1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
|
Grids and maps
##############
.. _grid:
Volumetric grid
===============
Introduction
------------
Macromolecular models are often accompanied by 3D data on an evenly spaced,
rectangular grid (but note that the spacing in different directions may differ).
The data may represent electron density, a mask of the protein area,
or any other scalar data.
In Gemmi such a data is stored in a class called Grid.
Actually, it is a set of classes for storing
different types of data: floating point numbers, integers or boolean masks.
Grid dimension are given in variables nu, nv, nw.
The data layout is Fortran-style contiguous, i.e. point (1,1,1) is followed
by (2,1,1).
Grid classes also store:
* unit cell dimensions (to know Cartesian coordinates of grid nodes),
* and crystallographic symmetry (to know symmetry-equivalent grid nodes).
If the symmetry is not set (or is set to P1)
we effectively have a box with periodic boundary conditions (PBC).
C++
~~~
The ``gemmi/grid.hpp`` header defines::
template<typename T=float> struct Grid;
which stores dimensions and data::
int nu, nv, nw;
std::vector<T> data;
To specify the grid size use function ``set_size()``
or ``set_size_from_spacing()``. They both check that the size
is compatible with the space group (so it is better to call
these functions after setting ``Grid::spacegroup``.
The latter function additionally ensures that the size is FFT-friendly.
The data point can be accessed with::
T Grid<T>::get_value(int u, int v, int w) const
void Grid<T>::set_value(int u, int v, int w, T x)
(This class has a number of other functions that are not documented yet.
The majority of Gemmi users use it from Python, so that's also where most of
the documentation effort goes.)
Python
~~~~~~
In Python we have classes FloatGrid (for maps), Int8Grid (for masks).
(We will add other classes such and ComplexGrid when we see
a use for it.)
The constructor may take grid dimensions or a NumPy array as an argument:
.. doctest::
>>> import gemmi
>>> grid = gemmi.FloatGrid(12, 12, 12)
>>> grid.nu, grid.nv, grid.nw
(12, 12, 12)
.. doctest::
:skipif: numpy is None
>>> grid2 = gemmi.FloatGrid(numpy.zeros((30, 31, 32), dtype=numpy.float32))
>>> grid2.nu, grid2.nv, grid2.nw
(30, 31, 32)
Alternatively, you may set (or change) the size later on:
.. doctest::
>>> grid3 = gemmi.FloatGrid()
>>> # grid3.spacegroup = ...
>>> grid3.set_size(12, 12, 12)
The advantage of calling ``set_size()`` after a space group was set
is that this function checks if the size is compatible with the space group
(a symmetry operation cannot map a node to a point between nodes).
You can create a copy of a grid with:
.. doctest::
>>> grid.clone()
<gemmi.FloatGrid(12, 12, 12)>
Values are accessed with functions get_value() and set_value():
.. doctest::
>>> grid.set_value(1, 1, 1, 7.0)
>>> grid.get_value(1, 1, 1)
7.0
>>> # we can test wrapping of indices (a.k.a. periodic boundary conditions)
>>> grid.get_value(-11, 13, 25)
7.0
.. _buffer_protocol:
The data can be also accessed through the
`buffer protocol <https://docs.python.org/3/c-api/buffer.html>`_.
It means that you can use it as a NumPy array (Fortran-style contiguous)
without copying the data:
.. doctest::
:skipif: numpy is None or sys.platform == 'win32'
>>> import numpy
>>> array = numpy.array(grid, copy=False)
>>> array.dtype
dtype('float32')
>>> array.shape
(12, 12, 12)
>>> numpy.argwhere(array == 7.0)
array([[1, 1, 1]])
The buffer protocol is not specific to NumPy -- any other Python library
that supports this protocol can directly access the grid data.
Alternatively, the grid can be viewed as a NumPy array through
the ``array`` property:
.. doctest::
:skipif: numpy is None or sys.platform == 'win32'
>>> grid.array.shape
(12, 12, 12)
Symmetry
--------
The main advantage that Grid has over a generic 3D array is that
it understands crystallographic symmetry.
