *this;
    Exp* f = new Exp();
    f->use_cnt      = 1;
    f->_n_pos       = REG::Exp::n_pos(e) + REG::Exp::n_pos(r2.e);
    f->type         = REG::Exp::ET_CONC;
    f->data.kids[0] = e;    REG::Exp::inc(e);
    f->data.kids[1] = r2.e; REG::Exp::inc(r2.e);
    REG r(f);
    return r;
  }

  REG&
  REG::operator +=(const REG& r2) {
    if (r2.e == nullptr)
      return *this;
    if (e == nullptr) {
      e=r2.e; REG::Exp::inc(e);
    } else {
      Exp* f = new Exp();
      f->use_cnt      = 1;
      f->_n_pos       = REG::Exp::n_pos(e) + REG::Exp::n_pos(r2.e);
      f->type         = REG::Exp::ET_CONC;
      f->data.kids[0] = e;
      f->data.kids[1] = r2.e; REG::Exp::inc(r2.e);
      e=f;
    }
    return *this;
  }

  REG
  REG::operator *(void) {
    if ((e == nullptr) || (e->type == REG::Exp::ET_STAR))
      return *this;
    Exp* f = new Exp();
    f->use_cnt      = 1;
    f->_n_pos       = REG::Exp::n_pos(e);
    f->type         = REG::Exp::ET_STAR;
    f->data.kids[0] = e; REG::Exp::inc(e);
    REG r(f);
    return r;
  }

  REG
  REG::operator ()(unsigned int n, unsigned int m) {
    REG r;
    if ((n>m) || (m == 0))
      return r;
    if (n>0) {
      unsigned int i = n;
      REG r0 = *this;
      while (i>0)
        if (i & 1) {
          r = r0+r; i--;
        } else {
          r0 = r0+r0; i >>= 1;
        }
    }
    if (m > n) {
      unsigned int i = m-n;
      REG s0;
      s0 = s0 | *this;
      REG s;
      while (i>0)
        if (i & 1) {
          s = s0+s; i--;
        } else {
          s0 = s0+s0; i >>= 1;
        }
      r = r + s;
    }
    return r;
  }

  REG
  REG::operator ()(unsigned int n) {
    REG r;
    if (n > 0) {
      REG r0 = *this;
      unsigned int i = n;
      while (i>0)
        if (i & 1) {
          r = r0+r; i--;
        } else {
          r0 = r0+r0; i >>= 1;
        }
    }
    return r+**this;
  }

  REG
  REG::operator +(void) {
    return this->operator ()(1);
  }

  std::string
  REG::toString(void) const {
    if (e==nullptr) {
      return "[]";
    }
    return e->toString();
  }

  namespace MiniModel {

    /*
     * Sets of positions
     *
     */

    /**
     * \brief Order on position sets
     */
    enum PosSetCmp {
      PSC_LE,
      PSC_EQ,
      PSC_GR
    };

    /**
     * \brief Sets of positions
     */
    class PosSet : public Support::BlockClient<PosSet,Region> {
      // Maintain sets of positions in inverse order
      // This makes the check whether the last position is included
      // more efficient.
    public:
      int pos; PosSet* next;

      PosSet(void);
      PosSet(int);

      bool in(int) const;
      static PosSetCmp cmp(PosSet*,PosSet*);
      static PosSet*   cup(PosSetAllocator&,PosSet*,PosSet*);
    };


    forceinline
    PosSet::PosSet(void) {}
    forceinline
    PosSet::PosSet(int p) : pos(p), next(nullptr) {}


    forceinline bool
    PosSet::in(int p) const {
      for (const PosSet* ps = this; ps != nullptr; ps = ps->next)
        if (ps->pos == p) {
          return true;
        } else if (ps->pos < p) {
          return false;
        }
      return false;
    }

    forceinline PosSetCmp
    PosSet::cmp(PosSet* ps1, PosSet* ps2) {
      while ((ps1 != nullptr) && (ps2 != nullptr)) {
        if (ps1 == ps2)
          return PSC_EQ;
        if (ps1->pos < ps2->pos)
          return PSC_LE;
        if (ps1->pos > ps2->pos)
          return PSC_GR;
        ps1 = ps1->next; ps2 = ps2->next;
      }
      if (ps1 == ps2)
        return PSC_EQ;
      return ps1 == nullptr ? PSC_LE : PSC_GR;
    }

    PosSet*
    PosSet::cup(PosSetAllocator& psm, PosSet* ps1, PosSet* ps2) {
      PosSet*  ps;
      PosSet** p = &ps;
      while ((ps1 != nullptr) && (ps2 != nullptr)) {
        if (ps1 == ps2) {
          *p = ps1; return ps;
        }
        PosSet* n = new (psm) PosSet;
        *p = n; p = &n->next;
        if (ps1->pos == ps2->pos) {
          n->pos = ps1->pos;
          ps1 = ps1->next; ps2 = ps2->next;
        } else if (ps1->pos > ps2->pos) {
          n->pos = ps1->pos; ps1 = ps1->next;
        } else {
          n->pos = ps2->pos; ps2 = ps2->next;
        }
      }
      *p = (ps1 != nullptr) ? ps1 : ps2;
      return ps;
    }


