File: colored-matrix.cpp

package info (click to toggle)
gecode 6.2.0-7
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 27,380 kB
  • sloc: cpp: 337,599; perl: 2,048; makefile: 1,798; sh: 215
file content (804 lines) | stat: -rwxr-xr-x 26,360 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Mikael Lagerkvist <lagerkvist@gecode.org>
 *
 *  Copyright:
 *     Mikael Lagerkvist, 2012
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>

#include <fstream>

using namespace Gecode;

/** \brief %ColoredMatrixOptions.
 *
 * Used in the \ref ColoredMatrix example.
 */
class ColoredMatrixOptions : public Options {
private:
  /// Height of matrix
  Driver::UnsignedIntOption _height;
  /// Width of matrix
  Driver::UnsignedIntOption _width;
  /// Size of square matrix
  Driver::UnsignedIntOption _size;
  /// Number of colors to use
  Driver::UnsignedIntOption _colors;
  /// How to implement the not all equal constraint
  Driver::StringOption _not_all_equal;
  /// How to implement the same or 0 constraint
  Driver::StringOption _same_or_0;
  /// How to implement the distinct except 0 constraint
  Driver::StringOption _distinct_except_0;
  /// How to implement the no monochrome rectangle constraint
  Driver::StringOption _no_monochrome_rectangle;

public:
  /// Initialize options for example with name \a n
  ColoredMatrixOptions(const char* n);

  /// Parse options from arguments \a argv (number is \a argc)
  void parse(int& argc, char* argv[]) {
    Options::parse(argc,argv);
  }

  /// Return height
  int height(void) const {
    if (_size.value() == 0U)
      return static_cast<int>(_height.value());
    else
      return static_cast<int>(_size.value());
  }
  /// Return width
  int width(void)  const {
    if (_size.value() == 0U)
      return static_cast<int>(_width.value());
    else
      return static_cast<int>(_size.value());
  }
  /// Return number of colors
  int colors(void) const { return static_cast<int>(_colors.value()); }
  /// Return how to implement not all equals
  int not_all_equal(void) const { return _not_all_equal.value(); }
  /// Return how to implement same or 0
  int same_or_0(void) const { return _same_or_0.value(); }
  /// Return how to implement distinct except 0
  int distinct_except_0(void) const { return _distinct_except_0.value(); }
  /// Return how to implement distinct except 0
  int no_monochrome_rectangle(void) const {
    return _no_monochrome_rectangle.value();
  }
};

namespace {
  /** \name Constraint description constructors.
   *
   * These functions implement constructors for descriptions of
   * constraints as extensional specifications.
   *
   * \relates ColoredMatrix
   */
  //@{

  /** Return DFA for the same_or_0 constraint.
   *
   * Constraint models the expression \f$(x = y \land z = y) \lor (x
   * \neq y \land z = 0)\f$ for variables \f$\langle x, y,
   * zq\rangle\f$.
   */
  DFA same_or_0_dfa(int colors);

  /** Return tuple set for the same_or_0 constraint.
   *
   * Constraint models the expression \f$(x = y \land z = y) \lor (x
   * \neq y \land z = 0)\f$ for variables \f$\langle x, y,
   * zq\rangle\f$.
   */
  TupleSet same_or_0_tuple_set(int colors);

  /** Return DFA for the distinct_except_0 constraint.
   */
  DFA distinct_except_0_dfa(int colors);

  /** Return DFA for the no monochrome rectangle constraint.
   */
  DFA no_monochrome_rectangle_dfa(int colors);

  /** Return counts for using a global cardninality constraint for the distinct exept 0 constraint.
   */
  IntSetArgs distinct_except_0_counts(int colors, int size);

  /** Return DFA for the not all equals constraint.
   */
  DFA not_all_equal_dfa(int colors);