After setting the symmetry we can use a family of *symmetrize* functions
that performs operations on symmetry-equivalent grid points.
For example, we can set all equivalent points to the value calculated
as a minimum, maximum or a sum of values of the equivalent points.
In C++ we directly set the spacegroup property::
const SpaceGroup* spacegroup;
Similarly in Python:
.. doctest::
>>> grid.spacegroup = gemmi.find_spacegroup_by_name('P2')
Now let us use one of the symmetrizing functions:
.. doctest::
>>> # the point (1, 1, 1) was already set to 7.0
>>> grid.set_value(0, 0, 0, 0.125) # a special position
>>> grid.sum() # for now only two points: 7.0 + 0.125
7.125
>>> grid.symmetrize_max() # applying symmetry
>>> grid.sum() # one point got duplicated, the other is on rotation axis
14.125
In C++ we have a templated function that can perform any operation
on symmetry-equivalent points::
template<typename Func> void Grid::symmetrize(Func func)
Python bindings provide the following specializations:
.. doctest::
>>> grid.symmetrize_min() # minimum of equivalent values
>>> grid.symmetrize_max() # maximum
>>> grid.symmetrize_abs_max() # value corresponding to max(|x|)
>>> grid2.symmetrize_sum() # sum symmetry-equivalent nodes
Unit cell
---------
The unit cell parameters (in a member variable ``unit_cell``: UnitCell)
enable conversion between coordinates and grid points.
The unit cell should be set using ``Grid<T>::set_unit_cell()``,
which in addition to setting ``unit_cell`` sets also ``spacing``,
the spacing between grid points that is precalculated for efficiency.
.. doctest::
>>> grid.set_unit_cell(gemmi.UnitCell(45, 45, 45, 90, 82.5, 90))
>>> grid.unit_cell
<gemmi.UnitCell(45, 45, 45, 90, 82.5, 90)>
>>> grid.spacing #doctest: +ELLIPSIS
(3.7179..., 3.75..., 3.7179...)
Each grid point (*u*, *v*, *w*) can now be expressed in fractional or Cartesian
coordinates:
.. doctest::
>>> grid.get_fractional(6, 6, 6)
<gemmi.Fractional(0.5, 0.5, 0.5)>
>>> grid.get_position(6, 6, 6)
<gemmi.Position(25.4368, 22.5, 22.3075)>
Grid point
----------
Grid contains a little helper class (GridBase<T>::Point in C++)
that bundles grid point coordinates (u, v, w: int) and a pointer
to the value in grid (value). This bundle is obtained with getter:
.. doctest::
>>> grid.get_point(0, 0, 0)
<gemmi.FloatGridBase.Point (0, 0, 0) -> 0.125>
>>> _.u, _.v, _.w, _.value
(0, 0, 0, 0.125)
or when iterating the grid:
.. doctest::
>>> for point in grid:
... if point.value != 0.: print(point)
<gemmi.FloatGridBase.Point (0, 0, 0) -> 0.125>
<gemmi.FloatGridBase.Point (1, 1, 1) -> 7>
<gemmi.FloatGridBase.Point (11, 1, 11) -> 7>
The point can be converted to its index (position in the array):
.. doctest::
>>> point = grid.get_point(6, 6, 6)
>>> grid.point_to_index(point)
942
to fractional coordinates:
.. doctest::
>>> grid.point_to_fractional(point)
<gemmi.Fractional(0.5, 0.5, 0.5)>
and to orthogonal (Cartesian) coordinates in Angstroms:
.. doctest::
>>> grid.point_to_position(point)
<gemmi.Position(25.4368, 22.5, 22.3075)>
The other way around, we can find the grid point nearest to a position:
.. doctest::
>>> grid.get_nearest_point(_)
<gemmi.FloatGridBase.Point (6, 6, 6) -> 0>
Common operations
-----------------
The Grid class is often used for electron density maps.
