1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
|
.. highlight:: cpp
.. doctest::
:hide:
>>> import gemmi
Structure analysis
##################
.. _niggli:
Reduced unit cells
==================
The reduction finds special bases of lattices. In practice, these bases are
found by removing lattice centering (i.e. obtaining a primitive cell)
and using a prescribed interative procedure.
As it is worded in the International Tables for Crystallography A 3.1.1.4 (2016),
"the reduction procedures employ metrical properties to develop a sequence
of basis transformations which lead to a *reduced basis* and *reduced cell*".
There are three popular unit cell reductions:
- the Minkowski-Buerger reduction, which minimizes *a*\ +\ *b*\ +\ *c*
(in special cases multiple, up to 6 different bases have the same
minimal sum *a*\ +\ *b*\ +\ *c*),
- the Eisenstein-Niggli reduction, which adds extra conditions
to the previous one and makes the result unique,
- the Selling-Delaunay reduction (the second name is alternatively
transliterated as Delone), which minimizes
*a*:sup:`2`\ +\ *b*:sup:`2`\ +\ *c*:sup:`2`\ +\ (*a*\ +\ *b*\ +\ *c*)\ :sup:`2`.
First names here (Minkowski, Eisenstein, Selling) belong to mathematicians
working on the reduction of quadratic forms.
The second names -- to people applying this math to crystallography.
Usually, we use only the second name. The Niggli reduction is the most
popular of the three.
Niggli and Buerger reductions
-----------------------------
Gemmi implements separately the Niggli and Buerger reductions.
The procedures are iterative. Most of the unit cells from the PDB
need only 1-2 iterations to get reduced (1.3 on average, not counting
the *normalization* steps as separate iterations).
On the other hand, one can always construct a primitive cell with extremely
long basis vectors that would require hundreds of iterations.
The Buerger reduction is simpler and faster than Niggli,
but Niggli is also fast -- one iteration takes less than 1μs.
Gemmi implementation is based on the algorithms published by B. Gruber
in the 1970's: Gruber,
`Acta Cryst. A29, 433 <https://doi.org/10.1107/S0567739473001063>`_ (1973)
for the Buerger reduction, and Křivý & Gruber,
`Acta Cryst. A32, 297 <https://doi.org/10.1107/S0567739476000636>`_ (1976)
for the Niggli reduction.
Additionally, the Niggli reduction is using ε to compare numbers, as proposed
by Grosse-Kunstleve *et al*,
`Acta Cryst. A60, 1 <https://doi.org/10.1107/S010876730302186X>`_ (2004).
Gruber's algorithms use vector named G\ :sup:`6`, which is
`somewhat similar <https://dictionary.iucr.org/Metric_tensor>`_
to the metric tensor. G\ :sup:`6` has six elements named:
A, B, C, ξ (xi), η (eta) and ζ (zeta), which correspond to:
(**a**:sup:`2`, **b**:sup:`2`, **c**:sup:`2`, 2\ **b**\ ⋅\ **c**, 2\ **a**\ ⋅\ **c**, 2\ **a**\ ⋅\ **b**)
Gemmi has a class named GruberVector that contains these six numbers
and reduction algorithms implemented as methods.
This class can be initialized with UnitCell and SpaceGroup:
.. doctest::
>>> cell = gemmi.UnitCell(63.78, 63.86, 124.40, 90.0, 90.0, 90.0)
>>> sg = gemmi.SpaceGroup('I 2 2 2')
>>> gv = gemmi.GruberVector(cell, sg)
or with 6-tuple corresponding to G\ :sup:`6` of a primitive cell:
.. doctest::
>>> g6_param = gv.parameters # obtain such a tuple
>>> gemmi.GruberVector(g6_param)
<gemmi.GruberVector((5905.34, 5905.34, 5905.34, -7742.79, -7732.57, 3664.69))>
We can check if G\ :sup:`6` already corresponds to a Buerger and Niggli cell:
.. doctest::
>>> gv.is_niggli()
False
>>> gv.is_buerger()
False
We can access the G\ :sup:`6` parameters as a tuple:
.. doctest::
>>> gv.parameters
(5905.337, 5905.337, 5905.337, -7742.7856, -7732.5744, 3664.686)
and obtain the corresponding cell parameters (with angles in degrees):
.. doctest::
:skipif: sys.platform == 'win32' # the last digit differs with MSVC
>>> gv.cell_parameters() # primitive cell
(76.84619053668177, 76.84619053668177, 76.84619053668177, 130.96328311485175, 130.89771578326727, 71.92353702711762)
And most importantly, we can reduce the cell.
``niggli_reduce()`` performs the Niggli reduction on G\ :sup:`6`,
returning the number of iterations it took:
.. doctest::
>>> gv.niggli_reduce()
3
Now G\ :sup:`6` contains smaller numbers:
.. doctest::
>>> gv
<gemmi.GruberVector((4067.89, 4078.10, 5905.34, -4078.10, -4067.89, -0.00))>
To create a new UnitCell with reduced parameters do:
.. doctest::
>>> gemmi.UnitCell(* gv.cell_parameters())
<gemmi.UnitCell(63.78, 63.86, 76.8462, 114.551, 114.518, 90)>
or use a helper method:
.. doctest::
>>> gv.get_cell()
<gemmi.UnitCell(63.78, 63.86, 76.8462, 114.551, 114.518, 90)>
Similarly, we can perform the Buerger reduction:
.. doctest::
>>> gv = gemmi.GruberVector(g6_param)
>>> gv.buerger_reduce()
3
In this case both functions gave the same result.
.. doctest::
>>> gv.is_niggli()
True
>>> gv.get_cell()
<gemmi.UnitCell(63.78, 63.86, 76.8462, 114.551, 114.518, 90)>
Functions ``niggli_reduce``, ``is_niggli`` and ``is_buerger`` can take optional
parameter ``epsilon`` (default: 1e-9) that is used for comparing numbers.
Additionally, ``niggli_reduce`` can take ``iteration_limit`` (default: 100).
To check how the computations would work without ε we can set it to 0:
.. doctest::
>>> gv.is_buerger(epsilon=0)
True
>>> gv.is_niggli(epsilon=0)
False
>>> gv.niggli_reduce(epsilon=0, iteration_limit=100)
6
>>> gv.get_cell()
<gemmi.UnitCell(63.78, 63.86, 76.8462, 114.551, 114.518, 90)>
Here, the Niggli conditions were initially found not fulfilled, because
one expression that should be non-negative was about -5e-13.