    /// Node information computed during traversal of the expressions
    class NodeInfo {
    public:
      bool    nullable;
      PosSet* firstpos;
      PosSet* lastpos;
      NodeInfo(bool n=false, PosSet* fp=nullptr, PosSet* lp=nullptr);
    };

    /// Expression information
    class ExpInfo {
    public:
      REG::Exp* exp;
      bool open;
      ExpInfo(REG::Exp* e=nullptr);
    };

    /**
     * \brief Information on positions collected during traversal
     *
     */
    class PosInfo {
    public:
      int     symbol;
      PosSet* followpos;
    };

    forceinline
    NodeInfo::NodeInfo(bool n, PosSet* fp, PosSet* lp)
      : nullable(n), firstpos(fp), lastpos(lp) {}

    forceinline
    ExpInfo::ExpInfo(REG::Exp* e)
      : exp(e), open(true) {}

  }

  forceinline MiniModel::PosSet*
  REG::Exp::followpos(MiniModel::PosSetAllocator& psm,
                      MiniModel::PosInfo* pi) {
    int p=0;

    using MiniModel::PosSet;
    using MiniModel::NodeInfo;
    using MiniModel::ExpInfo;

    Region region;

    Support::DynamicStack<ExpInfo,Region> todo(region);
    Support::DynamicStack<NodeInfo,Region> done(region);

    // Start with first expression to be processed
    todo.push(ExpInfo(this));

    do {
      if (todo.top().exp == nullptr) {
        todo.pop();
        done.push(NodeInfo(true,nullptr,nullptr));
      } else {
        switch (todo.top().exp->type) {
        case ET_SYMBOL:
          {
            pi[p].symbol = todo.pop().exp->data.symbol;
            PosSet* ps = new (psm) PosSet(p++);
            done.push(NodeInfo(false,ps,ps));
          }
          break;
        case ET_STAR:
          if (todo.top().open) {
            // Evaluate subexpression recursively
            todo.top().open = false;
            todo.push(todo.top().exp->data.kids[0]);
          } else {
            todo.pop();
            NodeInfo ni = done.pop();
            for (PosSet* ps = ni.lastpos; ps != nullptr; ps = ps->next)
              pi[ps->pos].followpos =
                PosSet::cup(psm,pi[ps->pos].followpos,ni.firstpos);
            done.push(NodeInfo(true,ni.firstpos,ni.lastpos));
          }
          break;
        case ET_CONC:
          if (todo.top().open) {
            // Evaluate subexpressions recursively
            todo.top().open = false;
            REG::Exp* e = todo.top().exp;
            todo.push(e->data.kids[1]);
            todo.push(e->data.kids[0]);
          } else {
            todo.pop();
            NodeInfo ni1 = done.pop();
            NodeInfo ni0 = done.pop();
            for (PosSet* ps = ni0.lastpos; ps != nullptr; ps = ps->next)
              pi[ps->pos].followpos =
                PosSet::cup(psm,pi[ps->pos].followpos,ni1.firstpos);
            done.push(NodeInfo(ni0.nullable & ni1.nullable,
                               ni0.nullable ?
                               PosSet::cup(psm,ni0.firstpos,ni1.firstpos) : ni0.firstpos,
                               ni1.nullable ?
                               PosSet::cup(psm,ni0.lastpos,ni1.lastpos) : ni1.lastpos));
          }
          break;
        case ET_OR:
          if (todo.top().open) {
            // Evaluate subexpressions recursively
            todo.top().open = false;
            REG::Exp* e = todo.top().exp;
            todo.push(e->data.kids[1]);
            todo.push(e->data.kids[0]);
          } else {
            todo.pop();
            NodeInfo ni1 = done.pop();
            NodeInfo ni0 = done.pop();
            done.push(NodeInfo(ni0.nullable | ni1.nullable,
                               PosSet::cup(psm,ni0.firstpos,ni1.firstpos),
                               PosSet::cup(psm,ni0.lastpos,ni1.lastpos)));
          }
          break;
        default: GECODE_NEVER;
        }
      }
    } while (!todo.empty());
    return done.top().firstpos;
  }


  namespace MiniModel {

    class StateNode;

    /**
     * \brief Allocator for state nodes
     */
    typedef Support::BlockAllocator<StateNode,Heap> StatePoolAllocator;

    /**
     * \brief %Node together with state information
     */
    class StateNode : public Support::BlockClient<StateNode,Heap> {
    public:
      PosSet*    pos;
      int        state;
      StateNode* next;
      StateNode* left;
      StateNode* right;
    };

    /**
     * \brief %State pool combines a tree of states together with yet unprocessed states
     */
    class StatePool {
    public:
      int   n_states;
      StateNode  root;
      StateNode* next;
      StateNode* all;

      StatePool(PosSet*);