A common operation on such maps is normalization -- scaling
that changes the mean to 0 and RMSD to 1:
.. doctest::
>>> gr = grid.clone()
>>> gr.normalize()
----
To extract a block-shaped sub-array data as a Fortran-contiguous array,
or to set data in a block in a grid, use functions get/set_subarray.
Unlike array slicing, these functions are aware of the cell repeat
(PBC) -- the block area is not limited by the unit cell boundaries.
.. doctest::
>>> sub = gr.get_subarray(start=[3,3,3], shape=[2,3,4])
>>> sub.shape
(2, 3, 4)
>>> gr.set_subarray(sub, start=[0,0,0])
----
To set the whole grid to the same value use:
.. doctest::
>>> gr.fill(0)
To set the grid points in a certain radius from a specified position use::
void Grid<T>::set_points_around(const Position& ctr, double radius, T value)
.. doctest::
:skipif: numpy is None or sys.platform == 'win32'
>>> gr.set_points_around(gemmi.Position(25, 25, 25), radius=3, value=10)
>>> numpy.argwhere(gr.array == 10)
array([[6, 6, 7],
[6, 7, 7]])
This function, to be efficient, ignores symmetry.
At the end we should call one of the *symmetrizing* functions:
.. doctest::
>>> gr.symmetrize_max()
While we could use the above functions for masking the molecule
(or bulk solvent) area, we have specialized functions to create
a bulk :ref:`solvent mask <solventmask>`.
Interpolation
-------------
To get a value corresponding to an arbitrary position,
you may use trilinear interpolation of the 8 nearest nodes,
or tricubic interpolation that uses 64 nodes.
**C++**
::
T Grid<T>::interpolate_value(const Fractional& fctr) const
T Grid<T>::interpolate_value(const Position& ctr) const
double Grid<T>::tricubic_interpolation(const Fractional& fctr) const
double Grid<T>::tricubic_interpolation(const Position& ctr) const
// calculates also derivatives
std::array<double,4> Grid<T>::tricubic_interpolation_der(double x, double y, double z) const
**Python**
.. doctest::
>>> grid.interpolate_value(gemmi.Fractional(1/24, 1/24, 1/24))
0.890625
>>> grid.interpolate_value(gemmi.Position(2, 3, 4))
2.0333263874053955
>>> grid.tricubic_interpolation(gemmi.Fractional(1/24, 1/24, 1/24))
1.283477783203125
>>> grid.tricubic_interpolation(gemmi.Position(2, 3, 4))
2.6075661737715046
>>> # calculate also derivatives in directions of unit cell axes
>>> grid.tricubic_interpolation_der(gemmi.Fractional(1/24, 1/24, 1/24))
[1.283477783203125, 35.523193359375, 36.343505859375, 35.523193359375]
The cubic interpolation is smoother than linear, but may amplify the noise.
This is illustrated on the plots below, which shows density along two lines
in a grid that was filled with random numbers from [0, 1).
Trilinear interpolation is blue, tricubic -- red.
The left plot shows density along a line in a random direction,
the right plot -- along a line parallel to one of the axes.
.. image:: img/trilinear-tricubic.png
:align: center
:scale: 100
*Implementation notes*
Tricubic interpolation, as described
on `Wikipedia page <https://en.wikipedia.org/wiki/Tricubic_interpolation>`_ and in
`Appendix B of a PHENIX paper <https://journals.iucr.org/d/issues/2018/06/00/ic5103/#APPB>`_,
can be implemented either as 21 cubic interpolations, or using method
introduced by `Lekien & Marsen <https://doi.org/10.1002/nme.1296>`_ in 2005,
which involves 64x64 matrix of integral coefficients
(see also this `blog post <http://ianfaust.com/2016/03/20/Tricubic/>`_).
The latter method should be more efficient, but gemmi uses the former,
which takes ~100 ns. If you'd like to speed it up or to get derivatives,
contact developers.
*Optimization for Python*
If you have a large number of points, making a Python function call
each time would be slow.