A few extra iterations sorted it out (without any real changes),
but it's not always the case -- that's why we have ``iteration_limit``
to prevent infinite loop.
The original Křivý-Gruber algorithm doesn't calculate the change-of-basis
transformation that leads to the reduced cell. In gemmi,
this transformation can be obtained as proposed in the 2004 paper
of Grosse-Kunstleve *et al*: the change-of-basis matrix is updated
in each step together with the Gruber vector.
Updating this matrix makes the reduction twice slower
(but it's still in tens of ns, so it's fast enough for any purpose).
To track the change of basis, pass the following option:
.. doctest::
>>> gv = gemmi.GruberVector(cell, sg, track_change_of_basis=True)
After the Niggli reduction, the transformation will be available
in the ``change_of_basis`` property:
.. doctest::
>>> gv.niggli_reduce()
3
>>> cob = gv.change_of_basis
>>> cob
<gemmi.Op("x-z/2,y-z/2,z/2")>
This operator transforms Niggli cell to the original cell
(so it's actually *the inverse* of the reduction change-of-basis):
.. doctest::
>>> gv.get_cell().changed_basis_forward(cob, set_images=False)
<gemmi.UnitCell(63.78, 63.86, 124.4, 90, 90, 90)>
and the other way around:
.. doctest::
>>> cell.changed_basis_backward(cob, set_images=False)
<gemmi.UnitCell(63.78, 63.86, 76.8462, 114.551, 114.518, 90)>
Currently, tracking is implemented only for the Niggli reduction,
not for the Buerger reduction.
Selling-Delaunay reduction
--------------------------
Gemmi implementation is based on
- section `3.1.2.3 <https://onlinelibrary.wiley.com/iucr/itc/Ac/ch3o1v0001/>`_
"Delaunay reduction and standardization" in the Tables vol. A (2016),
- Patterson & Love (1957), "Remarks on the Delaunay reduction",
`Acta Cryst. 10, 111 <https://doi.org/10.1107/S0365110X57000328>`_,
- Andrews *et al* (2019),
"Selling reduction versus Niggli reduction for crystallographic lattices",
`Acta Cryst. A75, 115 <https://doi.org/10.1107/S2053273318015413>`_.
Similarly to the GruberVector, here we have a class named SellingVector
that contains the six elements of S\ :sup:`6` -- the inner products
among the four vectors **a**, **b**, **c**
and **d**\ =–(\ **a**\ +\ **b**\ +\ **c**\ ):
*s*\ :sub:`23`\ =\ **b**\ ⋅\ **c**,
*s*\ :sub:`13`\ =\ **a**\ ⋅\ **c**,
*s*\ :sub:`12`\ =\ **a**\ ⋅\ **b**,
*s*\ :sub:`14`\ =\ **a**\ ⋅\ **d**,
*s*\ :sub:`24`\ =\ **b**\ ⋅\ **d**,
*s*\ :sub:`34`\ =\ **c**\ ⋅\ **d**.
SellingVector can be initialized with UnitCell and SpaceGroup:
.. doctest::
>>> sv = gemmi.SellingVector(cell, sg)
or with a tuple of six numbers S\ :sup:`6`:
.. doctest::
>>> sv.parameters
(-3871.3928, -3866.2872, 1832.343, -3871.3928, -3866.2872, 1832.343)
>>> gemmi.SellingVector(_)
<gemmi.SellingVector((-3871.39, -3866.29, 1832.34, -3871.39, -3866.29, 1832.34))>
Similarly as in the previous section, we can check if S\ :sup:`6`
already corresponds to a Delaunay cell:
.. doctest::
>>> sv.is_reduced()
False
Each reduction step decreases Σ\ **b**\ :sub:`i`:sup:`2`
(**b**\ :sub:`1`, **b**\ :sub:`2`, **b**\ :sub:`3` and **b**\ :sub:`4`
are alternative symbols for **a**, **b**, **c** and **d**).
The sum Σ\ **b**\ :sub:`i`:sup:`2` can be calculated with:
.. doctest::
>>> sv.sum_b_squared()
23621.348
Similarly to ``niggli_reduce()``, the Selling reduction procedure takes
optional arguments ``epsilon`` and ``iteration_limit``
and returns the iteration count:
.. doctest::
>>> sv.reduce()
2
Now we can check the result:
.. doctest::
>>> sv
<gemmi.SellingVector((-2033.94, -2033.94, -1832.34, -2039.05, -2039.05, 0.00))>
>>> sv.is_reduced()
True
>>> sv.sum_b_squared()
19956.662
Now, the corresponding four vectors can be in any order.
We may sort them so that *a*\ ≤\ *b*\ ≤\ *c*\ ≤\ *d*:
.. doctest::
>>> sv.sort()
>>> sv
<gemmi.SellingVector((-2039.05, -2033.94, 0.00, -2033.94, -2039.05, -1832.34))>
Finally, we can get the corresponding UnitCell:
.. doctest::
>>> gemmi.UnitCell(* sv.cell_parameters())
<gemmi.UnitCell(63.78, 63.86, 76.8462, 114.551, 114.518, 90)>
>>> sv.get_cell() # helper function that does the same
<gemmi.UnitCell(63.78, 63.86, 76.8462, 114.551, 114.518, 90)>
S\ :sup:`6` can be used to calculate G\ :sup:`6`, and the other way around:
.. doctest::
>>> sv.gruber()
<gemmi.GruberVector((4067.89, 4078.10, 5905.34, -4078.10, -4067.89, 0.00))>
>>> _.selling()
<gemmi.SellingVector((-2039.05, -2033.94, 0.00, -2033.94, -2039.05, -1832.34))>
TBC
.. _neighbor_search:
Neighbor search
===============
Fixed-radius near neighbor search is usually implemented using
the `cell lists <https://en.wikipedia.org/wiki/Cell_lists>`_ method,
also known as binning, bucketing or cell technique
(or cubing -- as it was called in an
`article <https://web.stanford.edu/class/sbio228/public/readings/Molecular_Simulation_I_Lecture4/Levinthal_SCIAM_66_Protein_folding.pdf>`_ from 1966).