  //@}
}

/**
 * \brief %Example: Colored matrix example.
 *
 * An n by m matrix is to be filled with k colors. It is a valid colored matrix iff
 * the corners of each rectangle do not have the same color.
 *
 * An example 5 by 4 matrix with three colors:
 * \code
 *   1 1 1 1 1
 *   1 2 2 3 3
 *   1 2 3 2 3
 *   1 2 3 3 2
 * \endcode
 *
 * \ingroup Example
 *
 */
class ColoredMatrix : public IntMinimizeScript {
protected:
  /** \name Instance specification
   */
  //@{
  const ColoredMatrixOptions& opt; ///< Options for model
  const int height;  ///< Height of matrix
  const int width;   ///< Width of matrix
  const int colors;  ///< Number of colors to use
  //@}

  /** \name Problem variables
   */
  //@{
  /// Array for matrix variables
  IntVarArray x;
  /// Maximum color used
  IntVar max_color;
  //@}

  /** Return variable that is zero if a and b differ, or equal to their value if they agree.
   */
  IntVar same_or_0(const IntVar& a, const IntVar& b)
  {
    switch (opt.same_or_0()) {
    case SAME_OR_0_REIFIED: {
      IntVar result(*this, 0, colors);
      BoolVar same = expr(*this, (a == b));
      rel(*this, result, IRT_EQ, a, same);
      // Redundant (implied by previous), but improves efficiency
      rel(*this, result, IRT_NQ, 0, same);
      return result;
    }
    case SAME_OR_0_TUPLE_SET: {
      static TupleSet table = same_or_0_tuple_set(colors);
      IntVar result(*this, 0, colors);
      extensional(*this, IntVarArgs() << a << b << result, table);
      return result;
    }
    case SAME_OR_0_DFA: {
      static const DFA automaton = same_or_0_dfa(colors);
      IntVar result(*this, 0, colors);
      extensional(*this, IntVarArgs() << a << b << result, automaton);
      return result;
    }
    default:
      GECODE_NEVER;
      return IntVar(*this, 0, 0);
    }
  }

  /** Post constraint that all values in v different from 0 are distinct.
   */
  void distinct_except_0(const IntVarArgs& v)
  {
    switch (opt.distinct_except_0()) {
    case DISTINCT_EXCEPT_0_REIFIED:
      for (int i = v.size(); i--; ) {
        BoolVar viIsZero = expr(*this, v[i] == 0);
        for (int j = i; j--; ) {
          rel(*this, viIsZero || (v[i] != v[j]));
        }
      }
      break;
    case DISTINCT_EXCEPT_0_DFA: {
      static const DFA automaton = distinct_except_0_dfa(colors);
      extensional(*this, v, automaton);
      break;
    }
    case DISTINCT_EXCEPT_0_COUNT: {
      static const IntSetArgs counts = distinct_except_0_counts(colors, std::max(width, height));
      count(*this, v, counts, opt.ipl());
      break;
    }
    }
  }

  /** Post constraint that not all variables in v are equal.
   */
  void not_all_equal(const IntVarArgs& v)
  {
    switch (opt.not_all_equal()) {
    case NOT_ALL_EQUAL_NQ: {
      rel(*this, v, IRT_NQ);
      break;
    }
    case NOT_ALL_EQUAL_NAIVE: {
      // At least one pair must be different.
      // Bad decomposition since too many disjuncts are created.
      BoolVarArgs disequalities;
      for (int i = v.size(); i--; )
        for (int j = i; j--; )
          disequalities << expr(*this, v[i] != v[j]);
      rel(*this, BOT_OR, disequalities, 1);
      break;
    }
    case NOT_ALL_EQUAL_REIFIED: {
      // It must not be the case that all are equal
      BoolVarArgs equalities;
      for (int i = 0; i < v.size()-1; ++i)
        equalities << expr(*this, v[i] == v[i+1]);
      rel(*this, BOT_AND, equalities, 0);
      break;
    }
    case NOT_ALL_EQUAL_NVALUES:
      // More than one number
      nvalues(*this, v, IRT_GR, 1);
      break;
    case NOT_ALL_EQUAL_COUNT:
      // No number in all positions
      count(*this, v, IntSet(0, v.size()-1), IntArgs::create(colors, 1), opt.ipl());
      break;
    case NOT_ALL_EQUAL_DFA: {
      static const DFA automaton = not_all_equal_dfa(colors);
      extensional(*this, v, automaton);
      break;
    }
    }
  }