If these points are on a regular 3D grid (which may not be aligned
with our grid) call ``interpolate_values()`` (with s at the end)
with two arguments: a 3D NumPy array (for storing the results)
and a :ref:`Transform <transform>` that relates indices of the array
to positions in the grid:
.. doctest::
:skipif: numpy is None
>>> # first we create a numpy array of the same type as the grid
>>> arr = numpy.zeros([32, 32, 32], dtype=numpy.float32)
>>> # then we setup a transformation (array indices) -> (position [A]).
>>> tr = gemmi.Transform()
>>> tr.mat.fromlist([[0.1, 0, 0], [0, 0.1, 0], [0, 0, 0.1]])
>>> tr.vec.fromlist([1, 2, 3])
>>> # finally we calculate interpolated values
>>> grid.interpolate_values(arr, tr)
>>> arr[10, 10, 10] # -> corresponds to Position(2, 3, 4)
2.0333264
(If your points are not on a regular grid -- get in touch -- there might be
another way.)
.. _masked_grid:
ASU and MaskedGrid
------------------
Sometimes we want to focus on a part of the grid only.
For this, we have class MaskedGrid that contains vector marking masked
positions and a reference to the original grid.
When an element of the mask is 0 (false), the corresponding element
of the grid is unmasked and is to be used. This is the same convention
as in NumPy MaskedArray.
The primary use for MaskedGrid is working with asymmetric unit (asu) only:
.. doctest::
>>> asu = grid.masked_asu()
>>> asu # doctest: +ELLIPSIS
<gemmi.MaskedFloatGrid object at 0x...>
>>> asu.grid is grid
True
>>> asu.mask_array # doctest: +ELLIPSIS
array([[[0, 0, 0, ..., 1, 1, 1],
...
[1, 0, 0, ..., 1, 1, 1]]], dtype=int8)
>>> sum(point.value for point in asu)
7.125
>>> for point in asu:
... if point.value != 0: print(point)
<gemmi.FloatGridBase.Point (0, 0, 0) -> 0.125>
<gemmi.FloatGridBase.Point (1, 1, 1) -> 7>
.. _solventmask:
Solvent mask
------------
Gemmi implements a variant of the most popular method for calculating
the bulk solvent area. This method was introduced in CNS.
It uses van der Waals (or similar) atomic radii *r* and two parameters:
*r*\ :sub:`probe` and *r*\ :sub:`shrink`.
* We mark the area in radius *r* + *r*\ :sub:`probe` of each
atom as non-solvent (0). *r* usually depends on the element,
but some programs use the same radius for all atoms.
The extra margin *r*\ :sub:`probe` is largely cancelled in the next step.
* We shrink the non-solvent area by *r*\ :sub:`shrink`.
All the 0's in a distance *r*\ :sub:`shrink` from 1's are changed to 1,
shrinking the solvent volume.
Both *r*\ :sub:`probe` and *r*\ :sub:`shrink` have the same
order of magnitude.
`Jiang & Brünger (1994) <https://doi.org/10.1006/jmbi.1994.1633>`_
proposed *r*\ :sub:`probe` = 1.0 Å and *r*\ :sub:`shrink` = 1.1 Å.
* The above procedure eliminates small solvent islands.
If it is not sufficient, we can explicitly remove islands
(contiguous areas of 1's) up to a certain volume.
This step was added for compatibility with Refmac.
Here is how to create a mask identical as ``phenix.mask``:
.. doctest::
>>> masker = gemmi.SolventMasker(gemmi.AtomicRadiiSet.Cctbx)
>>> st = gemmi.read_structure('../tests/1orc.pdb')
>>> grid = gemmi.Int8Grid()
>>> # take space group and unit cell from Structure,
>>> # and set size based on the specified minimal spacing
>>> grid.setup_from(st, spacing=1.0)
>>> masker.put_mask_on_int8_grid(grid, st[0])
The parameters of SolventMasker can be inspected and changed:
.. doctest::
>>> masker.atomic_radii_set
<AtomicRadiiSet.Cctbx: 1>
>>> masker.rprobe
1.11
>>> masker.rshrink
0.9
>>> masker.island_min_volume # 0 = unused
0.0
>>> masker.constant_r # 0 = unused
0.0
The example above uses a parameter set based on cctbx.
