1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Mikael Lagerkvist <lagerkvist@gecode.org>
*
* Copyright:
* Mikael Lagerkvist, 2006
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>
#include <gecode/set.hh>
using namespace Gecode;
/** \name Constant sets for attacking queens.
*
* \relates QueenArmies
*/
IntSet* A;
/**
* \brief %Example: Peaceable co-existing armies of queens
*
* The goal of this problem is to place as many white and black queens
* on a chess-board without any two queens of different color
* attacking each other. The number of black queens should
* be greater than or equal to the number of white queens.
*
* This model is based on the one presented in "Models and Symmetry
* Breaking for 'Peaceable Armies of Queens'", by Barbara M. Smith, Karen
* E. Petrie, and Ian P. Gent.
*
* The smart version uses a custom brancher implementing a heuristic
* from the above paper, that helps speeding up the proof of
* optimality.
*
* \ingroup Example
*
*/
class QueenArmies : public IntMaximizeScript {
public:
const int n;
SetVar U, ///< Set of un-attacked squares
W; ///< Set of squares occupied by white queens
BoolVarArray w, ///< The placement of the white queens
b; ///< The placement of the black queens
IntVar q; ///< The number of white queens placed.
/// Branching to use for model
enum {
BRANCH_NAIVE, ///< Choose variables left to right
BRANCH_SPECIFIC ///< Choose variable with problem specific strategy
};
/// Constructor
QueenArmies(const SizeOptions& opt) :
IntMaximizeScript(opt),
n(opt.size()),
U(*this, IntSet::empty, IntSet(0, n*n)),
W(*this, IntSet::empty, IntSet(0, n*n)),
w(*this, n*n, 0, 1),
b(*this, n*n, 0, 1),
q(*this, 0, n*n)
{
// Basic rules of the model
for (int i = n*n; i--; ) {
// w[i] means that no blacks are allowed on A[i]
rel(*this, w[i] == (U || A[i]));
// Make sure blacks and whites are disjoint.
rel(*this, !w[i] || !b[i]);
// If i in U, then b[i] has a piece.
rel(*this, b[i] == (singleton(i) <= U));
}
// Connect optimization variable to number of pieces
linear(*this, w, IRT_EQ, q);
linear(*this, b, IRT_GQ, q);
// Connect cardinality of U to the number of black pieces.
IntVar unknowns = expr(*this, cardinality(U));
rel(*this, q <= unknowns);
linear(*this, b, IRT_EQ, unknowns);
if (opt.branching() == BRANCH_NAIVE) {
branch(*this, w, BOOL_VAR_NONE(), BOOL_VAL_MAX());
branch(*this, b, BOOL_VAR_NONE(), BOOL_VAL_MAX());
} else {
QueenBranch::post(*this);
assign(*this, b, BOOL_ASSIGN_MAX());
}
}
/// Constructor for cloning
QueenArmies(QueenArmies& s)
: IntMaximizeScript(s), n(s.n) {
U.update(*this, s.U);
W.update(*this, s.W);
w.update(*this, s.w);
b.update(*this, s.b);
q.update(*this, s.q);
}
/// Return copy during cloning
virtual Space*
copy(void) {
return new QueenArmies(*this);
}
/// Return solution cost
virtual IntVar cost(void) const {
return q;
}
/// Print solution
virtual void
print(std::ostream& os) const {
os << '\t';
for (int i = 0; i < n*n; ++i) {
if (w[i].assigned() && w[i].val()) os << "W";
else if (b[i].assigned() && b[i].val()) os << "B";
else if (!w[i].assigned() && !b[i].assigned()) os << " ";
else os << ".";
if ((i+1)%n == 0) os << std::endl << (i!=(n*n-1)?"\t":"");
}
os << "Number of white queens: " << q << std::endl << std::endl;
}
/** \brief Custom brancher for Peacable queens
*
* Custom brancher that tries to place white queens so that they
* maximise the amount of un-attacked squares that become attacked.
*
* \relates QueenArmies
*/
class QueenBranch : public Brancher {
private:
/// Cache of last computed decision
mutable int start;
/// Choice
class Choice : public Gecode::Choice {
public:
/// Position of variable
int pos;
/// Value of variable
bool val;
/** Initialize choice for brancher \a b, position \a pos0,
* and value \a val0.