The method is simple. The unit cell (or the area where the molecules are
located) is divided into small cells. The size of these cells depends
on the search radius. Each cell stores the list of atoms in its area;
these lists are used for fast lookup of atoms.
In Gemmi the cell technique is implemented in a class named ``NeighborSearch``.
The implementation works with both crystal and non-crystal system and:
* handles crystallographic symmetry (including non-standard settings with
origin shift that are present in a couple hundreds of PDB entries),
* handles strict NCS (MTRIX record in the PDB format that is not "given";
in mmCIF it is the _struct_ncs_oper category),
* handles alternative locations (atoms from different conformers are not
neighbors),
* can find neighbors any number of unit cells apart; surprisingly,
molecules from different and not neighboring unit cells can be
in contact, either because of the molecule shape (a single chain can be
:ref:`longer then four unit cells <long_chain>`) or because of
the non-optimal choice of symmetric images in the model
(some PDB entries have even links between chains more than
10 unit cells away which cannot be expressed in the 1555 type of notation).
Note that while an atom can be bonded with its own symmetric image,
it sometimes happens that an atom meant to be on a special position
is slightly off, and its symmetric images represent the same atom
(so we may have four nearby images each with occupancy 0.25).
Such images will be returned by the NeighborSearch class as neighbors
and need to be filtered out by the users.
The NeighborSearch constructor divides the unit cell into bins.
For this it needs to know the maximum radius that will be used in searches,
as well as the unit cell. Since the system may be non-periodic,
the constructor also takes the model as an argument -- it is used to
calculate the bounding box for the model if there is no unit cell.
It is also stored and used if ``populate()`` is called.
The C++ signature (in ``gemmi/neighbor.hpp``) is::
NeighborSearch::NeighborSearch(Model& model, const UnitCell& cell, double max_radius)
Then the cell lists need to be populated with items either by calling::
void NeighborSearch::populate(bool include_h=true)
or by adding individual chains::
void NeighborSearch::add_chain(const Chain& chain, bool include_h=true)
or by adding individual atoms::
void NeighborSearch::add_atom(const Atom& atom, int n_ch, int n_res, int n_atom)
where ``n_ch`` is the index of the chain in the model, ``n_res`` is the index
of the residue in the chain, and ``n_atom`` is the index of the atom
in the residue.
An example in Python:
.. doctest::
>>> import gemmi
>>> st = gemmi.read_structure('../tests/1pfe.cif.gz')
>>> ns = gemmi.NeighborSearch(st[0], st.cell, 3).populate(include_h=False)
Here we do the same using ``add_chain()`` instead of ``populate()``:
.. doctest::
>>> ns = gemmi.NeighborSearch(st[0], st.cell, 3)
>>> for chain in st[0]:
... ns.add_chain(chain, include_h=False)
And again the same, with complete control over which atoms are included:
.. doctest::
>>> ns = gemmi.NeighborSearch(st[0], st.cell, 3)
>>> for n_ch, chain in enumerate(st[0]):
... for n_res, res in enumerate(chain):
... for n_atom, atom in enumerate(res):
... if not atom.is_hydrogen():
... ns.add_atom(atom, n_ch, n_res, n_atom)
...
NeighborSearch has a couple of functions for searching.
The first one takes atom as an argument::
std::vector<Mark*> NeighborSearch::find_neighbors(const Atom& atom, float min_dist, float max_dist)
.. doctest::
>>> ref_atom = st[0].sole_residue('A', gemmi.SeqId('3')).sole_atom('P')
>>> marks = ns.find_neighbors(ref_atom, min_dist=0.1, max_dist=3)
>>> len(marks)
6
``find_neighbors()`` checks altloc of the atom and
considers as potential neighbors only atoms from the same
conformation. In particular, if altloc is empty all atoms are considered.
Non-negative ``min_dist`` in the ``find_neighbors()`` call prevents
the atom whose neighbors we search from being included in the results
(the distance of the atom to itself is zero).
The second one takes position and altloc as explicit arguments::
std::vector<Mark*> NeighborSearch::find_atoms(const Position& pos, char altloc, float radius)
.. doctest::
>>> point = gemmi.Position(20, 20, 20)
>>> marks = ns.find_atoms(point, '\0', radius=3)
>>> len(marks)
7
Additionally, in C++ you may use a function that takes a callback
as the last argument (usage examples are in the source code)::
template<typename T>
void NeighborSearch::for_each(const Position& pos, char altloc, float radius, const T& func)
Cell-lists store ``Mark``\ s. When searching for neighbors you get references
(in C++ -- pointers) to these marks.
``Mark`` has a number of properties: ``x``, ``y``, ``z``,
``altloc``, ``element``, ``image_idx`` (index of the symmetry operation
that was used to generate this mark, 0 for identity),
``chain_idx``, ``residue_idx`` and ``atom_idx``.
.. doctest::
>>> mark = marks[0]
>>> mark
<gemmi.NeighborSearch.Mark O of atom 0/7/3>
>>> mark.x, mark.y, mark.z
(19.659000396728516, 20.248884201049805, 17.645000457763672)
>>> mark.altloc
'\x00'
>>> mark.element
<gemmi.Element: O>
>>> mark.image_idx
11
>>> mark.chain_idx, mark.residue_idx, mark.atom_idx
(0, 7, 3)
The references to the original model and to atoms are not stored.
``Mark`` has a method ``to_cra()`` that needs to be called with ``Model``
as an argument to get a triple of Chain, Residue and Atom::
CRA NeighborSearch::Mark::to_cra(Model& model) const
.. doctest::
>>> cra = mark.to_cra(st[0])
>>> cra.chain
<gemmi.Chain A with 79 res>
>>> cra.residue
<gemmi.Residue 8(DC) with 19 atoms>
>>> cra.atom
<gemmi.Atom O5' at (-0.0, 13.8, -17.6)>
``Mark`` also has a helper method ``pos()`` that returns
``Position(x, y, z)``::
Position NeighborSearch::Mark::pos() const
.. doctest::
>>> mark.pos()
<gemmi.Position(19.659, 20.2489, 17.645)>
Note that it can be the position of a symmetric image of the atom.
