1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Guido Tack <tack@gecode.org>
*
* Copyright:
* Guido Tack, 2005
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/minimodel.hh>
#include "test/set.hh"
using namespace Gecode;
namespace Test { namespace Set {
/// %Tests for domain constraints
namespace Dom {
/**
* \defgroup TaskTestSetDom Domain constraints
* \ingroup TaskTestSet
*/
//@{
static const int d1r[4][2] = {
{-4,-3},{-1,-1},{1,1},{3,5}
};
static IntSet d1(d1r,4);
static const int d1cr[5][2] = {
{Gecode::Set::Limits::min,-5},
{-2,-2},{0,0},{2,2},
{6,Gecode::Set::Limits::max}
};
static IntSet d1c(d1cr,5);
static IntSet ds_33(-3,3);
static const int d2r[2][2] = {
{Gecode::Set::Limits::min,-4}, {4,Gecode::Set::Limits::max}
};
static IntSet ds_33c(d2r,2);
namespace {
static int minSymDiff(const SetAssignment& x, int i, const IntSet& is) {
typedef Iter::Ranges::Diff<CountableSetRanges,IntSetRanges> DiffA;
CountableSetRanges xr00(x.lub, x[i]);
IntSetRanges xr10(is);
DiffA a(xr00,xr10);
typedef Iter::Ranges::Diff<IntSetRanges,CountableSetRanges> DiffB;
CountableSetRanges xr01(x.lub, x[i]);
IntSetRanges xr11(is);
DiffB b(xr11,xr01);
Iter::Ranges::Union<DiffA,DiffB> u(a,b);
return u() ? u.min() : Gecode::Set::Limits::max+1;
}
template<class I>
static bool in(int i, I& c, bool eq=false) {
if (eq && i==Gecode::Set::Limits::max+1)
return true;
Iter::Ranges::Singleton s(i,i);
return Iter::Ranges::subset(s,c);
}
}
/// %Test for equality with a range
class DomRange : public SetTest {
private:
Gecode::SetRelType srt;
IntSet is;
public:
/// Create and register test
DomRange(SetRelType srt0, int n) :
SetTest("Dom::Range::"+str(srt0)+"::"+str(n),n,ds_33,(n == 1)),
srt(srt0), is(srt == Gecode::SRT_CMPL ? ds_33c: ds_33) {}
/// %Test whether \a x is solution
virtual bool solution(const SetAssignment& x) const {
for (int i=x.size(); i--; ) {
CountableSetRanges xr(x.lub, x[i]);
IntSetRanges dr(is);
switch (srt) {
case SRT_EQ:
if (!Iter::Ranges::equal(xr, dr))
return false;
break;
case SRT_LQ:
if (!((!xr()) || in(minSymDiff(x,i,is),dr,true)))
return false;
break;
case SRT_LE:
if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr()))
return false;
break;
case SRT_GQ:
if (!((!dr()) || in(minSymDiff(x,i,is),xr,true)))
return false;
break;
case SRT_GR:
if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr()))
return false;
break;
case SRT_NQ:
if (Iter::Ranges::equal(xr, dr))
return false;
break;
case SRT_SUB:
if (!Iter::Ranges::subset(xr, dr))
return false;
break;
case SRT_SUP:
if (!Iter::Ranges::subset(dr, xr))
return false;
break;
case SRT_DISJ:
{
Gecode::Iter::Ranges::Inter<CountableSetRanges,IntSetRanges>
inter(xr, dr);
if (inter())
return false;
}
break;
case SRT_CMPL:
{
Gecode::Set::RangesCompl<IntSetRanges> drc(dr);
if (!Iter::Ranges::equal(xr,drc))
return false;
}
break;
default: GECODE_NEVER;
}
}
return true;
}
/// Post constraint on \a x
virtual void post(Space& home, SetVarArray& x, IntVarArray&) {
if (x.size() == 1)
Gecode::dom(home, x[0], srt, is);
else
Gecode::dom(home, x, srt, is);
}
/// Post reified constraint on \a x for \a b
virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) {
assert(x.size() == 1);
if (_rand(2) != 0) {
Gecode::dom(home, x[0], srt, is, r);
} else {
switch (r.mode()) {