  /** Post constraint using same_or_0 and distinct_except_0 that enforces
   * rows/columns v1 and v2 to have no monochrome rectangle.
   */
  void no_monochrome_rectangle(IntVarArgs v1, IntVarArgs v2) {
    const int length = v1.size();
    switch (opt.no_monochrome_rectangle()) {
    case NO_MONOCHROME_DECOMPOSITION: {
      IntVarArgs z(length);
      for (int i = 0; i < length; ++i) {
        z[i] = same_or_0(v1[i], v2[i]);
      }
      distinct_except_0(z);
      break;
    }
    case NO_MONOCHROME_DFA: {
      static const DFA automaton = no_monochrome_rectangle_dfa(colors);
      IntVarArgs z(2*length);
      for (int i = length; i--; ) {
        z[2*i + 0] = v1[i];
        z[2*i + 1] = v2[i];
      }
      extensional(*this, z, automaton);
      break;
    }
    }
  }


public:
  /// Search modes
  enum {
    SEARCH_DFS, ///< Find solution
    SEARCH_BAB, ///< Find optimal solution
  };
  /// SYmmetry breaking variants
  enum {
    SYMMETRY_NONE   = 0,   ///< No symmetry breaking
    SYMMETRY_MATRIX = 1, ///< Order rows and columns of matrix
    SYMMETRY_VALUES = 2, ///< Order value occurences
  };
  /// Model variants
  enum {
    MODEL_CORNERS = 1,   ///< Use model on corner combinations
    MODEL_ROWS    = 2,      ///< Use model on pairs of rows
    MODEL_COLUMNS = 4,   ///< Use model on pairs of columns
  };
  /// Not all equal variants
  enum {
    NOT_ALL_EQUAL_NQ,      ///< Use direct constraint for implemeting not all equals
    NOT_ALL_EQUAL_NAIVE,   ///< Use naive reification for implemeting not all equals
    NOT_ALL_EQUAL_REIFIED, ///< Use reification for implemeting not all equals
    NOT_ALL_EQUAL_NVALUES, ///< Use nvalues for implementing not all equals
    NOT_ALL_EQUAL_COUNT,   ///< Use count for implementing not all equals
    NOT_ALL_EQUAL_DFA,     ///< Use dfa for implementing not all equals
  };
  /// Same or 0 variants
  enum {
    SAME_OR_0_REIFIED,   ///< Use reification for same or 0
    SAME_OR_0_DFA,       ///< Use dfa for same or 0
    SAME_OR_0_TUPLE_SET, ///< Use tuple set for same or 0
  };
  /// Distinct except 0 variants
  enum {
    DISTINCT_EXCEPT_0_REIFIED, ///< Use reification for distinct except 0
    DISTINCT_EXCEPT_0_DFA,     ///< Use dfa for distinct except 0
    DISTINCT_EXCEPT_0_COUNT,   ///< Use count for distinct except 0
  };
  /// No monochrome rectangle versions
  enum {
    NO_MONOCHROME_DECOMPOSITION, ///< Use decomposition for no monochrome rectangle
    NO_MONOCHROME_DFA,           ///< Use dfa for no monochrome rectangle
  };


  /// Actual model
  ColoredMatrix(const ColoredMatrixOptions& opt0)
    : IntMinimizeScript(opt0),
      opt(opt0), height(opt.height()), width(opt.width()), colors(opt.colors()),
      x(*this, height*width, 1, colors),
      max_color(*this, 1, colors)
  {

    max(*this, x, max_color);

    Matrix<IntVarArray> m(x, width, height);

