1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
* Main authors:
* Christian Schulte <schulte@gecode.org>
*
* Copyright:
* Christian Schulte, 2011
*
* This file is part of Gecode, the generic constraint
* development environment:
* http://www.gecode.org
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <gecode/driver.hh>
#include <gecode/int.hh>
#include <gecode/minimodel.hh>
using namespace Gecode;
/**
* \brief %Options for Schur's Lemma
*
*/
class SchurOptions : public Options {
public:
int c, n; ///< Parameters to be given on command line
/// Initialize options for example with name \a s
SchurOptions(const char* s, int c0, int n0)
: Options(s), c(c0), n(n0) {}
/// Parse options from arguments \a argv (number is \a argc)
void parse(int& argc, char* argv[]) {
Options::parse(argc,argv);
if (argc < 3)
return;
c = atoi(argv[1]);
n = atoi(argv[2]);
}
/// Print help message
virtual void help(void) {
Options::help();
std::cerr << "\t(unsigned int) default: " << c << std::endl
<< "\t\tparameter c (number of boxes)" << std::endl
<< "\t(unsigned int) default: " << n << std::endl
<< "\t\tparameter n (number of balls)" << std::endl;
}
};
/**
* \brief %Example: Schur's lemma
*
* Put \f$n\f$ balls labeled \f${1,\ldots,n}\f$ into \f$c\f$ boxes such
* that for any triple of balls \f$\langle x, y, z\rangle\f$ with
* \f$x+y = z\f$, not all are in the same box.
*
* This problem has a solution for \f$c=3\f$ if \f$n < 14\f$.
*
* See also problem 15 at http://www.csplib.org/.
*
* \ingroup Example
*
*/
class Schur : public Script {
protected:
/// Array of box per ball
IntVarArray box;
public:
/// Actual model
Schur(const SchurOptions& opt)
: Script(opt), box(*this,opt.n,1,opt.c) {
int n = opt.n;
// Iterate over balls and find triples
for (int i=1; i<=n; i++)
for (int j=1; i+j<=n; j++)
rel(*this, {box[i-1],box[j-1],box[i+j-1]}, IRT_NQ);
// Break value symmetries
precede(*this, box, IntArgs::create(opt.c, 1));
branch(*this, box, INT_VAR_AFC_SIZE_MAX(opt.decay()), INT_VAL_MIN());
}
/// Print solution
virtual void
print(std::ostream& os) const {
os << "\t" << box << std::endl;
}
/// Constructor for cloning \a s
Schur(Schur& s) : Script(s) {
box.update(*this, s.box);
}
/// Copy during cloning
virtual Space*
copy(void) {
return new Schur(*this);
}
};
/** \brief Main-function
* \relates Schur
*/
int
main(int argc, char* argv[]) {
SchurOptions opt("Schur's Lemma",3,13);
opt.parse(argc,argv);
Script::run<Schur,DFS,SchurOptions>(opt);
return 0;
}
// STATISTICS: example-any
|