case Gecode::RM_EQV:
Gecode::rel(home, Gecode::dom(x[0], srt, is) == r.var()); break;
case Gecode::RM_IMP:
Gecode::rel(home, Gecode::dom(x[0], srt, is) << r.var()); break;
case Gecode::RM_PMI:
Gecode::rel(home, Gecode::dom(x[0], srt, is) >> r.var()); break;
default: GECODE_NEVER;
}
}
}
};
/// %Test for equality with an integer range
class DomIntRange : public SetTest {
private:
Gecode::SetRelType srt;
public:
/// Create and register test
DomIntRange(Gecode::SetRelType srt0, int n)
: SetTest("Dom::IntRange::"+str(srt0)+"::"+str(n),1,ds_33,n==1),
srt(srt0) {}
/// %Test whether \a x is solution
virtual bool solution(const SetAssignment& x) const {
for (int i=x.size(); i--; ) {
CountableSetRanges xr(x.lub, x[i]);
IntSet is(-3,-1);
IntSetRanges dr(is);
switch (srt) {
case SRT_EQ:
if (!Iter::Ranges::equal(xr, dr))
return false;
break;
case SRT_LQ:
if (!((!xr()) || in(minSymDiff(x,i,is),dr,true)))
return false;
break;
case SRT_LE:
if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr()))
return false;
break;
case SRT_GQ:
if (!((!dr()) || in(minSymDiff(x,i,is),xr,true)))
return false;
break;
case SRT_GR:
if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr()))
return false;
break;
case SRT_NQ:
if (!(!Iter::Ranges::equal(xr, dr)))
return false;
break;
case SRT_SUB:
if (!(Iter::Ranges::subset(xr, dr)))
return false;
break;
case SRT_SUP:
if (!(Iter::Ranges::subset(dr, xr)))
return false;
break;
case SRT_DISJ:
{
Gecode::Iter::Ranges::Inter<CountableSetRanges,IntSetRanges>
inter(xr, dr);
if (inter())
return false;
}
break;
case SRT_CMPL:
{
Gecode::Set::RangesCompl<IntSetRanges> drc(dr);
if (!Iter::Ranges::equal(xr,drc))
return false;
}
break;
default: GECODE_NEVER;
}
}
return true;
}
/// Post constraint on \a x
virtual void post(Space& home, SetVarArray& x, IntVarArray&) {
if (x.size() == 1)
Gecode::dom(home, x[0], srt, -3, -1);
else
Gecode::dom(home, x, srt, -3, -1);
}
/// Post reified constraint on \a x for \a b
virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) {
assert(x.size() == 1);
if (_rand(2) != 0) {
Gecode::dom(home, x[0], srt, -3, -1, r);
} else {
switch (r.mode()) {
case Gecode::RM_EQV:
Gecode::rel(home, Gecode::dom(x[0], srt, -3, -1) == r.var()); break;
case Gecode::RM_IMP:
Gecode::rel(home, Gecode::dom(x[0], srt, -3, -1) << r.var()); break;
case Gecode::RM_PMI:
Gecode::rel(home, Gecode::dom(x[0], srt, -3, -1) >> r.var()); break;
default: GECODE_NEVER;
}
}
}
};
/// %Test for equality with an integer
class DomInt : public SetTest {
private:
Gecode::SetRelType srt;
public:
/// Create and register test
DomInt(Gecode::SetRelType srt0, int n) :
SetTest("Dom::Int::"+str(srt0)+"::"+str(n),n,ds_33,n==1),
srt(srt0) {}
/// %Test whether \a x is solution
virtual bool solution(const SetAssignment& x) const {
IntSet is(-3,-3);
for (int i=x.size(); i--; ) {
CountableSetRanges xr(x.lub, x[i]);
IntSetRanges dr(is);
switch (srt) {
case SRT_EQ:
if (!Iter::Ranges::equal(xr, dr))
return false;
break;
case SRT_LQ:
if (!((!xr()) || in(minSymDiff(x,i,is),dr,true)))
return false;
break;
case SRT_LE:
if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr()))
return false;
break;
case SRT_GQ:
if (!((!dr()) || in(minSymDiff(x,i,is),xr,true)))
return false;
break;
case SRT_GR:
