1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Copyright:
* Christian Schulte, 2001
* Mikael Lagerkvist, 2005
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>
using namespace Gecode;
/** The maximum number of knights placeable
*
* \relates QueensArmies
*/
const int kval[] = {
0, 0, 0, 0, 5,
9, 15, 21, 29, 37,
47, 57, 69, 81, 94,
109
};
namespace {
/** \brief Set of valid positions for the bishops
* \relates CrowdedChess
*/
TupleSet bishops;
/** \brief Class for solving the bishops sub-problem
* \relates CrowdedChess
*/
class Bishops : public Space {
public:
const int n;
BoolVarArray k;
bool valid_pos(int i, int j) {
return (i >= 0 && i < n) && (j >= 0 && j < n);
}
Bishops(int size)
: n(size), k(*this,n*n,0,1) {
Matrix<BoolVarArray> kb(k, n, n);
for (int l = n; l--; ) {
const int il = (n-1) - l;
BoolVarArgs d1(l+1), d2(l+1), d3(l+1), d4(l+1);
for (int i = 0; i <= l; ++i) {
d1[i] = kb(i+il, i);
d2[i] = kb(i, i+il);
d3[i] = kb((n-1)-i-il, i);
d4[i] = kb((n-1)-i, i+il);
}
linear(*this, d1, IRT_LQ, 1);
linear(*this, d2, IRT_LQ, 1);
linear(*this, d3, IRT_LQ, 1);
linear(*this, d4, IRT_LQ, 1);
}
linear(*this, k, IRT_EQ, 2*n - 2);
// Forced bishop placement from crowded chess model
rel(*this, kb(n-1, 0), IRT_EQ, 1);
rel(*this, kb(n-1, n-1), IRT_EQ, 1);
branch(*this, k, BOOL_VAR_DEGREE_MAX(), BOOL_VAL_MAX());
}
Bishops(Bishops& s) : Space(s), n(s.n) {
k.update(*this, s.k);
}
virtual Space* copy(void) {
return new Bishops(*this);
}
};
/** \brief Initialize bishops
* \relates CrowdedChess
*/
void init_bishops(int size) {
Bishops* prob = new Bishops(size);
DFS<Bishops> e(prob);
IntArgs ia(size*size);
delete prob;
bishops.init(size*size);
while (Bishops* s = e.next()) {
for (int i = size*size; i--; )
ia[i] = s->k[i].val();
bishops.add(ia);
delete s;
}
bishops.finalize();
}
}
/**
\brief %Example: Crowded chessboard
You are given a chessboard together with 8 queens, 8 rooks, 14
bishops, and 21 knights. The puzzle is to arrange the 51 pieces on
the chessboard so that no queen shall attack another queen, no rook
attack another rook, no bishop attack another bishop, and no knight
attack another knight. No notice is to be taken of the intervention
of pieces of another type from that under consideration - that is,
two queens will be considered to attack one another although there
may be, say, a rook, a bishop, and a knight between them. It is not
difficult to dispose of each type of piece separately; the
difficulty comes in when you have to find room for all the
arrangements on the board simultaneously.
<em>Dudeney, H.E., (1917), Amusements in Mathematics,
Thomas Nelson and Sons.</em>
This puzzle can be generalized to chess-boards of size \f$n\f$, where the
number of pieces to place are:
- \f$ n \f$ queens
- \f$ n \f$ rooks
- \f$ 2n-1 \f$ bishops
- \f$ k \f$ knights
where k is a number to maximize.