In this example the "original" atom is in a different location:
.. doctest::
>>> cra.atom.pos
<gemmi.Position(-0.028, 13.85, -17.645)>
The symmetry operation that relates the original position and its
image is composed of two parts: one of symmetry transformations
in the unit cell and a shift of the unit cell that we often
call here the PBC (periodic boundary conditions) shift.
The first part is stored explicitely as ``mark.image_idx``.
The corresponding transformation is:
.. doctest::
>>> ns.get_image_transformation(mark.image_idx) # doctest: +ELLIPSIS
<gemmi.FTransform object at 0x...>
>>> _.mat
<gemmi.Mat33 [1, -1, 0]
[0, -1, 0]
[0, 0, -1]>
To find the full symmetry operation we need to determine the nearest
image under PBC:
.. doctest::
>>> st.cell.find_nearest_pbc_image(point, cra.atom.pos, mark.image_idx)
<gemmi.NearestImage 12_665 in distance 2.39>
For more information see the :ref:`properties of NearestImage <nearestimage>`.
The neighbor search can also be used with small molecule structures.
.. doctest::
>>> small = gemmi.read_small_structure('../tests/2013551.cif')
>>> mg_site = small.sites[0]
>>> ns = gemmi.NeighborSearch(small, 4.0).populate()
>>> for mark in ns.find_site_neighbors(mg_site, min_dist=0.1):
... site = mark.to_site(small)
... nim = small.cell.find_nearest_pbc_image(mg_site.fract, site.fract, mark.image_idx)
... print(site.label, 'image #%d' % mark.image_idx, nim.symmetry_code(),
... 'dist=%.2f' % nim.dist())
I image #0 1_555 dist=2.92
I image #3 4_467 dist=2.92
Contact search
==============
Contacts in a molecule or in a crystal can be found using the neighbor search
described in the previous section. But to make it easier we have a dedicated
class ContactSearch. It uses the neighbor search to find pairs of atoms
close to each other and applies the filters described below.
When constructing ContactSearch we set the overall maximum search distance.
This distance is stored as the ``search_radius`` property:
.. doctest::
>>> cs = gemmi.ContactSearch(4.0)
>>> cs.search_radius
4.0
Additionally, we can set up per-element radii.
This excludes pairs of atoms in a distance larger than the sum
of their per-element radii.
The radii are initialized as a linear function of the
:ref:`covalent radius <covalent_radius>`:
*r* = *a* × *r*\ :sub:`cov` + *b*/2.
.. doctest::
>>> cs.setup_atomic_radii(1.0, 1.5)
Then each radius can be accessed and modified individually:
.. doctest::
>>> cs.get_radius(gemmi.Element('Zr'))
2.5
>>> cs.set_radius(gemmi.Element('Hg'), 1.5)
Next, we have the ``ignore`` property that can take
one of the following values:
* ContactSearch.Ignore.Nothing -- no filtering here,
* ContactSearch.Ignore.SameResidue -- ignore atom pairs from the same residue,
* ContactSearch.Ignore.AdjacentResidues -- ignore atom pairs from the same or
adjacent residues,
* ContactSearch.Ignore.SameChain -- show only inter-chain contacts
(including contacts between different symmetry images of one chain),
* ContactSearch.Ignore.SameAsu -- show only contacts between different
asymmetric units.
.. doctest::
>>> cs.ignore = gemmi.ContactSearch.Ignore.AdjacentResidues
You can also ignore atoms that have occupancy below the specified
threshold:
.. doctest::
>>> cs.min_occupancy = 0.01
Sometimes, it is handy to get each atom pair twice (as A-B and B-A).
In such case make the ``twice`` property true. By default, it is false:
.. doctest::
>>> cs.twice
False
Next property deals with atoms at special positions (such as rotation axis).
Such atoms can be slightly off the special position (because macromolecular
refinement programs usually don't constrain coordinates), so we must ensure
that an atom that should sit on the special position and its apparent symmetry
image are not regarded a contact. We assume that if the distance between
an atom and its image is small, it is not a real thing.
For larger distances we assume it is a real contact with atom's symmetry mate.
To tell apart the two cases we use a cut-off distance that can be modified:
.. doctest::
>>> cs.special_pos_cutoff_sq = 0.5 ** 2 # setting cut-off to 0.5A
The contact search uses an instance of NeighborSearch.
.. doctest::
>>> st = gemmi.read_structure('../tests/5cvz_final.pdb')
>>> st.setup_entities()
>>> ns = gemmi.NeighborSearch(st[0], st.cell, 5).populate()
If you'd like to ignore hydrogens from the model,
call ``ns.populate(include_h=False)``.
If you'd like to ignore waters, either remove waters from the Model
(function ``remove_waters()``) or ignore results that contain waters.
The actual contact search is done by:
.. doctest::
>>> results = cs.find_contacts(ns)
>>> len(results)
49
>>> results[0] # doctest: +ELLIPSIS
<gemmi.ContactSearch.Result object at 0x...>
The ContactSearch.Result class has four properties:
.. doctest::
>>> results[0].partner1
<gemmi.CRA A/SER 21/OG>
>>> results[0].partner2
<gemmi.CRA A/TYR 24/N>
>>> results[0].image_idx
52
>>> results[0].dist
2.8613362312316895
The first two properties are :ref:`CRA <CRA>`\ s for the involved atoms.
The ``image_idx`` is an index of the symmetry image (both crystallographic
symmetry and strict NCS count).
Value 0 would mean that both atoms (``partner1`` and ``partner2``)
are in the same unit.
In this example the value can be high because it is a structure of
icosahedral viral capsid with 240 identical units in the unit cell.
The last property is the distance between atoms.
Atoms pointed to by ``partner1`` and ``partner2`` can be far apart
in the asymmetric unit:
.. doctest::
>>> results[0].partner1.atom.pos
<gemmi.Position(42.221, 46.34, 19.436)>
>>> results[0].partner2.atom.pos
<gemmi.Position(49.409, 39.333, 19.524)>
But you can find the position of symmetry image of ``partner2`` that
is in contact with ``partner1`` with:
.. doctest::
>>> st.cell.find_nearest_pbc_position(results[0].partner1.atom.pos,
... results[0].partner2.atom.pos,
... results[0].image_idx)
<gemmi.Position(42.6647, 47.5137, 16.8644)>
You could also find the symmetry image of ``partner1``
that is near the original position of ``partner2``:
.. doctest::
>>> st.cell.find_nearest_pbc_position(results[0].partner2.atom.pos,
... results[0].partner1.atom.pos,
... results[0].image_idx, inverse=True)
<gemmi.Position(49.2184, 39.9091, 16.7278)>
See also the command-line program :ref:`gemmi-contact <gemmi-contact>`.
