1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Copyright:
* Christian Schulte, 2005
* Mikael Lagerkvist, 2005
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <algorithm>
namespace Gecode { namespace Support {
/** \brief Template for linear congruential generators
*
* This class template defines a simple class for linear
* congruential generators.
*
* \ingroup FuncSupport
*/
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
class LinearCongruentialGenerator {
private:
/// The maximum size of random numbers generated.
static constexpr unsigned int max_value = 1UL<<31;
/// Current seed value
unsigned int s;
/// Returns a random integer from the interval \f$[0\ldots n)\f$
unsigned int u(unsigned int n);
/// Returns a random integer from the interval \f$[0\ldots n)\f$
unsigned long long int ull(unsigned long long int n);
public:
/// Set the current seed to \a s
void seed(unsigned int s);
/// Construct the generator instance with seed \a s
LinearCongruentialGenerator(unsigned int s = 1);
/// Return current seed
unsigned int seed(void) const;
/// Generate next number in series
unsigned int next(void);
/// Returns a random integer from the interval \f$[0\ldots n)\f$
template<class Type>
Type operator ()(Type n);
/// Returns a random integer from the interval \f$[0\ldots n)\f$
int operator ()(int n);
/// Returns a random integer from the interval \f$[0\ldots n)\f$
unsigned int operator ()(unsigned int n);
/// Returns a random integer from the interval \f$[0\ldots n)\f$
long long int operator ()(long long int n);
/// Report size occupied
size_t size(void) const;
// Interface for conforming to C++ UniformRandomBitGenerator
/// Type of the produced values
typedef unsigned int result_type;
/// Minimum value that may be produced when no bound is specified
static constexpr result_type min() { return 0; }
/// Maximum value that may be produced when no bound is specified
static constexpr result_type max() { return max_value; }
/// Returns a random integer from the interval \f$[0\ldots max()]\f$
result_type operator()() { return next(); }
};
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline unsigned int
LinearCongruentialGenerator<m,a,q,r>::next(void) {
s = a*(s%q) - r*(s/q);
unsigned int res = s;
if (s==0) s = 1;
return res;
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline void
LinearCongruentialGenerator<m,a,q,r>::seed(unsigned int _s) {
s = _s % m;
if (s == 0) s = 1;
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline
LinearCongruentialGenerator<m,a,q,r>::
LinearCongruentialGenerator(unsigned int _s) {
seed(_s);
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline unsigned int
LinearCongruentialGenerator<m,a,q,r>::seed(void) const {
return s;
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline unsigned int
LinearCongruentialGenerator<m,a,q,r>::u(unsigned int n) {
unsigned int x1 = next() & ((1U<<16)-1U);
unsigned int x2 = next() & ((1U<<16)-1U);
if (n < 2)
return 0;
double d = static_cast<double>(((x1<<16) | x2) % max_value) / max_value;
unsigned int val = static_cast<unsigned int>(n * d);
return (val < n) ? val : (n-1);
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline unsigned long long int
LinearCongruentialGenerator<m,a,q,r>::ull(unsigned long long int n) {
if (n <= UINT_MAX)
return u(static_cast<unsigned int>(n));
unsigned long long int x1 = next() & ((1LLU<<16)-1LLU);
unsigned long long int x2 = next() & ((1LLU<<16)-1LLU);
unsigned long long int x3 = next() & ((1LLU<<16)-1LLU);
unsigned long long int x4 = next() & ((1LLU<<16)-1LLU);
if (n < 2)
return 0;
return ((x1 << 48) | (x2 << 32) | (x3 << 16) | x4) % n;
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
template<class Type>
forceinline Type
LinearCongruentialGenerator<m,a,q,r>::operator ()(Type n) {
return static_cast<Type>(ull(static_cast<unsigned long long int>(n)));
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline unsigned int
LinearCongruentialGenerator<m,a,q,r>::operator ()(unsigned int n) {
return u(n);
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline int
LinearCongruentialGenerator<m,a,q,r>::operator ()(int n) {
return (n < 0) ? 0 :
static_cast<int>(u(static_cast<unsigned int>(n)));
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline long long int
LinearCongruentialGenerator<m,a,q,r>::operator ()(long long int n) {
return (n < 0) ? 0 :
static_cast<long long int>
(ull(static_cast<unsigned long long int>(n)));
}
template<unsigned int m, unsigned int a, unsigned int q, unsigned int r>
forceinline size_t
LinearCongruentialGenerator<m,a,q,r>::size(void) const {
return sizeof(LinearCongruentialGenerator<m,a,q,r>);
}
/** \brief Default values for linear congruential generator
*
* While this pseudo-random number generator is not a good source of
* randomness, it is still an acceptable choice for many
* applications. The choice of values is taken from D. E. Knuth,
* The Art of Computer Programming, Vol 2, Seminumerical Algorithms,
* 3rd edition.
*
* \ingroup FuncSupport
*/
typedef LinearCongruentialGenerator<2147483647, 48271, 44488, 3399>
RandomGenerator;
}}
// STATISTICS: support-any
|