We also have a few others sets.
You can create mask similar to Refmac (but due to unintended features
of solvent masking in Refmac, the results are not identical):
.. doctest::
>>> masker = gemmi.SolventMasker(gemmi.AtomicRadiiSet.Refmac)
or a mask with Van der Waals radii from
`Wikipedia <https://en.wikipedia.org/wiki/Atomic_radii_of_the_elements_(data_page)>`_
and *r*\ :sub:`probe` = 1.0 Å and *r*\ :sub:`shrink` = 1.1 Å,
as in the original Jiang & Brünger paper:
.. doctest::
>>> masker = gemmi.SolventMasker(gemmi.AtomicRadiiSet.VanDerWaals)
or with constant radius, similarly to the NCSMASK program from CCP4:
.. doctest::
>>> masker = gemmi.SolventMasker(gemmi.AtomicRadiiSet.Constant, 3.0)
If the mask is to be FFT-ed to structure factors, store it on FloatGrid
(function ``put_mask_on_float_grid`` in Python
and ``put_mask_on_grid`` in C++).
See the section about :ref:`bulk solvent coorection <scaling>`
for details and examples.
Blob search
-----------
When we have an electron density map on a Grid we may want to check *blobs* --
unmodelled electron density, potential ligand sites.
Similarly to the "Unmodelled blobs" function in COOT, Gemmi has a function
that finds such blobs. It was added to be used in CCP4 Dimple.
The blobs can be searched either in a difference map, or in a normal map
with the model masked out. In this example we do the latter.
.. doctest::
>>> # load map from MTZ
>>> mtz = gemmi.read_mtz_file('../tests/5wkd_phases.mtz.gz')
>>> grid = mtz.transform_f_phi_to_map('FWT', 'PHWT', sample_rate=3)
>>>
>>> # Load model. No real blobs in this tiny example,
>>> # so we remove water to get one water-sized blob.
>>> st = gemmi.read_structure('../tests/5wkd.pdb')
>>> st.remove_waters()
>>>
>>> # use SolventMasker to mask the models with zeros
>>> masker = gemmi.SolventMasker(gemmi.AtomicRadiiSet.Constant, 1.75)
>>> masker.set_to_zero(grid, st[0])
>>>
>>> # find the blob
>>> blobs = gemmi.find_blobs_by_flood_fill(grid, cutoff=0.6, min_volume=5,
... min_score=0, min_peak=0)
>>> blobs #doctest: +ELLIPSIS
[<gemmi.Blob object at 0x...>]
>>> blobs[0].volume
9.967250538023837
>>> blobs[0].score #doctest: +ELLIPSIS
10.1815458...
>>> blobs[0].peak_value
1.8486430644989014
>>> blobs[0].centroid
<gemmi.Position(12.5868, -0.45056, 0)>
>>> blobs[0].peak_pos
<gemmi.Position(12.307, 0, 0)>
Flood fill
----------
`Flood fill <https://en.wikipedia.org/wiki/Flood_fill>`_
is an algorithm that determines the area connected to a *seed* point,
the area of all connected points which match a certain condition.
Here, the criterion for grid points is having the value above
(or, alternatively, below) a given threshold value.
The blob search from the previous section uses flood fill and returns Blob
objects that contain a few statistics for each blob. To get a mask
corresponding to a Blob we need to run the flood fill algorithm again,
using peak_pos as the seed:
.. doctest::
>>> seed = blobs[0].peak_pos
>>> mask = gemmi.flood_fill_above(grid, [seed], threshold=0.6)
>>> mask
<gemmi.Int8Grid(90, 8, 30)>
The second argument of flood_fill_above() is a list of positions used as seeds.
We could use multiple seeds to obtain a single mask for all blobs together.
To find area with values below a certain value,
run flood_fill_above() with optional argument ``negate=True``.