Gemmi provides also an undocumented class LinkHunt which matches
contacts to links definitions from :ref:`monomer library <CCD_etc>`
and to connections (LINK, SSBOND) from the structure.
If you would find it useful, contact the author.
Superposition
=============
Gemmi includes the `QCP method <https://theobald.brandeis.edu/qcp/>`_
(Liu P, Agrafiotis DK, & Theobald DL, 2010)
for superposing two lists of points in 3D.
The C++ function ``superpose_positions()`` takes two arrays of positions
and an optional array of weights. Before applying this function to chains
it is necessary to determine pairs of corresponding atoms.
Here, as a minimal example, we superpose backbone of the third residue:
.. doctest::
>>> model = gemmi.read_structure('../tests/4oz7.pdb')[0]
>>> res1 = model['A'][2]
>>> res2 = model['B'][2]
>>> atoms = ['N', 'CA', 'C', 'O']
>>> gemmi.superpose_positions([res1.sole_atom(a).pos for a in atoms],
... [res2.sole_atom(a).pos for a in atoms]) #doctest: +ELLIPSIS
<gemmi.SupResult object at 0x...>
>>> _.rmsd
0.006558389527590043
To make it easier, we also have a higher-level function
``calculate_superposition()`` that operates on ``ResidueSpan``\ s.
This function first performs the sequence alignment.
Then the matching residues are superposed, using either
all atoms in both residues, or only Cα atoms (for peptides)
and P atoms (for nucleotides).
Atoms that don't have counterparts in the other span are skipped.
The returned object (SupResult) contains RMSD and the transformation
(rotation matrix + translation vector) that superposes the second span
onto the first one.
Note that RMSD can be defined in two ways:
the sum of squared deviations is divided either by 3N (PyMOL)
or by N (SciPy).
QCP (and gemmi) returns the former. To get the latter multiply it by √3.
Here is a usage example:
.. doctest::
>>> model = gemmi.read_structure('../tests/4oz7.pdb')[0]
>>> polymer1 = model['A'].get_polymer()
>>> polymer2 = model['B'].get_polymer()
>>> ptype = polymer1.check_polymer_type()
>>> sup = gemmi.calculate_superposition(polymer1, polymer2, ptype, gemmi.SupSelect.CaP)
>>> sup.count # number of atoms used
10
>>> sup.rmsd
0.1462689168993659
>>> sup.transform.mat
<gemmi.Mat33 [-0.0271652, 0.995789, 0.0875545]
[0.996396, 0.034014, -0.0777057]
[-0.0803566, 0.085128, -0.993124]>
>>> sup.transform.vec
<gemmi.Vec3(-17.764, 16.9915, -1.77262)>
The arguments to ``calculate_superposition()`` are:
- two ``ResidueSpan``\ s,
- polymer type (to avoid determining it when it's already known).
The information whether it's protein or nucleic acid is used
during sequence alignment (to detect gaps between residues in the polymer --
it helps in rare cases when the sequence alignment alone is ambiguous),
and it decides whether to use Cα or P atoms (see the next point),
- atom selection: one of ``SupSelect.CaP`` (only Cα or P atoms),
``SupSelect.MainChain`` or ``SupSelect.All`` (all atoms),
- (optionally) altloc -- the conformer choice.
By default, atoms with non-blank altloc are ignored.
With altloc='A', only the A conformer is considered
(atoms with altloc either blank or A). Etc.
- (optionally) trim_cycles (default: 0) -- maximum number of outlier
rejection cycles. This option was inspired by the align command in PyMOL.
.. doctest::
>>> sr = gemmi.calculate_superposition(polymer1, polymer2, ptype,
... gemmi.SupSelect.All, trim_cycles=5)
>>> sr.count
73
>>> sr.rmsd
0.18315488879658484
- (optionally) trim_cutoff (default: 2.0) -- outlier rejection cutoff in RMSD,
To calculate current RMSD between atoms (without superposition)
use function ``calculate_current_rmsd()`` that takes the same arguments
except the ones for trimming:
.. doctest::
>>> gemmi.calculate_current_rmsd(polymer1, polymer2, ptype, gemmi.SupSelect.CaP).rmsd
19.660883858565462
The calculated superposition can be applied to a span of residues,
changing the atomic positions in-place:
.. doctest::
>>> polymer2[2].sole_atom('CB') # before
<gemmi.Atom CB at (-30.3, -10.6, -11.6)>
>>> polymer2.transform_pos_and_adp(sup.transform)
>>> polymer2[2].sole_atom('CB') # after
<gemmi.Atom CB at (-28.5, -12.6, 11.2)>
>>> # it is now nearby the corresponding atom in chain A:
>>> polymer1[2].sole_atom('CB')
<gemmi.Atom CB at (-28.6, -12.7, 11.3)>
.. doctest::
:hide:
:skipif: sys.platform == 'win32'
>>> gemmi.calculate_current_rmsd(polymer1, polymer2, ptype, gemmi.SupSelect.CaP).rmsd
0.14626891689940602
.. _selections:
Selections
==========
Gemmi selection syntax is based on the selection syntax from MMDB,
which is sometimes called CID (Coordinate ID). The MMDB syntax is described
at the bottom of
the `pdbcur documentation <http://legacy.ccp4.ac.uk/html/pdbcur.html>`_.
The selection has a form of /-separated parts:
/models/chains/residues/atoms. Empty parts can be omitted when it's
not ambiguous. Gemmi (but not MMDB) can take additional properties
added at the end after a semicolon (;).
Let us go through the individual filters first:
* ``/1`` -- selects model 1 (if the PDB file doesn't have MODEL records,
it is assumed that the only model is model 1).
* ``//D`` (or just ``D``) -- selects chain D.
* ``///10-30`` (or ``10-30``) -- residues with sequence IDs from 10 to 30.
* ``///10A-30A`` (or ``10A-30A`` or ``///10.A-30.A`` or ``10.A-30.A``) --
sequence ID can include insertion code. The MMDB syntax has dot between
sequence sequence number and insertion code. In Gemmi the dot is optional.