*/
Choice(const Brancher& b, int pos0, bool val0)
: Gecode::Choice(b,2), pos(pos0), val(val0) {}
/// Archive into \a e
virtual void archive(Archive& e) const {
Gecode::Choice::archive(e);
e << pos << val;
}
};
/// Construct brancher
QueenBranch(Home home)
: Brancher(home), start(0) {}
/// Constructor for cloning
QueenBranch(Space& home, QueenBranch& b)
: Brancher(home, b), start(b.start) {}
public:
/// Check status of brancher, return true if alternatives left.
virtual bool status(const Space& home) const {
const QueenArmies& q = static_cast<const QueenArmies&>(home);
for (int i = start; i < q.n*q.n; ++i)
if (!q.w[i].assigned()) {
start = i;
return true;
}
// No non-assigned orders left
return false;
}
/// Return choice
virtual Gecode::Choice* choice(Space& home) {
const QueenArmies& q = static_cast<const QueenArmies&>(home);
int maxsize = -1;
int pos = -1;
for (int i = start; i < q.n*q.n; ++i) {
if (q.w[i].assigned()) continue;
IntSetRanges ai(A[i]);
SetVarUnknownRanges qU(q.U);
Iter::Ranges::Inter<IntSetRanges, SetVarUnknownRanges> r(ai, qU);
int size = Iter::Ranges::size(r);
if (size > maxsize) {
maxsize = size;
pos = i;
}
}
assert(pos != -1);
return new Choice(*this, pos, true);
}
/// Return choice
virtual Choice* choice(const Space&, Archive& e) {
int pos, val;
e >> pos >> val;
return new Choice(*this, pos, val);
}
/** \brief Perform commit for choice \a _c and
* alternative \a a.
*/
virtual ExecStatus commit(Space& home, const Gecode::Choice& _c,
unsigned int a) {
QueenArmies& q = static_cast<QueenArmies&>(home);
const Choice& c = static_cast<const Choice&>(_c);
bool val = (a == 0) ? c.val : !c.val;
return me_failed(Int::BoolView(q.w[c.pos]).eq(q, val))
? ES_FAILED
: ES_OK;
}
/// Print explanation
virtual void print(const Space&, const Gecode::Choice& _c,
unsigned int a,
std::ostream& o) const {
const Choice& c = static_cast<const Choice&>(_c);
bool val = (a == 0) ? c.val : !c.val;
o << "w[" << c.pos << "] = " << val;
}
/// Copy brancher during cloning
virtual Actor* copy(Space& home) {
return new (home) QueenBranch(home, *this);
}
/// Post brancher
static void post(QueenArmies& home) {
(void) new (home) QueenBranch(home);
}
/// Delete brancher and return its size
virtual size_t dispose(Space&) {
return sizeof(*this);
}
};
};
/** \brief Position of a piece in a square board.
*
* \relates QueenArmies
*/
int pos(int i, int j, int n) {
return i*n + j;
}
/** \brief Main-function
* \relates QueenArmies
*/
int
main(int argc, char* argv[]) {
SizeOptions opt("QueenArmies");
opt.size(6);
opt.branching(QueenArmies::BRANCH_SPECIFIC);
opt.branching(QueenArmies::BRANCH_NAIVE, "naive");
opt.branching(QueenArmies::BRANCH_SPECIFIC, "specific");
opt.solutions(0);
opt.parse(argc,argv);
// Set up the A-sets
// A[i] will contain the values attacked by a queen at position i
int n = opt.size();
A = new IntSet[n*n];
int *p = new int[std::max(n*n, 25)];
int pn = 0;
for (int i = n; i--; ) {
for (int j = n; j--; ) {
int dir[][2] = {
{ 0, 1},
{ 1, 1},
{ 1, 0},
{ 0, -1},
{-1, -1},
{-1, 0},
{ 1, -1},
{-1, 1}
};
p[pn++] = pos(i, j, n);
for (int k = 8; k--; ) {
for (int l = 0; l < n
&& 0 <= (i+l*dir[k][0]) && (i+l*dir[k][0]) < n
&& 0 <= (j+l*dir[k][1]) && (j+l*dir[k][1]) < n; ++l) {
p[pn++] = pos(i+l*dir[k][0], j+l*dir[k][1], n);
}
}
A[pos(i, j, n)] = IntSet(p, pn);
pn = 0;
}
}
delete [] p;
IntMaximizeScript::run<QueenArmies,BAB,SizeOptions>(opt);
return 0;
}
// STATISTICS: example-any
|