Here are a few characteristics of the mask that we can easily show:
.. doctest::
>>> mask.sum() # == number of masked points
62
>>> _ * grid.unit_cell.volume / grid.point_count # cf. blobs[0].volume
9.967250538023837
>>> extent = mask.get_nonzero_extent() # bounding box containing the blob
>>> extent.minimum # in fractional coordinates
<gemmi.Fractional(0.227778, -0.0625, -0.0833333)>
>>> grid.unit_cell.orthogonalize(extent.minimum)
<gemmi.Position(11.7177, -0.298563, -1.20317)>
>>> grid.unit_cell.orthogonalize(extent.maximum)
<gemmi.Position(13.4558, 4.47844, 1.20317)>
MRC/CCP4 maps
=============
We support one file format for storing the grid data on disk: MRC/CCP4 map.
The content of the map file is stored in a class that contains
both the Grid class and all the meta-data from the CCP4 file header.
The CCP4 format has a few different modes that correspond to different
data types. Gemmi supports:
* mode 0 -- which correspond to the C++ type int8_t,
* mode 1 -- corresponds to int16_t,
* mode 2 -- float,
* and mode 6 -- uint16_t.
CCP4 programs use mode 2 (float) for the electron density,
and mode 0 (int8_t) for masks. A mask is 0/1 data that marks part of the volume,
such as the solvent region. Other modes are not used in crystallography,
but may be used for CryoEM data.
The CCP4 format is quite flexible. The data is stored as sections,
rows and columns that correspond to a permutation of the X, Y and Z axes
as defined in the file header.
The file can contain only a part of the asymmetric unit,
or more than an asymmetric unit (i.e. redundant data).
There are two typical approaches to generate a crystallographic map:
* Covering a molecule with some margin around it.
This is necessary for programs such as PyMOL that don't know about symmetry.
CCP4 utilities ``fft`` + ``mapmask`` can make such a map.
* Covering the asymmetric unit (asu). The program that reads
the map is supposed to expand the symmetry. This approach is used by
the CCP4 clipper library and by programs such as Coot.
The latter approach generates map for exactly one asu, if possible.
It is not possible if the shape of the asu in fractional coordinates
is not rectangular, and in such case we must have some redundancy.
On average, the maps generated for asu are significantly smaller,
as compared in the
`UglyMol wiki <https://github.com/uglymol/uglymol/wiki/ccp4-dsn6-mtz>`_.
Nowadays, the CCP4 format is rarely used in crystallography.
Almost all programs read the reflection data and calculate maps on the fly.
Reading
-------
C++
~~~
To work with CCP4 maps you need::
#include <gemmi/ccp4.hpp>
The Ccp4 class is templated with the data type.
Normally, we use float type for a map::
gemmi::Ccp4<float> map;
map.read_ccp4_map("my_map.ccp4");
and int8_t for a mask (mask typically has only values 0 and 1,
but in principle the values can be from -127 to 128)::
gemmi::Ccp4<int8_t> mask;
mask.read_ccp4_map("my_mask.ccp4");
If the grid data type does not match the file data type, the library
will attempt to convert the data when reading.
Alternatively, you can use helper functions ``read_ccp4_map()``
and ``read_ccp4_mask()`` defined in ``gemmi/read_map.hpp``.
Python
~~~~~~
To read a ccp4 map:
.. doctest::
>>> m = gemmi.read_ccp4_map('../tests/5i55_tiny.ccp4')
>>> m
<gemmi.Ccp4Map with grid 8x6x10 in SG #4>
Similarly, to read a mask (ccp4 map in mode 0) call ``read_ccp4_mask()``.
Header
------
The CCP4 map header is organised as 56 words (4-bytes that are interpreted
as integer, float or 4 characters) followed by 800 bytes -- a space for ten
80-character text labels.
Low-level access to the header is provided by getters and setters
that use the word number (as in the format description from
`ccp4 <https://www.ccp4.ac.uk/html/maplib.html>`_
or `ccp-em <https://www.ccpem.ac.uk/mrc_format/mrc2014.php>`_)
as the first argument.