* ``///(ALA)`` (or ``(ALA)``) -- selects residues with a given name.
* ``////CB`` (or ``CB:*`` or ``CB[*]``) -- selects atoms with a given name.
* ``////[P]`` (or just ``[P]``) -- selects phosphorus atoms.
* ``////:B`` (or ``:B``) -- selects atoms with altloc B.
* ``////;q<0.5`` (or ``;q<0.5``) -- selects atoms with occupancy below 0.5
(inspired by PyMOL, where it'd be ``q<0.5``).
* ``////;b>40`` (or ``;b>40``) -- selects atoms with isotropic B-factor
above a given value.
* ``;polymer`` or ``;solvent`` -- selects polymer or solvent residues
(if the PDB file doesn't have TER records, call setup_entities() first).
* ``*`` -- selects all atoms.
Note that the chain name and altloc can be an empty.
The syntax supports also comma-separated lists and negations with ``!``:
* ``(!ALA)`` -- all residues but alanine,
* ``[C,N,O]`` -- all C, N and O atoms,
* ``[!C,N,O]`` -- all atoms except C, N and O,
* ``:,A`` -- altloc either empty or A (which makes one conformation),
* ``/1/A,B/20-40/CA[C]:,A`` -- multiple selection criteria, all of them
must be fulfilled.
* ``(CYS);!polymer`` -- select cysteine ligands
**Incompatibility** with MMDB.
In MMDB, if the chemical element is specified (e.g. ``[C]`` or ``[*]``),
the alternative location indicator defaults to "" (no altloc),
rather than to "*" (any altloc). This might be surprising.
In Gemmi, if ':' is absent the altloc is not checked ("*").
Note: the selections in Gemmi are not widely used yet and the API may evolve.
A selection is is a standalone object with a list of filters that
can be applied to any Structure, Model or its part.
Empty selection matches all atoms:
.. doctest::
>>> sel = gemmi.Selection() # empty - no filters
Selection initialized with a string parses the string and creates
corresponding filters:
.. doctest::
>>> # select all Cl atoms
>>> sel = gemmi.Selection('[CL]')
The selection can then be used on any structure.
A helper function ``first()`` returns the first matching atom:
.. doctest::
>>> st = gemmi.read_structure('../tests/1pfe.cif.gz')
>>> # get the first result as pointer to model and CRA (chain, residue, atom)
>>> sel.first(st)
(<gemmi.Model 1 with 2 chain(s)>, <gemmi.CRA A/CL 20/CL>)
Function ``str()`` creates a string from the selection:
.. doctest::
>>> sel = gemmi.Selection('A/1-4/N9')
>>> sel.str()
'//A/1.-4./N9'
The Selection objects has methods for iterating over the selected items
in the hierarchy:
.. doctest::
>>> for model in sel.models(st):
... print('Model', model.name)
... for chain in sel.chains(model):
... print('-', chain.name)
... for residue in sel.residues(chain):
... print(' -', str(residue))
... for atom in sel.atoms(residue):
... print(' -', atom.name)
...
Model 1
- A
- 1(DG)
- N9
- 2(DC)
- 3(DG)
- N9
- 4(DT)
Selection can be used to create a new structure (or model) with a copy
of the selection. In this example, we copy alpha-carbon atoms:
.. doctest::
>>> st = gemmi.read_structure('../tests/1orc.pdb')
>>> st[0].count_atom_sites()
559
>>> selection = gemmi.Selection('CA[C]')
>>> # create a new structure
>>> ca_st = selection.copy_structure_selection(st)
>>> ca_st[0].count_atom_sites()
64
>>> # create a new model
>>> ca_model = selection.copy_model_selection(st[0])
>>> ca_model.count_atom_sites()
64
Selection can also be used to remove atoms.
In this example we remove atoms with B-factor above 50:
.. doctest::
>>> sel = gemmi.Selection(';b>50')
>>> sel.remove_selected(ca_st)
>>> ca_st[0].count_atom_sites()
61
>>> sel.remove_selected(ca_model)
>>> ca_model.count_atom_sites()
61
We can also do the opposite and remove atoms that are not selected:
.. doctest::
>>> sel.remove_not_selected(ca_model)
>>> ca_model.count_atom_sites()
0
:ref:`Previously <model_count_atom>`, we introduced a couple functions
that take selection as an argument. As an example, we can use one
of them to count heavy atoms in polymers:
.. doctest::
>>> st[0].count_occupancies(gemmi.Selection('[!H,D];polymer'))
496.0
Each residue and atom has a flag that can be set manually
and used to create a selection. In the following example
we select residues in the radius of 8Å from a selected point:
.. doctest::
>>> selected_point = gemmi.Position(20, 40, 30)
>>> ns = gemmi.NeighborSearch(st[0], st.cell, 8.0).populate()
>>> # First, a flag is set for neigbouring residues.
>>> for mark in ns.find_atoms(selected_point):
... mark.to_cra(st[0]).residue.flag = 's'
>>> # Then, we select residues with this flag.
>>> selection = gemmi.Selection().set_residue_flags('s')
>>> # Next, we can use this selection.
>>> selection.copy_model_selection(st[0]).count_atom_sites()
121
Note: NeighborSearch searches for atoms in all symmetry images.
This is why it takes UnitCell as a parameter.
To search only in atoms directly listed in the file pass empty cell
(``gemmi.UnitCell()``).
Instead of the whole residues, we can select atoms.
Here, we select atoms in the radius of 8Å from a selected point:
.. doctest::
>>> # selected_point and ns are reused from the previous example
>>> # First, a flag is set for neigbouring atoms.
>>> for mark in ns.find_atoms(selected_point):
... mark.to_cra(st[0]).atom.flag = 's'
>>> # Then, we select atoms with this flag.
>>> selection = gemmi.Selection().set_atom_flags('s')
>>> # Next, we can use this selection.
>>> selection.copy_model_selection(st[0]).count_atom_sites()
59
.. _graph_analysis:
Graph analysis
==============
The graph algorithms in Gemmi are limited to finding the shortest path
between atoms (bonds = graph edges). This part of the library is not
documented yet.
The rest of this section shows how to use Gemmi together with external
graph analysis libraries to analyse the similarity of chemical molecules.