The maximum k for some different values of \f$ n \f$ are presented
below (from Jesper Hansen and Joachim Schimpf, <a
href="http://www.icparc.ic.ac.uk/eclipse/examples/crowded_chess.ecl.txt">
ECLiPSe solution</a>
<TABLE>
<TR> <TD> n </TD> <TD> k </TD> </TR>
<TR> <TD> 8 </TD> <TD> 21 </TD> </TR>
<TR> <TD> 9 </TD> <TD> 29 </TD> </TR>
<TR> <TD> 10 </TD> <TD> 37 </TD> </TR>
<TR> <TD> 11 </TD> <TD> 47 </TD> </TR>
<TR> <TD> 12 </TD> <TD> 57 </TD> </TR>
<TR> <TD> 13 </TD> <TD> 69 </TD> </TR>
<TR> <TD> 14 </TD> <TD> 81 </TD> </TR>
<TR> <TD> 15 </TD> <TD> 94 </TD> </TR>
<TR> <TD> 16 </TD> <TD> 109 </TD> </TR>
</TABLE>
A solution for n = 8 is:
<TABLE>
<TR><TD>Q</TD><TD>B</TD><TD>K</TD><TD>.</TD>
<TD>K</TD><TD>B</TD><TD>K</TD><TD>R</TD></TR>
<TR><TD>.</TD><TD>K</TD><TD>.</TD><TD>K</TD>
<TD>Q</TD><TD>K</TD><TD>R</TD><TD>B</TD></TR>
<TR><TD>B</TD><TD>.</TD><TD>K</TD><TD>R</TD>
<TD>K</TD><TD>.</TD><TD>K</TD><TD>Q</TD></TR>
<TR><TD>B</TD><TD>K</TD><TD>R</TD><TD>K</TD>
<TD>.</TD><TD>Q</TD><TD>.</TD><TD>B</TD></TR>
<TR><TD>B</TD><TD>R</TD><TD>Q</TD><TD>.</TD>
<TD>K</TD><TD>.</TD><TD>K</TD><TD>B</TD></TR>
<TR><TD>R</TD><TD>K</TD><TD>.</TD><TD>K</TD>
<TD>.</TD><TD>K</TD><TD>Q</TD><TD>B</TD></TR>
<TR><TD>B</TD><TD>Q</TD><TD>K</TD><TD>.</TD>
<TD>K</TD><TD>R</TD><TD>K</TD><TD>.</TD></TR>
<TR><TD>B</TD><TD>K</TD><TD>B</TD><TD>Q</TD>
<TD>R</TD><TD>K</TD><TD>B</TD><TD>B</TD></TR>
</TABLE>
\ingroup Example
*/
class CrowdedChess : public Script {
protected:
const int n; ///< Board-size
IntVarArray s; ///< The board
IntVarArray queens, ///< Row of queen in column x
rooks; ///< Row of rook in column x
BoolVarArray knights; ///< True iff the corresponding place has a knight
/** Symbolic names of pieces. The order determines which piece will
* be placed first.
*/
enum
{Q, ///< Queen
R, ///< Rook
B, ///< Bishop
K, ///< Knight
E, ///< Empty square
PMAX ///< Number of pieces (including empty squares)
} piece;
// Is (i,j) a valid position on the board?
bool valid_pos(int i, int j) {
return (i >= 0 && i < n) &&
(j >= 0 && j < n);
}
/// Post knight-constraints
void knight_constraints(void) {
static const int kmoves[4][2] = {
{-1,2}, {1,2}, {2,-1}, {2,1}
};
Matrix<BoolVarArray> kb(knights, n, n);
for (int x = n; x--; )
for (int y = n; y--; )
for (int i = 4; i--; )
if (valid_pos(x+kmoves[i][0], y+kmoves[i][1]))
rel(*this,
kb(x, y),
BOT_AND,
kb(x+kmoves[i][0], y+kmoves[i][1]),
0);
}
public:
enum {
PROP_TUPLE_SET, ///< Propagate bishops placement extensionally
PROP_DECOMPOSE ///< Propagate bishops placement with decomposition
};
/// The model of the problem
CrowdedChess(const SizeOptions& opt)
: Script(opt),
n(opt.size()),
s(*this, n*n, 0, PMAX-1),
queens(*this, n, 0, n-1),
rooks(*this, n, 0, n-1),
knights(*this, n*n, 0, 1) {
const int nkval = sizeof(kval)/sizeof(int);
const int nn = n*n, q = n, r = n, b = (2*n)-2,
k = n <= nkval ? kval[n-1] : kval[nkval-1];
const int e = nn - (q + r + b + k);
assert(nn == (e + q + r + b + k));
Matrix<IntVarArray> m(s, n);
// ***********************
// Basic model
// ***********************
count(*this, s, E, IRT_EQ, e, opt.ipl());
count(*this, s, Q, IRT_EQ, q, opt.ipl());
count(*this, s, R, IRT_EQ, r, opt.ipl());
count(*this, s, B, IRT_EQ, b, opt.ipl());
count(*this, s, K, IRT_EQ, k, opt.ipl());
// Collect rows and columns for handling rooks and queens
for (int i = 0; i < n; ++i) {
IntVarArgs aa = m.row(i), bb = m.col(i);
count(*this, aa, Q, IRT_EQ, 1, opt.ipl());
count(*this, bb, Q, IRT_EQ, 1, opt.ipl());
count(*this, aa, R, IRT_EQ, 1, opt.ipl());
count(*this, bb, R, IRT_EQ, 1, opt.ipl());