    // For each pair of columns and rows, the intersections may not be equal.
    if (opt.model() & MODEL_CORNERS) {
      for (int c1 = 0; c1 < width; ++c1) {
        for (int c2 = c1+1; c2 < width; ++c2) {
          for (int r1 = 0; r1 < height; ++r1) {
            for (int r2 = r1+1; r2 < height; ++r2) {
              not_all_equal(IntVarArgs() << m(c1,r1) << m(c1,r2) << m(c2,r1) << m(c2,r2));
            }
          }
        }
      }
    }
    // Given two rows/columns, construct variables representing if
    // the corresponding places are equal (and if so, what value).
    // For the new values, no non-zero value may appear more than
    // once.
    if (opt.model() & MODEL_ROWS) {
      for (int r1 = 0; r1 < height; ++r1) {
        for (int r2 = r1+1; r2 < height; ++r2) {
          no_monochrome_rectangle(m.row(r1), m.row(r2));
        }
      }
    }
    if (opt.model() & MODEL_COLUMNS) {
      for (int c1 = 0; c1 < width; ++c1) {
        for (int c2 = c1+1; c2 < width; ++c2) {
          no_monochrome_rectangle(m.col(c1), m.col(c2));
        }
      }
    }

    // Symmetry breaking constraints.
    {
      // Lexical order for all columns and rows (all are interchangable)
      if (opt.symmetry() & SYMMETRY_MATRIX) {
        for (int r = 0; r < height-1; ++r) {
          rel(*this, m.row(r), IRT_LE, m.row(r+1));
        }
        for (int c = 0; c < width-1; ++c) {
          rel(*this, m.col(c), IRT_LE, m.col(c+1));
        }
      }

      // Value precedence. Compatible with row/column ordering
      if (opt.symmetry() & SYMMETRY_VALUES) {
        precede(*this, x, IntArgs::create(colors, 1));
      }
    }

    branch(*this, x, tiebreak(INT_VAR_MIN_MIN(), INT_VAR_SIZE_MIN()), INT_VAL_MIN());
  }

  /// Return cost
  virtual IntVar cost(void) const {
    return max_color;
  }

  /// Print solution
  virtual void
  print(std::ostream& os) const {
    Matrix<IntVarArray> m(x, width, height);
    for (int r = 0; r < height; ++r) {
      os << "\t";
      for (int c = 0; c < width; ++c) {
        os << m(c, r) << " ";
      }
      os << std::endl;
    }
    os << std::endl;
    os << "\tmax color: " << max_color << std::endl;
    os << std::endl;
  }

  /// Constructor for cloning \a s
  ColoredMatrix(ColoredMatrix& s)
    : IntMinimizeScript(s), opt(s.opt),
      height(s.height), width(s.width), colors(s.colors) {
    x.update(*this, s.x);
    max_color.update(*this, s.max_color);
  }
  /// Copy during cloning
  virtual Space*
  copy(void) {
    return new ColoredMatrix(*this);
  }
};

ColoredMatrixOptions::ColoredMatrixOptions(const char* n)
  : Options(n),
    _height("height", "Height of matrix", 8),
    _width("width", "Width of matrix", 8),
    _size("size", "If different from 0, used as both width and height", 0),
    _colors("colors", "Maximum number of colors", 4),
    _not_all_equal("not-all-equal", "How to implement the not all equals constraint (used in corners model)",
                   ColoredMatrix::NOT_ALL_EQUAL_NQ),
    _same_or_0("same-or-0", "How to implement the same or 0 constraint (used in the decomposed no monochrome rectangle constraint)",
               ColoredMatrix::SAME_OR_0_DFA),
    _distinct_except_0("distinct-except-0", "How to implement the distinct except 0 constraint (used in the decomposed no monochrome rectangle constraint)",
                       ColoredMatrix::DISTINCT_EXCEPT_0_DFA),
    _no_monochrome_rectangle("no-monochrome-rectangle", "How to implement no monochrome rectangle (used in the rows model)",
                             ColoredMatrix::NO_MONOCHROME_DFA)
{
  add(_height);
  add(_width);
  add(_size);
  add(_colors);
  add(_not_all_equal);
  add(_same_or_0);
  add(_distinct_except_0);
  add(_no_monochrome_rectangle);