To do this, first we set up a graph corresponding to the molecule.
Here we show how it can be done in the Boost Graph Library.
.. literalinclude:: ../examples/with_bgl.cpp
:lines: 9-10,13-41
And here we use NetworkX in Python:
.. doctest::
:skipif: networkx is None
>>> import networkx
>>> G = networkx.Graph()
>>> block = gemmi.cif.read('../tests/SO3.cif')[-1]
>>> so3 = gemmi.make_chemcomp_from_block(block)
>>> for atom in so3.atoms:
... G.add_node(atom.id, Z=atom.el.atomic_number)
...
>>> for bond in so3.rt.bonds:
... G.add_edge(bond.id1.atom, bond.id2.atom) # ignoring bond type
...
To show a quick example, let us count automorphisms of SO3:
.. doctest::
:skipif: networkx is None
>>> import networkx.algorithms.isomorphism as iso
>>> GM = iso.GraphMatcher(G, G, node_match=iso.categorical_node_match('Z', 0))
>>> # expecting 3! automorphisms (permutations of the three oxygens)
>>> sum(1 for _ in GM.isomorphisms_iter())
6
With a bit more of code we could perform a real cheminformatics task.
.. _graph_isomorphism:
Graph isomorphism
-----------------
In this example we use Python NetworkX to compare molecules from the
Refmac monomer library with Chemical Component Dictionary (CCD) from PDB.
The same could be done with other graph analysis libraries,
such as Boost Graph Library, igraph, etc.
The program below takes compares specified monomer cif files with
corresponding CCD entries. Hydrogens and bond types are ignored.
It takes less than half a minute to go through the 25,000 monomer
files distributed with CCP4 (as of Oct 2018),
so we do not try to optimize the program.
.. literalinclude:: ../examples/ccd_gi.py
:language: python
:lines: 3-
If we run it on monomers that start with M we get:
.. code-block:: console
$ examples/ccd_gi.py $CLIBD_MON/m/*.cif
M10 is isomorphic
O9 -> O4
O4 -> O9
MK8 is isomorphic
O2 -> OXT
MMR differs
missing: O12 O4
2 of 821 monomers not found in CCD
So in M10 the two atoms marked green are swapped:
.. image:: img/M10-isomorphism.png
:align: center
:scale: 100
(The image was generated in NGL and compressed with Compress-Or-Die.)
.. _substructure_matching:
Substructure matching
---------------------
Now a little script to illustrate subgraph isomorphism.
The script takes a (three-letter-)code of a molecule that is to be used
as a pattern and finds CCD entries that contain such a substructure.
As in the previous example, hydrogens and bond types are ignored.
.. literalinclude:: ../examples/ccd_subgraph.py
:language: python
:lines: 3-
Let us check what entries have HEM as a substructure:
.. code-block:: console
$ examples/ccd_subgraph.py HEM
1FH +6 nodes, +7 edges
2FH +6 nodes, +7 edges
4HE +7 nodes, +8 edges
522 +2 nodes, +2 edges
6CO +6 nodes, +7 edges
6CQ +7 nodes, +8 edges
89R +3 nodes, +3 edges
CLN +1 nodes, +2 edges
DDH +2 nodes, +2 edges
FEC +6 nodes, +6 edges
HAS +22 nodes, +22 edges
HCO +1 nodes, +1 edges
HDM +2 nodes, +2 edges
HEA +17 nodes, +17 edges
HEB +0 nodes, +0 edges
HEC +0 nodes, +0 edges
HEM +0 nodes, +0 edges
HEO +16 nodes, +16 edges
HEV +2 nodes, +2 edges
HP5 +2 nodes, +2 edges
ISW +0 nodes, +0 edges
MH0 +0 nodes, +0 edges
MHM +0 nodes, +0 edges
N7H +3 nodes, +3 edges
NTE +3 nodes, +3 edges
OBV +14 nodes, +14 edges
SRM +20 nodes, +20 edges
UFE +18 nodes, +18 edges
.. _maximum_common_subgraph:
Maximum common subgraph
-----------------------
In this example we use McGregor's algorithm implemented in the Boost Graph
Library to find maximum common induced subgraph. We call the MCS searching
function with option ``only_connected_subgraphs=true``, which has obvious
meaning and can be changed if needed.
To illustrate this example, we compare ligands AUD and LSA:
.. image:: img/aud_lsa.png
:align: center
:scale: 100
The whole code is in :file:`examples/with_bgl.cpp`. The same file has also
examples of using the BGL implementation of VF2 to check graph
and subgraph isomorphisms.
.. literalinclude:: ../examples/with_bgl.cpp
:start-after: Example 4
:end-before: minimal program
Torsion angles
==============
This section presents functions dedicated to calculation of the dihedral angles
φ (phi), ψ (psi) and ω (omega) of the protein backbone.
These functions are built upon the more general ``calculate_dihedral`` function,
introduced in :ref:`the section about coordinates <coordinates>`,
which takes four points in the space as arguments.
``calculate_omega()`` calculates the ω angle, which is usually around 180°:
.. doctest::
>>> from math import degrees
>>> chain = gemmi.read_structure('../tests/5cvz_final.pdb')[0]['A']
>>> degrees(gemmi.calculate_omega(chain[0], chain[1]))
159.9092215006572
>>> for res in chain[:5]:
... next_res = chain.next_residue(res)
... if next_res:
... omega = gemmi.calculate_omega(res, next_res)
... print(res.name, degrees(omega))
...
ALA 159.9092215006572
ALA -165.26874513591127
ALA -165.85686681169696
THR -172.99968385093572
SER 176.74223937657652
The φ and ψ angles are often used together, so they are calculated
in one function ``calculate_phi_psi()``:
.. doctest::
>>> for res in chain[:5]:
... prev_res = chain.previous_residue(res)
... next_res = chain.next_residue(res)
... phi, psi = gemmi.calculate_phi_psi(prev_res, res, next_res)
... print('%s %8.2f %8.2f' % (res.name, degrees(phi), degrees(psi)))
...
ALA nan 106.94
ALA -116.64 84.57
ALA -45.57 127.40
THR -62.01 147.45
SER -92.85 161.53
In C++ these functions can be found in ``gemmi/calculate.hpp``.
