1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Copyright:
* Mikael Lagerkvist, 2006
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <vector>
#include <algorithm>
#include <sstream>
using namespace Gecode;
namespace {
using std::vector;
/// Layout of the cards
vector<vector<int> > layout;
/// information for locating particular cards in the layout
vector<int> layer, pile;
/** \brief Generates\ref layout.
*
* This function generates the layeout and intializes \ref layer and
* \ref pile from it. The layout is randomly generated from the
* supplied seed.
*/
void generate(int seed) {
// The layout consists of 17 piles of 3 cards each
layout = vector<vector<int> >(17, vector<int>(3));
// Deck without the Ace of Spades
vector<int> deck(51);
for (int i = 51; i--; ) deck[i] = i+1;
Support::RandomGenerator rnd(seed+1);
std::random_shuffle(deck.begin(), deck.end(), rnd);
// Place cards from deck
int pos = 0;
for (int i = 17; i--; )
for (int j = 3; j--; )
layout[i][j] = deck[pos++];
// Location-information for each card
layer = vector<int>(52);
pile = vector<int>(52);
for (int i = 17; i--; ) {
for (int j = 3; j--; ) {
layer[layout[i][j]] = j;
pile[ layout[i][j]] = i;
}
}
}
}
/**
* \brief %Example: Black hole patience
*
* This example solves instances of the black-hole patience game.
*
* The model of the problem is mostly taken from "Search in the
* Patience Game 'Black Hole'", by Ian P. Gent, Chris Jefferson, Tom
* Kelsey, Ins Lynce, Ian Miguel, Peter Nightingale, Barbara
* M. Smith, and S. Armagan Tarim.
*
* The conditional symmetry identified in the above paper can be
* eliminated (enabled by default).
*
* \ingroup Example
*
*/
class BlackHole : public Script {
protected:
IntVarArray x, ///< Card at position
y; ///< Position of card
/// Return a string representing the card of value val
std::string
card(int val) const {
const char* suit = "SCHD";
std::ostringstream o;
o << std::setw(2) << (1 + (val%13)) << suit[val/13];
return o.str();
}
public:
/// Symmetry variants
enum {
SYMMETRY_NONE, ///< No symmetry breaking
SYMMETRY_CONDITIONAL ///< Breaking conditional symmetries
};
/// Propagation of placement-rules
enum {
PROPAGATION_REIFIED, ///< Reified propagation
PROPAGATION_DFA, ///< Extensional propagation using automatons
PROPAGATION_TUPLE_SET ///< Extensional propagation using tables
};
/// Actual model
BlackHole(const SizeOptions& opt)
: Script(opt), x(*this, 52, 0,51), y(*this, 52, 0,51) {
// Black ace at bottom
rel(*this, x[0], IRT_EQ, 0);
// x is order and y is placement
channel(*this, x, y, opt.ipl());
// The placement rules: the absolute value of the difference
// between two consecutive cards is 1 or 12.
if (opt.propagation() == PROPAGATION_REIFIED) {
// Build table for accessing the rank of a card
IntArgs modtable(52);
for (int i = 0; i < 52; ++i) {
modtable[i] = i%13;
}
for (int i = 0; i < 51; ++i) {
IntVar x1(*this, 0, 12), x2(*this, 0, 12);
element(*this, modtable, x[i], x1);
element(*this, modtable, x[i+1], x2);
const int dr[2] = {1, 12};
IntVar diff(*this, IntSet(dr, 2));
rel(*this, abs(x1-x2) == diff, IPL_DOM);
}
} else if (opt.propagation() == PROPAGATION_DFA) {
// Build table for allowed tuples
REG expression;
for (int r = 13; r--; ) {
for (int s1 = 4; s1--; ) {
for (int s2 = 4; s2--; ) {
for (int i = -1; i <= 1; i+=2) {
REG r1 = REG(r+13*s1);
REG r2 = REG((r+i+52+13*s2)%52);
REG r = r1 + r2;
expression |= r;
}
}
}
}
DFA table(expression);
for (int i = 51; i--; )
extensional(*this, IntVarArgs({x[i],x[i+1]}), table);
} else { // opt.propagation() == PROPAGATION_TUPLE_SET)
// Build table for allowed tuples
TupleSet ts(2);
for (int r = 13; r--; )
for (int s1 = 4; s1--; )
for (int s2 = 4; s2--; )
for (int i = -1; i <= 1; i+=2)
ts.add({r+13*s1, (r+i+52+13*s2)%52});
ts.finalize();
for (int i = 51; i--; )
extensional(*this, IntVarArgs({x[i],x[i+1]}), ts);
}
// A card must be played before the one under it.
for (int i = 17; i--; )
for (int j = 2; j--; )
rel(*this, y[layout[i][j]] < y[layout[i][j+1]]);
// Compute and break the conditional symmetries that are dependent
// on the current layout.