  // Add search options
  _search.add(ColoredMatrix::SEARCH_DFS,  "dfs", "Find a solution.");
  _search.add(ColoredMatrix::SEARCH_BAB,  "bab", "Find an optimal solution.");
  _search.value(ColoredMatrix::SEARCH_DFS);

  // Add symmetry options
  _symmetry.add(ColoredMatrix::SYMMETRY_NONE,  "none", "Don't use symmetry breaking.");
  _symmetry.add(ColoredMatrix::SYMMETRY_MATRIX,  "matrix", "Order matrix rows and columns");
  _symmetry.add(ColoredMatrix::SYMMETRY_VALUES,  "values", "Order values");
  _symmetry.add(ColoredMatrix::SYMMETRY_MATRIX | ColoredMatrix::SYMMETRY_VALUES,
                "both", "Order both rows/columns and values");
  _symmetry.value(ColoredMatrix::SYMMETRY_MATRIX);

  // Add model options
  _model.add(ColoredMatrix::MODEL_CORNERS,  "corner", "Use direct corners model with not-all-equal constraints.");
  _model.add(ColoredMatrix::MODEL_ROWS,  "rows", "Use model on pairs of rows (same_or_0 and distinct_except_0 constraints).");
  _model.add(ColoredMatrix::MODEL_ROWS | ColoredMatrix::MODEL_CORNERS,
             "both", "Use both rows and corners model");
  _model.add(ColoredMatrix::MODEL_COLUMNS,  "columns", "Use model on pairs of columns (same_or_0 and distinct_except_0 constraints).");
  _model.add(ColoredMatrix::MODEL_ROWS | ColoredMatrix::MODEL_COLUMNS,
             "matrix", "Use both rows and columns model");
  _model.value(ColoredMatrix::MODEL_CORNERS);

  // Add not all equal variants
  _not_all_equal.add(ColoredMatrix::NOT_ALL_EQUAL_NQ, "nq", "Use nq constraint.");
  _not_all_equal.add(ColoredMatrix::NOT_ALL_EQUAL_NAIVE, "naive", "Use naive reified decomposition.");
  _not_all_equal.add(ColoredMatrix::NOT_ALL_EQUAL_REIFIED, "reified", "Use reified decomposition.");
  _not_all_equal.add(ColoredMatrix::NOT_ALL_EQUAL_NVALUES, "nvalues", "Use nvalues.");
  _not_all_equal.add(ColoredMatrix::NOT_ALL_EQUAL_COUNT, "count", "Use count.");
  _not_all_equal.add(ColoredMatrix::NOT_ALL_EQUAL_DFA, "dfa", "Use dfa.");

  // Add same or 0 variants
  _same_or_0.add(ColoredMatrix::SAME_OR_0_REIFIED, "reified", "Use reified decomposition.");
  _same_or_0.add(ColoredMatrix::SAME_OR_0_TUPLE_SET, "tuple-set", "Use tuple set representation.");
  _same_or_0.add(ColoredMatrix::SAME_OR_0_DFA, "dfa", "Use dfa representation.");

  // Add distinct except 0 variants
  _distinct_except_0.add(ColoredMatrix::DISTINCT_EXCEPT_0_REIFIED, "reified", "Use reified decomposition.");
  _distinct_except_0.add(ColoredMatrix::DISTINCT_EXCEPT_0_DFA, "dfa", "Use dfa decomposition.");
  _distinct_except_0.add(ColoredMatrix::DISTINCT_EXCEPT_0_COUNT, "count", "Use global cardinality.");

  // Add no monochrome rectangle variants
  _no_monochrome_rectangle.add(ColoredMatrix::NO_MONOCHROME_DECOMPOSITION,
                               "decompositions",
                               "Use decompositions into same_or_0 and distinct_except_0.");
  _no_monochrome_rectangle.add(ColoredMatrix::NO_MONOCHROME_DFA,
                               "dfa",
                               "Use DFA as direct implementation.");
}