The torsion angles φ and ψ can be visualized on the Ramachandran plot.
Let us plot angles from all PDB entries with the resolution higher than 1.5A.
Usually, glycine, proline and the residue preceding proline (pre-proline)
are plotted separately. Here, we will exclude pre-proline and make
separate plot for each amino acid. So first, we calculate angles
and save φ,ψ pairs in a set of files -- one file per residue.
.. literalinclude:: ../examples/rama_gather.py
:language: python
:start-at: import sys
The script above works with coordinate files in any of the formats
supported by gemmi (PDB, mmCIF, mmJSON). As of 2019, processing
a :ref:`local copy of the PDB archive <pdb_dir>`
in the PDB format takes about 20 minutes.
In the second step we plot the data points with Matplotlib.
We use a script that can be found in :file:`examples/rama_plot.py`.
Six of the resulting plots are shown here (click to enlarge):
.. image:: img/ramachandran-per-aa.png
:align: center
:scale: 60
Topology
========
A macromolecular refinement program typically starts from reading
a coordinate file and a monomer library. The monomer library specifies
restraints (bond distances, angles, ...) in monomers
as well as modifications introduced by links between monomers.
The coordinates and restraints are combined into
what we call here a *topology*.
It contains restraints applied to the model.
A monomer library may specify angle CD2-CE2-NE1 in TRP.
In contrast, the topology specifies angles between concrete atoms
(say, angle #721-#720-#719).
Together with preparing a topology, macromolecular programs
(in particular, Refmac) may also add or shift hydrogens (to
the riding positions) and reorder atoms.
In Python we have one function that does it all:
.. code-block:: python
gemmi.prepare_topology(st: gemmi.Structure,
monlib: gemmi.MonLib,
model_index: int = 0,
h_change: gemmi.HydrogenChange = HydrogenChange.NoChange,
reorder: bool = False,
warnings: object = None,
ignore_unknown_links: bool = False) -> gemmi.Topo
where
* ``monlib`` is an instance of an undocumented MonLib class.
For now, here is an example how to read the CCP4 monomer library
(a.k.a Refmac dictionary):
.. code-block:: python
monlib_path = os.environ['CCP4'] + '/lib/data/monomers'
resnames = st[0].get_all_residue_names()
monlib = gemmi.read_monomer_lib(monlib_path, resnames)
* ``h_change`` is one of:
* HydrogenChange.NoChange -- no change,
* HydrogenChange.Shift -- shift existing hydrogens to ideal (riding) positions,
* HydrogenChange.Remove -- remove all H and D atoms,
* HydrogenChange.ReAdd -- discard and re-create hydrogens in ideal positions,
* HydrogenChange.ReAddButWater -- the same, but doesn't add H in waters,
* ``reorder`` -- changes the order of atoms inside each residue
to match the order in the corresponding monomer cif file,
* ``warnings`` -- by default, exception is raised when a chemical component
is missing in the monomer library, or when link is missing,
or the hydrogen adding procedure comes across an unexpected configuration.
You can set warnings=sys.stderr to only print a warning to stderr
and continue. sys.stderr can be replaced with any object that has
methods ``write(str)`` and ``flush()``.
If hydrogen position is not uniquely determined its occupancy is set to zero.
TBC
.. _pdb_dir:
Local copy of the PDB archive
=============================
Some of the examples in this documentation work with a local copy
of the Protein Data Bank archive. This subsection describes
the assumed setup.
Like in BioJava, we assume that the ``$PDB_DIR`` environment variable
points to a directory that contains ``structures/divided/mmCIF`` -- the same
arrangement as on the
`PDB's FTP <ftp://ftp.wwpdb.org/pub/pdb/data/structures/>`_ server.
.. code-block:: console
$ cd $PDB_DIR
$ du -sh structures/*/* # as of Jun 2017
34G structures/divided/mmCIF
25G structures/divided/pdb
101G structures/divided/structure_factors
2.6G structures/obsolete/mmCIF
A traditional way to keep an up-to-date local archive is to rsync it
once a week:
.. code-block:: shell
#!/bin/sh -x
set -u # PDB_DIR must be defined
rsync_subdir() {
mkdir -p "$PDB_DIR/$1"
# Using PDBe (UK) here, can be replaced with RCSB (USA) or PDBj (Japan),
# see https://www.wwpdb.org/download/downloads
rsync -rlpt -v -z --delete \
rsync.ebi.ac.uk::pub/databases/pdb/data/$1/ "$PDB_DIR/$1/"
}
rsync_subdir structures/divided/mmCIF
#rsync_subdir structures/obsolete/mmCIF
#rsync_subdir structures/divided/pdb
#rsync_subdir structures/divided/structure_factors
Gemmi has a helper function for using the local archive copy.
It takes a PDB code (case insensitive) and a symbol denoting what file
is requested: P for PDB, M for mmCIF, S for SF-mmCIF.
.. doctest::
>>> os.environ['PDB_DIR'] = '/copy'
>>> gemmi.expand_if_pdb_code('1ABC', 'P') # PDB file
'/copy/structures/divided/pdb/ab/pdb1abc.ent.gz'
>>> gemmi.expand_if_pdb_code('1abc', 'M') # mmCIF file
'/copy/structures/divided/mmCIF/ab/1abc.cif.gz'
>>> gemmi.expand_if_pdb_code('1abc', 'S') # SF-mmCIF file
'/copy/structures/divided/structure_factors/ab/r1abcsf.ent.gz'
If the first argument is not in the PDB code format (4 characters for now)
the function returns the first argument.
.. doctest::
>>> arg = 'file.cif'
>>> gemmi.is_pdb_code(arg)
False
>>> gemmi.expand_if_pdb_code(arg, 'M')
'file.cif'
Multiprocessing
===============
(Python-specific)
Most of the gemmi objects cannot be pickled. Therefore, they cannot be
passed between processes when using the multiprocessing module.
Currently, the only picklable classes (with protocol >= 2) are:
UnitCell and SpaceGroup.
Usually, it is possible to organize multiprocessing in such a way that
gemmi objects are not passed between processes. The example script below
traverses subdirectories and asynchronously analyses coordinate files.
It uses 4 worker processes in parallel. The processes get file path
and return a tuple.
.. literalinclude:: ../examples/multiproc.py
:language: python
:lines: 4-
|