// Connect (queens|rooks)[i] to the row it is in
element(*this, aa, queens[i], Q, IPL_DOM);
element(*this, aa, rooks[i], R, IPL_DOM);
}
// N-queens constraints
distinct(*this, queens, IPL_DOM);
distinct(*this, IntArgs::create(n,0,1), queens, IPL_DOM);
distinct(*this, IntArgs::create(n,0,-1), queens, IPL_DOM);
// N-rooks constraints
distinct(*this, rooks, IPL_DOM);
// Collect diagonals for handling queens and bishops
for (int l = n; l--; ) {
const int il = (n-1) - l;
IntVarArgs d1(l+1), d2(l+1), d3(l+1), d4(l+1);
for (int i = 0; i <= l; ++i) {
d1[i] = m(i+il, i);
d2[i] = m(i, i+il);
d3[i] = m((n-1)-i-il, i);
d4[i] = m((n-1)-i, i+il);
}
count(*this, d1, Q, IRT_LQ, 1, opt.ipl());
count(*this, d2, Q, IRT_LQ, 1, opt.ipl());
count(*this, d3, Q, IRT_LQ, 1, opt.ipl());
count(*this, d4, Q, IRT_LQ, 1, opt.ipl());
if (opt.propagation() == PROP_DECOMPOSE) {
count(*this, d1, B, IRT_LQ, 1, opt.ipl());
count(*this, d2, B, IRT_LQ, 1, opt.ipl());
count(*this, d3, B, IRT_LQ, 1, opt.ipl());
count(*this, d4, B, IRT_LQ, 1, opt.ipl());
}
}
if (opt.propagation() == PROP_TUPLE_SET) {
IntVarArgs b(s.size());
for (int i = s.size(); i--; )
b[i] = channel(*this, expr(*this, (s[i] == B)));
extensional(*this, b, bishops, opt.ipl());
}
// Handle knigths
// Connect knigths to board
for(int i = n*n; i--; )
knights[i] = expr(*this, (s[i] == K));
knight_constraints();
// ***********************
// Redundant constraints
// ***********************
// Queens and rooks not in the same place
// Faster than going through the channelled board-connection
for (int i = n; i--; )
rel(*this, queens[i], IRT_NQ, rooks[i]);
// Place bishops in two corners (from Schimpf and Hansens solution)
// Avoids some symmetries of the problem
rel(*this, m(n-1, 0), IRT_EQ, B);
rel(*this, m(n-1, n-1), IRT_EQ, B);
// ***********************
// Branching
// ***********************
// Place each piece in turn
branch(*this, s, INT_VAR_MIN_MIN(), INT_VAL_MIN());
}
/// Constructor for cloning e
CrowdedChess(CrowdedChess& e)
: Script(e), n(e.n) {
s.update(*this, e.s);
queens.update(*this, e.queens);
rooks.update(*this, e.rooks);
knights.update(*this, e.knights);
}
/// Copy during cloning
virtual Space*
copy(void) {
return new CrowdedChess(*this);
}
/// Print solution
virtual void
print(std::ostream& os) const {
Matrix<IntVarArray> m(s, n);
char names[PMAX];
names[E] = '.'; names[Q] = 'Q'; names[R] = 'R';
names[B] = 'B'; names[K] = 'K';
const char* sep = n < 8 ? "\t\t" : "\t";
for (int r = 0; r < n; ++r){
// Print main board
os << '\t';
for (int c = 0; c < n; ++c) {
if (m(r, c).assigned()) {
os << names[m(r, c).val()];
} else {
os << " ";
}
}
// Print each piece on its own
for (int p = 0; p < PMAX; ++p) {
if (p == E) continue;
os << sep;
for (int c = 0; c < n; ++c) {
if (m(r, c).assigned()) {
if (m(r, c).val() == p)
os << names[p];
else
os << names[E];
} else {
os << " ";
}
}
}
os << std::endl;
}
os << std::endl;
}
};
/** \brief Main function
* \relates CrowdedChess
*/
int
main(int argc, char* argv[]) {
SizeOptions opt("CrowdedChess");
opt.propagation(CrowdedChess::PROP_TUPLE_SET);
opt.propagation(CrowdedChess::PROP_TUPLE_SET,
"extensional",
"Use extensional propagation for bishops-placement");
opt.propagation(CrowdedChess::PROP_DECOMPOSE,
"decompose",
"Use decomposed propagation for bishops-placement");
opt.ipl(IPL_DOM);
opt.size(8);
opt.parse(argc,argv);
if (opt.size() < 5) {
std::cerr << "Error: size must be at least 5" << std::endl;
return 1;
}
init_bishops(opt.size());
Script::run<CrowdedChess,DFS,SizeOptions>(opt);
return 0;
}
// STATISTICS: example-any
|