/** \brief Main-function
 *  \relates ColoredMatrix
 */
int
main(int argc, char* argv[]) {
  ColoredMatrixOptions opt("Colored matrix");
  opt.parse(argc,argv);
  if (opt.search() == ColoredMatrix::SEARCH_DFS) {
    Script::run<ColoredMatrix,DFS,ColoredMatrixOptions>(opt);
  } else {
    Script::run<ColoredMatrix,BAB,ColoredMatrixOptions>(opt);
  }
  return 0;
}


namespace {
  DFA same_or_0_dfa(int colors)
  {
    /* DFA over variable sequences (x,y,z) where z equals x/y if x and
     * y are equal, and z equals 0 otherwise.
     *
     * DFA is constructed to contain paths
     *   start -- c --> node -- c --> node' -- c --> end
     * for all colors c representing the case when x and y
     * are equal.
     *
     * For the cases where x and y are non-equal (c and c'), paths
     *   start -- c --> node -- c' --> not-equal -- 0 --> end
     * are added.
     */

    const int start_state = 0;
    const int not_equal_state = 2*colors+1;
    const int final_state = 2*colors+2;

    int n_transitions = colors*colors + 2*colors + 2;
    DFA::Transition* trans = 
      new DFA::Transition[static_cast<size_t>(n_transitions)];
    int current_transition = 0;

    // From start state
    for (int color = 1; color <= colors; ++color) {
      trans[current_transition++] =
        DFA::Transition(start_state, color, color);
    }

    // From first level states (indices [1..color])
    // To second-level if same color, otherwise to not_equal_state
    for (int state = 1; state <= colors; ++state) {
      for (int color = 1; color <= colors; ++color) {
        if (color == state) {
          trans[current_transition++] =
            DFA::Transition(state, color, colors+state);
        } else {
          trans[current_transition++] =
            DFA::Transition(state, color, not_equal_state);
        }
      }
    }

    // From second level states (indices [colors+1..colors+colors])
    // To final state with the same color
    for (int color = 1; color <= colors; ++color) {
      trans[current_transition++] =
        DFA::Transition(colors+color, color, final_state);
    }

    // From not equal state to final state
    trans[current_transition++] =
      DFA::Transition(not_equal_state, 0, final_state);

    // End sentinel
    trans[current_transition++] =
      DFA::Transition(-1, 0, -1);

    int final_states[] = {final_state, -1};

    DFA result(start_state, trans, final_states, true);

    delete[] trans;

    return result;
  }

  TupleSet same_or_0_tuple_set(int colors) {
    TupleSet result(3);
    for (int i = 1; i <= colors; ++i) {
      for (int j = 1; j <= colors; ++j) {
        if (i == j) {
          result.add({i, j, i});
        } else {
          result.add({i, j, 0});
        }
      }
    }
    result.finalize();
    return result;
  }

  DFA distinct_except_0_dfa(int colors)
  {
    /* DFA for a sequence that may use each color only once (and all
     * others are zero).
     *
     * For n colors, 2^n nodes are used. For each node, if bit b is one, then
     * that color has not been used yet. All nodes have self-loops for zero, and
     * edges for still usable colors to the node with the corresponding bit un-set.
     * All nodes are final nodes.
     */

    const int nstates = 1 << colors;
    const int start_state = nstates-1;

    DFA::Transition* trans =
      new DFA::Transition[static_cast<size_t>(nstates*colors + 1)];
    int current_transition = 0;

    for (int state = nstates; state--; ) {
      trans[current_transition++] = DFA::Transition(state, 0, state);

      for (int color = 1; color <= colors; ++color) {
        const int color_bit = (1 << (color-1));
        if (state & color_bit) {
          trans[current_transition++] =
            DFA::Transition(state, color, state & ~color_bit);
        }
      }
    }
    trans[current_transition++] = DFA::Transition(-1, 0, -1);

    int* final_states = new int[nstates+1];
    final_states[nstates] = -1;
    for (int i = nstates; i--; ) {
      final_states[i] = i;
    }