if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr()))
return false;
break;
case SRT_NQ:
if (Iter::Ranges::equal(xr, dr))
return false;
break;
case SRT_SUB:
if (!(Iter::Ranges::subset(xr, dr)))
return false;
break;
case SRT_SUP:
if (!(Iter::Ranges::subset(dr, xr)))
return false;
break;
case SRT_DISJ:
{
Gecode::Iter::Ranges::Inter<CountableSetRanges,IntSetRanges>
inter(xr, dr);
if (inter())
return false;
break;
}
case SRT_CMPL:
{
Gecode::Set::RangesCompl<IntSetRanges> drc(dr);
if (!Iter::Ranges::equal(xr,drc))
return false;
break;
}
default: GECODE_NEVER;
}
}
return true;
}
/// Post constraint on \a x
virtual void post(Space& home, SetVarArray& x, IntVarArray&) {
if (x.size() == 1)
Gecode::dom(home, x[0], srt, -3);
else
Gecode::dom(home, x, srt, -3);
}
/// Post reified constraint on \a x for \a b
virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) {
assert(x.size() == 1);
if (_rand(2) != 0) {
Gecode::dom(home, x[0], srt, -3, r);
} else {
switch (r.mode()) {
case Gecode::RM_EQV:
Gecode::rel(home, Gecode::dom(x[0], srt, -3) == r.var()); break;
case Gecode::RM_IMP:
Gecode::rel(home, Gecode::dom(x[0], srt, -3) << r.var()); break;
case Gecode::RM_PMI:
Gecode::rel(home, Gecode::dom(x[0], srt, -3) >> r.var()); break;
default: GECODE_NEVER;
}
}
}
};
/// %Test for equality with a domain
class DomDom : public SetTest {
private:
Gecode::SetRelType srt;
Gecode::IntSet is;
public:
/// Create and register test
DomDom(Gecode::SetRelType srt0, int n) :
SetTest("Dom::Dom::"+str(srt0)+"::"+str(n),n,d1,(n == 1)),
srt(srt0), is(srt == Gecode::SRT_CMPL ? d1c: d1) {}
/// %Test whether \a x is solution
virtual bool solution(const SetAssignment& x) const {
for (int i=x.size(); i--; ) {
CountableSetRanges xr(x.lub, x[i]);
IntSetRanges dr(is);
switch (srt) {
case SRT_EQ:
if (!Iter::Ranges::equal(xr, dr))
return false;
break;
case SRT_LQ:
if (!((!xr()) || in(minSymDiff(x,i,is),dr,true)))
return false;
break;
case SRT_LE:
if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr()))
return false;
break;
case SRT_GQ:
if (!((!dr()) || in(minSymDiff(x,i,is),xr,true)))
return false;
break;
case SRT_GR:
if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr()))
return false;
break;
case SRT_NQ:
if (Iter::Ranges::equal(xr, dr))
return false;
break;
case SRT_SUB:
if (!Iter::Ranges::subset(xr, dr))
return false;
break;
case SRT_SUP:
if (!Iter::Ranges::subset(dr, xr))
return false;
break;
case SRT_DISJ:
{
Gecode::Iter::Ranges::Inter<CountableSetRanges,IntSetRanges>
inter(xr, dr);
if (inter())
return false;
}
break;
case SRT_CMPL:
{
Gecode::Set::RangesCompl<IntSetRanges> drc(dr);
if (!Iter::Ranges::equal(xr,drc))
return false;
}
break;
default: GECODE_NEVER;
}
}
return true;
}
/// Post constraint on \a x
virtual void post(Space& home, SetVarArray& x, IntVarArray&) {
if (x.size() == 1)
Gecode::dom(home, x[0], srt, is);
else
Gecode::dom(home, x, srt, is);
}
/// Post reified constraint on \a x for \a b
virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) {
assert(x.size() == 1);
Gecode::dom(home, x[0], srt, is, r);
}
};
/// %Test for cardinality range
class CardRange : public SetTest {
public:
/// Create and register test
CardRange(int n)
: SetTest("Dom::CardRange::"+str(n),n,d1,false) {}
/// %Test whether \a x is solution