**C++**
::
int32_t header_i32(int w) const;
float header_float(int w) const;
// ccp4 map header has mostly 80-byte strings
std::string header_str(int w, size_t len=80) const;
void set_header_i32(int w, int32_t value);
void set_header_float(int w, float value);
void set_header_str(int w, const std::string& str);
For example::
int mode = map.header_i32(4);
float x = map.header_float(11);
**Python**
.. doctest::
>>> m.header_float(20), m.header_float(21) # dmin, dmax
(-0.5310382843017578, 2.3988280296325684)
>>> m.header_i32(28)
0
>>> m.set_header_i32(28, 20140)
>>> m.header_str(57, 80).strip()
'Created by MAPMAN V. 080625/7.8.5 at Wed Jan 3 12:57:38 2018 for A. Nonymous'
When the file is read, the header is used to set properties of the grid:
.. doctest::
>>> m.grid # tiny grid as it is a toy example
<gemmi.FloatGrid(8, 6, 10)>
>>> m.grid.spacegroup
<gemmi.SpaceGroup("P 1 21 1")>
>>> m.grid.unit_cell
<gemmi.UnitCell(29.45, 10.5, 29.7, 90, 111.975, 90)>
setup()
-------
``read_ccp4_map()`` and ``read_ccp4_mask()`` read the data from file
into a Grid class, by default keeping the same axis order and the same
dimensions as in the file.
But the functions that operate on the grid data (such as ``get_position()``,
``interpolate_value()``, ``symmetrize()``) expect that the grid covers
the whole unit cell and that the axes are in the X,Y,Z order.
So before calling a function that uses either the symmetry or the unit
cell parameters we need to *setup* the grid as required.
You do this either by calling the reading function with the optional
argument ``setup=True``, or by calling the ``setup()`` method afterwards.
The setup function has two arguments.
The first one is a value to be used for unknown values.
It is used only when the input file does not cover a complete asymmetric unit.
(If you used CCP4 program MAPMASK -- it is keyword PAD there).
When you call a read function with setup=True,
this argument is NaN for maps and -1 for masks.
The second argument (mode) is optional and can be used to perform
a partial setup.
* MapSetup.Full -- (default value) reorders and resizes the grid to cover
the whole unit cell, applying symmetry.
* MapSetup.NoSymmetry -- does not use symmetry operations, only
cell repeat (periodic boundary conditions, PBC) when extending the map.
* MapSetup.ReorderOnly -- only reorders axes to X, Y, Z.
**C++**
::
map.setup(NAN);
**Python**
.. doctest::
>>> m.setup(float('nan'))
>>> # the grid dimensions were 8x6x10, now they are:
>>> m.grid
<gemmi.FloatGrid(60, 24, 60)>
Non-default modes are only for special occasions.
For example, if we had a suspicious file and wanted to check if the map
values obey the symmetry specified in the file, we could do this:
.. doctest::
:skipif: numpy is None
>>> m = gemmi.read_ccp4_map('../tests/5i55_tiny.ccp4')
>>> m.setup(float('nan'), mode=gemmi.MapSetup.NoSymmetry)
>>> grid_copy = m.grid.clone()
>>> # use two grids to store min and max values of symmetry mates
>>> m.grid.symmetrize_min()
>>> grid_copy.symmetrize_max()
>>> # find the biggest difference between symmetry-related points
>>> numpy.nanmax(grid_copy.array - m.grid.array)
0.0
Writing
-------
To write a map to a file, update the header if necessary,
(optionally) set the extent of the map that is to be written,
and call ``write_ccp4_map()``.
::
map.update_ccp4_header();
// map.set_extent(...);
map.write_ccp4_map(filename);
.. doctest::
>>> m.update_ccp4_header()
>>> # m.set_extent(...)
>>> m.write_ccp4_map('out.ccp4')
update_ccp4_header() does the following:
- if the map header is empty (a new map was created):
it prepares the header,
- if the optional argument ``mode`` is given and if it is different than
the current mode: the mode is changed and the data type will be
converted while writing the file; the mode can be 0, 1, 2, 6, or
-1 (default -- no action),
- if the optional argument ``update_stats`` is true (the default is true):
DMIN, DMAX, DMEAN and RMS in the map header are re-calculated.