    DFA result(start_state, trans, final_states);

    delete[] trans;
    delete[] final_states;

    return result;
  }

  DFA no_monochrome_rectangle_dfa(int colors)
  {
    /* DFA for a sequence of pairs, where each monochromatic pair may
     * only appear once.
     *
     * For n colors, there are 2^n base states representing which
     * monochromatic pairs are still available. For each base state s,
     * the color seen goes to a new intermediate state. A different
     * color will go back to state s. Seeing the same color will move
     * to the next base state with that color combination removed (if
     * it is still allowed).
     *
     * In essence, this DFA represents the combination of same_or_0
     * and distinct_except_0 as a single constraint.
     */

    const int base_states = 1 << colors;
    const int start_state = base_states-1;
    const int nstates = base_states + colors*base_states;

    DFA::Transition* trans = new DFA::Transition[nstates*colors + 1];
    int current_transition = 0;

    for (int state = base_states; state--; ) {
      for (int color = 1; color <= colors; ++color) {
        const int color_bit = (1 << (color-1));
        const int color_remembered_state = state + color*base_states;

        trans[current_transition++] =
          DFA::Transition(state, color, color_remembered_state);

        for (int next_color = 1; next_color <= colors; ++next_color) {
          if (next_color == color) {
            // Two equal adjacent, only transition if color still allowed
            if (state & color_bit) {
              trans[current_transition++] =
                DFA::Transition(color_remembered_state, color, state & ~color_bit);
            }
          } else {
            trans[current_transition++] =
              DFA::Transition(color_remembered_state, next_color, state);
          }
        }
      }
    }
    trans[current_transition++] = DFA::Transition(-1, 0, -1);
    assert(current_transition <= nstates*colors+1);

    int* final_states = new int[base_states+1];
    final_states[base_states] = -1;
    for (int i = base_states; i--; ) {
      final_states[i] = i;
    }

    DFA result(start_state, trans, final_states);

    delete[] trans;
    delete[] final_states;

    return result;
  }

  IntSetArgs distinct_except_0_counts(int colors, int size)
  {
    IntSetArgs result(colors+1);

    result[0] = IntSet(0, size);

    for (int i = 1; i <= colors; ++i) {
      result[i] = IntSet(0, 1);
    }

    return result;
  }


  DFA not_all_equal_dfa(int colors)
  {
    /* DFA for not all equal.
     *
     * From the start state, there is a transition for each color to
     * that colors state.  As long as the same color is seen, the
     * automaton stays in that state. If a different color is seen,
     * then it goes to the accepting state.
     */

    const int nstates = 1 + colors + 1;
    const int start_state = 0;
    const int final_state = nstates-1;

    DFA::Transition* trans = new DFA::Transition[2*colors + colors*colors + 1];
    int current_transition = 0;

    // Each color to its own state
    for (int color = 1; color <= colors; ++color) {
      trans[current_transition++] = DFA::Transition(start_state, color, color);
    }

    // Each colors state loops on itself, and goes to final on all others
    for (int state = 1; state <= colors; ++state) {
      for (int color = 1; color <= colors; ++color) {
        if (state == color) {
          trans[current_transition++] = DFA::Transition(state, color, state);
        } else {
          trans[current_transition++] = DFA::Transition(state, color, final_state);
        }
      }
    }

    // Loop on all colors in final state
    for (int color = 1; color <= colors; ++color) {
      trans[current_transition++] = DFA::Transition(final_state, color, final_state);
    }

    trans[current_transition++] = DFA::Transition(-1, 0, -1);

    int final_states[] = {final_state, -1};

    DFA result(start_state, trans, final_states);

    delete[] trans;

    return result;
  }

}


// STATISTICS: example-any