// Two cards with the same rank but different suits are symmetric
// with respect to their placement in the black hole if changing
// their order does not affect any other card.
if (opt.symmetry() == SYMMETRY_CONDITIONAL) {
// For all ranks
for (int r = 13; r--; ) {
// For all pairs of suits
for (int s1 = 4; s1--; ) {
for (int s2 = s1; s2--; ) {
int c1 = 13*s1 + r,
c2 = 13*s2 + r;
// The ace of spades is already placed
if (c1 == 0 || c2 == 0) continue;
// Piles are handled by the rules of the game
if (pile[c1] == pile[c2]) continue;
// Fix the right order of the cards
int o1 = c1, o2 = c2;
if (pile[c1] > pile[c2] && layer[c2] >= layer[c1])
std::swap(o1, o2);
// cond is the condition for the symmetry
BoolVarArgs ba;
// Both cards played after the ones on top of them
for (int i = 0; i < layer[o1]; ++i)
ba << expr(*this, (y[layout[pile[o1]][i]] < y[o2]));
for (int i = 0; i < layer[o2]; ++i)
ba << expr(*this, (y[layout[pile[o2]][i]] < y[o1]));
// Both cards played before the ones under them
for (int i = layer[o1]+1; i < 3; ++i)
ba << expr(*this, (y[o2] < y[layout[pile[o1]][i]]));
for (int i = layer[o2]+1; i < 3; ++i)
ba << expr(*this, (y[o1] < y[layout[pile[o2]][i]]));
// Cond holds when all the above holds
BoolVar cond(*this, 0, 1);
rel(*this, BOT_AND, ba, cond);
// If cond is fulfilled, then we can order the cards
// cond -> (y[o1] < y[o2])
rel(*this, !cond || (y[o1] < y[o2]));
}
}
}
}
// Install custom brancher
branch(*this, x, INT_VAR_NONE(), INT_VAL(&val));
}
/// Value selection function for branching
static int val(const Space&, IntVar x, int) {
int v = -1;
int w = 4;
for (IntVarValues vals(x); vals(); ++vals)
if (layer[vals.val()] < w) {
v = vals.val();
if ((w = layer[vals.val()]) == 0)
break;
}
assert(v >= 1 && v < 52);
return v;
}
/// Print instance and solution
virtual void
print(std::ostream& os) const {
os << "Layout:" << std::endl;
for (int i = 0; i < 17; i++) {
for (int j = 0; j < 3; j++)
os << card(layout[i][j]) << " ";
if ((i+1) % 3 == 0)
os << std::endl;
else
os << " \t";
}
os << std::endl << std::endl;
os << "Solution:" << std::endl;
for (int i = 0; i < 52; ++i) {
if (x[i].assigned())
os << card(x[i].val()) << " ";
else
os << " ";
if ((i + 1) % 13 == 0)
os << std::endl;
}
os << std::endl;
os << std::endl;
}
/// Constructor for cloning \a s
BlackHole(BlackHole& s) : Script(s) {
x.update(*this, s.x);
y.update(*this, s.y);
}
/// Copy during cloning
virtual Space*
copy(void) {
return new BlackHole(*this);
}
};
/** \brief Main-function
* \relates BlackHole
*/
int
main(int argc, char* argv[]) {
SizeOptions opt("Black Hole patience");
opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL);
opt.symmetry(BlackHole::SYMMETRY_NONE,"none",
"no symmetry breaking");
opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL,"conditional",
"break conditional symmetries");
opt.propagation(BlackHole::PROPAGATION_TUPLE_SET);
opt.propagation(BlackHole::PROPAGATION_REIFIED,
"reified", "use reified propagation");
opt.propagation(BlackHole::PROPAGATION_DFA,
"dfa", "use DFA-based extensional propagation");
opt.propagation(BlackHole::PROPAGATION_TUPLE_SET,
"tuple-set", "use TupleSet-based extensional propagation");
opt.ipl(IPL_DOM);
opt.parse(argc,argv);
// Generates the new board
generate(opt.size());
Script::run<BlackHole,DFS,SizeOptions>(opt);
return 0;
}
// STATISTICS: example-any
|