1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Guido Tack <tack@gecode.org>
*
* Contributing authors:
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Copyright:
* Guido Tack, 2004
* Mikael Lagerkivst, 2017
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/set.hh>
using namespace Gecode;
/// \brief %Options for %Golf example
class GolfOptions : public Options {
protected:
Driver::IntOption _w; //< Number of weeks
Driver::IntOption _g; //< Number of groups
Driver::IntOption _s; //< Number of players per group
public:
/// Constructor
GolfOptions(void)
: Options("Golf"),
_w("w","number of weeks",9),
_g("g","number of groups",8),
_s("s","number of players per group",4) {
add(_w);
add(_g);
add(_s);
}
/// Return number of weeks
int w(void) const { return _w.value(); }
/// Return number of groups
int g(void) const { return _g.value(); }
/// Return number of players per group
int s(void) const { return _s.value(); }
};
/**
* \brief %Example: %Golf tournament
*
* Schedule a golf tournament. This is problem 010 from csplib.
*
* Note that "Modeling and Programming with Gecode" uses this example
* as a case study.
*
* \ingroup Example
*
*/
class Golf : public Script {
public:
/// Model variants
enum {
MODEL_PLAIN, ///< A simple model
MODEL_SYMMETRY ///< Model with symmetry breaking
};
/// Propagation
enum {
PROP_SET, ///< Propagation of pair play amount using set variables
PROP_INT, ///< Propagation of pair play amount using int variables and distinct
PROP_MIXED, ///< Propagation of pair play amount using both set and int variables
};
int g; ///< Number of groups in a week
int s; ///< Number of players in a group
int w; ///< Number of weeks
/// The sets representing the groups
SetVarArray groups;
/// Actual model
Golf(const GolfOptions& opt)
: Script(opt),
g(opt.g()), s(opt.s()), w(opt.w()),
groups(*this,g*w,IntSet::empty,0,g*s-1,
static_cast<unsigned int>(s),static_cast<unsigned int>(s)) {
Matrix<SetVarArray> schedule(groups,g,w);
// Groups in one week must be disjoint
SetVar allPlayers(*this, 0,g*s-1, 0,g*s-1);
for (int i=0; i<w; i++)
rel(*this, setdunion(schedule.row(i)) == allPlayers);
// No two golfers play in the same group more than once
if (opt.propagation() == PROP_SET || opt.propagation() == PROP_MIXED) {
// Cardinality of intersection between two groups is at most one
for (int i=0; i<groups.size()-1; i++)
for (int j=i+1; j<groups.size(); j++)
rel(*this, cardinality(groups[i] & groups[j]) <= 1);
}
if (opt.propagation() == PROP_INT || opt.propagation() == PROP_MIXED) {
// Set up table mapping from pairs (p1,p2) (where p1<p2) of players to
// unique integer identifiers
int playerCount = g * s;
TupleSet ts(3);
int pairCount=0;
for (int p1=0; p1<playerCount-1; p1++)
for (int p2=p1+1; p2<playerCount; p2++)
ts.add({p1, p2, pairCount++});
ts.finalize();
// Collect pairs of golfers into pairs
IntVarArgs pairs;
for (int i=0; i<groups.size()-1; i++) {
// Channel sorted will ensure that for i<j, group[i]<group[j],
// ensuring that the tuple set has a valid mapping.
IntVarArgs group(*this, s, 0, playerCount-1);
channelSorted(*this, group, groups[i]);
// Collect all pairs in current group
for (int p1=0; p1<group.size()-1; ++p1) {
for (int p2=p1+1; p2<group.size(); ++p2) {
IntVar pair(*this, 0, pairCount);
IntVarArgs args;
args << group[p1] << group[p2] << pair;
extensional(*this, args, ts);
pairs << pair;
}
}
}
// All pairs of golfers (using the unique identifiers) must be different
distinct(*this, pairs, opt.ipl());
}
if (opt.model() == MODEL_SYMMETRY) {
/*
* Redundant constraints and static symmetry breaking from
* "Solving Kirkman's Schoolgirl Problem in a Few Seconds"
* Nicolas Barnier, Pascal Brisset, Constraints, 10, 7-21, 2005
*
*/
// Redundant constraint:
// in each week, one player plays in only one group
for (int j=0; j<w; j++) {
for (int p=0; p < g*s; p++) {
BoolVarArgs b(g);
for (int i=0; i<g; i++)
b[i] = expr(*this, (singleton(p) <= schedule(i,j)));
linear(*this, b, IRT_EQ, 1);
}
}
// Symmetry breaking: order groups
for (int j=0; j<w; j++) {
IntVarArgs m(g);
for (int i=0; i<g; i++)
m[i] = expr(*this, min(schedule(i,j)));
rel(*this, m, IRT_LE);
}
// Symmetry breaking: order weeks
// minElem(group(w,0)\{0}) < minElem(group(w+1,0)\{0})
{
IntVarArgs m(w);
for (int i=0; i<w; i++)
m[i] = expr(*this, min(schedule(0,i)-IntSet(0,0)));
rel(*this, m, IRT_LE);
}
// Symmetry breaking: value symmetry of player numbers
precede(*this, groups, IntArgs::create(groups.size(),0));
}
branch(*this, groups, SET_VAR_MIN_MIN(), SET_VAL_MIN_INC());
}
/// Print solution
virtual void
print(std::ostream& os) const {
os << "Tournament plan" << std::endl;
Matrix<SetVarArray> schedule(groups,g,w);
for (int j=0; j<w; j++) {
os << "Week " << j << ": " << std::endl << " ";
os << schedule.row(j) << std::endl;
}
}
/// Constructor for copying \a s
Golf(Golf& s) : Script(s), g(s.g), s(s.s), w(s.w) {
groups.update(*this, s.groups);
}
/// Copy during cloning
virtual Space*
copy(void) {
return new Golf(*this);
}
};
/** \brief Main-function
* \relates Golf
*/
int
main(int argc, char* argv[]) {
GolfOptions opt;
opt.model(Golf::MODEL_PLAIN);
opt.model(Golf::MODEL_PLAIN, "none", "no symmetry breaking");
opt.model(Golf::MODEL_SYMMETRY, "symmetry", "static symmetry breaking");
opt.propagation(Golf::PROP_SET);
opt.propagation(Golf::PROP_SET, "set", "Use set intersection cardinality for pair play constraints");
opt.propagation(Golf::PROP_INT, "int", "Use integer distinct for pair play constraints");
opt.propagation(Golf::PROP_MIXED, "mixed", "Use set interesection cardinality and integer distinct for pair play constraints");
opt.ipl(IPL_DOM);
opt.solutions(1);
opt.parse(argc,argv);
Script::run<Golf,DFS,GolfOptions>(opt);
return 0;
}
// STATISTICS: example-any
|