virtual bool solution(const SetAssignment& x) const {
for (int i=x.size(); i--; ) {
CountableSetRanges xr(x.lub, x[i]);
unsigned int card = Iter::Ranges::size(xr);
if ((card < 2) || (card > 3))
return false;
}
return true;
}
/// Post constraint on \a x
virtual void post(Space& home, SetVarArray& x, IntVarArray&) {
if (x.size() == 1)
Gecode::cardinality(home, x[0], 2, 3);
else
Gecode::cardinality(home, x, 2, 3);
}
};
DomRange _domrange_eq1(SRT_EQ,1);
DomRange _domrange_lq1(SRT_LQ,1);
DomRange _domrange_le1(SRT_LE,1);
DomRange _domrange_gq1(SRT_GQ,1);
DomRange _domrange_gr1(SRT_GR,1);
DomRange _domrange_nq1(SRT_NQ,1);
DomRange _domrange_sub1(SRT_SUB,1);
DomRange _domrange_sup1(SRT_SUP,1);
DomRange _domrange_disj1(SRT_DISJ,1);
DomRange _domrange_cmpl1(SRT_CMPL,1);
DomRange _domrange_eq2(SRT_EQ,2);
DomRange _domrange_lq2(SRT_LQ,2);
DomRange _domrange_le2(SRT_LE,2);
DomRange _domrange_gq2(SRT_GQ,2);
DomRange _domrange_gr2(SRT_GR,2);
DomRange _domrange_nq2(SRT_NQ,2);
DomRange _domrange_sub2(SRT_SUB,2);
DomRange _domrange_sup2(SRT_SUP,2);
DomRange _domrange_disj2(SRT_DISJ,2);
DomRange _domrange_cmpl2(SRT_CMPL,2);
DomIntRange _domintrange_eq1(SRT_EQ,1);
DomIntRange _domintrange_lq1(SRT_LQ,1);
DomIntRange _domintrange_le1(SRT_LE,1);
DomIntRange _domintrange_gq1(SRT_GQ,1);
DomIntRange _domintrange_gr1(SRT_GR,1);
DomIntRange _domintrange_nq1(SRT_NQ,1);
DomIntRange _domintrange_sub1(SRT_SUB,1);
DomIntRange _domintrange_sup1(SRT_SUP,1);
DomIntRange _domintrange_disj1(SRT_DISJ,1);
DomIntRange _domintrange_cmpl1(SRT_CMPL,1);
DomIntRange _domintrange_eq2(SRT_EQ,2);
DomIntRange _domintrange_lq2(SRT_LQ,2);
DomIntRange _domintrange_le2(SRT_LE,2);
DomIntRange _domintrange_gq2(SRT_GQ,2);
DomIntRange _domintrange_gr2(SRT_GR,2);
DomIntRange _domintrange_nq2(SRT_NQ,2);
DomIntRange _domintrange_sub2(SRT_SUB,2);
DomIntRange _domintrange_sup2(SRT_SUP,2);
DomIntRange _domintrange_disj2(SRT_DISJ,2);
DomIntRange _domintrange_cmpl2(SRT_CMPL,2);
DomInt _domint_eq1(SRT_EQ,1);
DomInt _domint_lq1(SRT_LQ,1);
DomInt _domint_le1(SRT_LE,1);
DomInt _domint_gq1(SRT_GQ,1);
DomInt _domint_gr1(SRT_GR,1);
DomInt _domint_nq1(SRT_NQ,1);
DomInt _domint_sub1(SRT_SUB,1);
DomInt _domint_sup1(SRT_SUP,1);
DomInt _domint_disj1(SRT_DISJ,1);
DomInt _domint_cmpl1(SRT_CMPL,1);
DomInt _domint_eq2(SRT_EQ,2);
DomInt _domint_lq2(SRT_LQ,2);
DomInt _domint_le2(SRT_LE,2);
DomInt _domint_gq2(SRT_GQ,2);
DomInt _domint_gr2(SRT_GR,2);
DomInt _domint_nq2(SRT_NQ,2);
DomInt _domint_sub2(SRT_SUB,2);
DomInt _domint_sup2(SRT_SUP,2);
DomInt _domint_disj2(SRT_DISJ,2);
DomInt _domint_cmpl2(SRT_CMPL,2);
DomDom _domdom_eq1(SRT_EQ,1);
DomDom _domdom_lq1(SRT_LQ,1);
DomDom _domdom_le1(SRT_LE,1);
DomDom _domdom_gq1(SRT_GQ,1);
DomDom _domdom_gr1(SRT_GR,1);
DomDom _domdom_nq1(SRT_NQ,1);
DomDom _domdom_sub1(SRT_SUB,1);
DomDom _domdom_sup1(SRT_SUP,1);
DomDom _domdom_disj1(SRT_DISJ,1);
DomDom _domdom_cmpl1(SRT_CMPL,1);
DomDom _domdom_eq2(SRT_EQ,2);
DomDom _domdom_lq2(SRT_LQ,2);
DomDom _domdom_le2(SRT_LE,2);
DomDom _domdom_gq2(SRT_GQ,2);
DomDom _domdom_gr2(SRT_GR,2);
DomDom _domdom_nq2(SRT_NQ,2);
DomDom _domdom_sub2(SRT_SUB,2);
DomDom _domdom_sup2(SRT_SUP,2);
DomDom _domdom_disj2(SRT_DISJ,2);
DomDom _domdom_cmpl2(SRT_CMPL,2);
CardRange _cr1(1);
CardRange _cr2(2);
}}}
// STATISTICS: test-set
|