      StateNode* pop(void);
      bool empty(void) const;

      int state(StatePoolAllocator&, PosSet*);
    };

    forceinline
    StatePool::StatePool(PosSet* ps) {
      next     = &root;
      all      = nullptr;
      n_states = 1;
      root.pos   = ps;
      root.state = 0;
      root.next  = nullptr;
      root.left  = nullptr;
      root.right = nullptr;
    }

    forceinline StateNode*
    StatePool::pop(void) {
      StateNode* n = next;
      next = n->next;
      n->next = all;
      all = n;
      return n;
    }

    forceinline bool
    StatePool::empty(void) const {
      return next == nullptr;
    }

    forceinline int
    StatePool::state(StatePoolAllocator& spm, PosSet* ps) {
      int d = 0;
      StateNode** p = nullptr;
      StateNode*  n = &root;
      do {
        switch (PosSet::cmp(ps,n->pos)) {
        case PSC_EQ: return n->state;
        case PSC_LE: p = &n->left;  n = *p; break;
        case PSC_GR: p = &n->right; n = *p; break;
        default: GECODE_NEVER;
        }
        d++;
      } while (n != nullptr);
      n = new (spm) StateNode; *p = n;
      n->pos   = ps;
      n->state = n_states++;
      n->next  = next;
      n->left  = nullptr;
      n->right = nullptr;
      next = n;
      return n->state;
    }

    /**
     * \brief Sort symbols
     */
    class SymbolsInc {
    public:
      forceinline bool
      operator ()(int x, int y) {
        return x < y;
      }
      forceinline static void
      sort(int s[], int n) {
        SymbolsInc o;
        Support::quicksort<int,SymbolsInc>(s,n,o);
      }
    };


    /**
     * \brief For collecting transitions while constructing a %DFA
     *
     */
    class TransitionBag {
    private:
      Support::DynamicArray<DFA::Transition,Heap> t;
      int n;
    public:
      TransitionBag(void);
      void add(int,int,int);
      void finish(void);
      DFA::Transition* transitions(void);
    };

    forceinline
    TransitionBag::TransitionBag(void) : t(heap), n(0) {}

    forceinline void
    TransitionBag::add(int i_state, int symbol, int o_state) {
      t[n].i_state = i_state;
      t[n].symbol  = symbol;
      t[n].o_state = o_state;
      n++;
    }

    forceinline void
    TransitionBag::finish(void) {
      t[n].i_state = -1;
    }

    forceinline DFA::Transition*
    TransitionBag::transitions(void) {
      return &t[0];
    }


    /**
     * \brief For collecting final states while constructing a %DFA
     *
     */
    class FinalBag {
    private:
      Support::DynamicArray<int,Heap> f;
      int n;
    public:
      FinalBag(void);
      void add(int);
      void finish(void);
      int* finals(void);
    };

    forceinline
    FinalBag::FinalBag(void) : f(heap), n(0) {}

    forceinline void
    FinalBag::add(int state) {
      f[n++] = state;
    }

    forceinline void
    FinalBag::finish(void) {
      f[n] = -1;
    }

    forceinline int*
    FinalBag::finals(void) {
      return &f[0];
    }

  }

  REG::operator DFA(void) {
    using MiniModel::PosSetAllocator;
    using MiniModel::StatePoolAllocator;
    using MiniModel::PosInfo;
    using MiniModel::PosSet;
    using MiniModel::NodeInfo;

    using MiniModel::StatePool;
    using MiniModel::StateNode;

    using MiniModel::TransitionBag;
    using MiniModel::FinalBag;

    using MiniModel::SymbolsInc;

    Region region;
    PosSetAllocator    psm(region);
    StatePoolAllocator spm(heap);
    REG r = *this + REG(Int::Limits::max+1);
    int n_pos = REG::Exp::n_pos(r.e);

    PosInfo* pi = region.alloc<PosInfo>(n_pos);
    for (int i=n_pos; i--; )
      pi[i].followpos = nullptr;

    PosSet* firstpos = r.e->followpos(psm,&pi[0]);

    // Compute symbols
    int* symbols = region.alloc<int>(n_pos);
    for (int i=n_pos; i--; )
      symbols[i] = pi[i].symbol;

    SymbolsInc::sort(&symbols[0],n_pos-1);
    int n_symbols = 1;
    for (int i = 1; i<n_pos-1; i++)
      if (symbols[i-1] != symbols[i])
        symbols[n_symbols++] = symbols[i];

    // Compute states and transitions
    TransitionBag tb;
    StatePool sp(firstpos);
    while (!sp.empty()) {
      StateNode* sn = sp.pop();
      for (int i = n_symbols; i--; ) {
        PosSet* u = nullptr;
        for (PosSet* ps = sn->pos; ps != nullptr; ps = ps->next)
          if (pi[ps->pos].symbol == symbols[i])
            u = PosSet::cup(psm,u,pi[ps->pos].followpos);
        if (u != nullptr)
          tb.add(sn->state,symbols[i],sp.state(spm,u));
      }
    }
    tb.finish();

    // Compute final states
    FinalBag fb;
    for (StateNode* n = sp.all; n != nullptr; n = n->next)
      if (n->pos->in(n_pos-1))
        fb.add(n->state);
    fb.finish();

    return DFA(0,tb.transitions(),fb.finals(),true);
  }

}

// STATISTICS: minimodel-any