.. _set_extent:
By default, the written map covers the whole unit cell.
To change this, call ``set_extent()`` before writing the map.
As an example, let us cover a molecule with 5Å margin
(equivalent of running CCP4 program MAPMASK with XYZIN and BORDER 5).
::
map.set_extent(calculate_fractional_box(structure, 5));
.. doctest::
>>> st = gemmi.read_structure('../tests/5i55.cif')
>>> m.set_extent(st.calculate_fractional_box(margin=5))
>>> m.write_ccp4_map('out.ccp4')
After calling ``set_extent()`` we have the same situation as before calling
``setup()`` -- some grid functions may not work correctly.
Here we show three other scenarios of setting the map extent.
You may want to preserve the original map extent, which can be
read by calling ``get_extent()`` before the setup:
.. doctest::
>>> m = gemmi.read_ccp4_map('../tests/5i55_tiny.ccp4')
>>> box = m.get_extent()
>>> m.setup(float('nan'))
>>> # ... here the map gets modified ...
>>> m.set_extent(box)
>>> m.write_ccp4_map('out.ccp4')
Alternatively, you may want to write only an asymmetric unit
(actually, :ref:`asu brick <asu_brick>`) of the map,
which is enough to calculate the density everywhere.
For this, use the brick extent:
.. doctest::
>>> brick = gemmi.find_asu_brick(m.grid.spacegroup)
>>> brick.str()
'0<=x<=1/2; 0<=y<1; 0<=z<1'
>>> box = brick.get_extent()
At last, if the map would be padded with zeros or NaNs you could determine
the box that contains real data with ``get_nonzero_extent()``:
.. doctest::
>>> m = gemmi.read_ccp4_map('../tests/5i55_tiny.ccp4')
>>> m.setup(0., gemmi.MapSetup.NoSymmetry)
>>> m.grid.get_nonzero_extent() #doctest: +ELLIPSIS
<gemmi.FractionalBox object at 0x...>
Map from Grid
-------------
To write grid data as a ccp4 file: create a new Ccp4 class,
set the grid, call ``update_ccp4_header()`` and write the file.
.. doctest::
:skipif: numpy is None
>>> ccp4 = gemmi.Ccp4Map()
>>> ccp4.grid = gemmi.FloatGrid(numpy.zeros((10, 10, 10), dtype=numpy.float32))
>>> ccp4.grid.unit_cell.set(20, 20, 20, 90, 90, 90)
>>> ccp4.grid.spacegroup = gemmi.SpaceGroup('P1')
>>> ccp4.update_ccp4_header()
>>> ccp4.write_ccp4_map('out.ccp4')
Maps are often calculated from map coefficients --
:ref:`example in section about FFT <map_from_rblock>`
shows how to calculate such a map and write it to a file.
Examples
--------
**Example 1.**
A short code that draws a contour plot similar to mapslicer plots
(see Fig. 3 in `this CCP4 paper <http://dx.doi.org/10.1107/S0907444902016116>`_
if you wonder what is mapslicer).
To keep the example short we assume that the lattice vectors are orthogonal.
.. literalinclude:: ../examples/patterson_slice.py
:language: python
:lines: 3-
.. image:: img/patterson_slice.png
:align: center
:scale: 100
**Example 2.**
A tiny utility that compares two masks (maps with 0/1 values)
of the same size, printing a summary of matches and mismatches:
.. code-block:: console
$ python examples/maskdiff.py old_mask.ccp4 new_mask.ccp4
Size: 240 x 300 x 270 and 240 x 300 x 270
0-0 5006818 25.76%
1-1 13496058 69.42%
0-1 937124 4.82%
1-0 0 0.00%
total 19440000
Here is the script:
.. literalinclude:: ../examples/maskdiff.py
:language: python
:lines: 3-
|