File: grid.cpp

package info (click to toggle)
gemmi 0.5.7%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,344 kB
  • sloc: cpp: 48,972; python: 4,352; ansic: 3,428; sh: 302; makefile: 69; f90: 42; javascript: 12
file content (279 lines) | stat: -rw-r--r-- 12,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// Copyright 2018 Global Phasing Ltd.

#include <complex>

// for symmetrize_min and symmetrize_max
bool operator<(const std::complex<float>& a, const std::complex<float>& b) {
    return std::norm(a) < std::norm(b);
}
bool operator>(const std::complex<float>& a, const std::complex<float>& b) {
    return std::norm(a) > std::norm(b);
}

#include "gemmi/grid.hpp"
#include "gemmi/floodfill.hpp"  // for flood_fill_above
#include "gemmi/solmask.hpp"  // for SolventMasker, mask_points_in_constant_radius
#include "gemmi/blob.hpp"     // for Blob, find_blobs_by_flood_fill
#include "gemmi/asumask.hpp"  // for MaskedGrid
#include "tostr.hpp"

#include "common.h"
#include <pybind11/complex.h>
#include <pybind11/stl.h>
#include <pybind11/numpy.h>

namespace py = pybind11;
using namespace gemmi;

template<typename T>
py::class_<GridBase<T>, GridMeta> add_grid_base(py::module& m, const char* name) {
  using GrBase = GridBase<T>;
  using GrPoint = typename GridBase<T>::Point;

  py::class_<GrBase, GridMeta> grid_base(m, name, py::buffer_protocol());
  py::class_<GrPoint>(grid_base, "Point")
    .def_readonly("u", &GrPoint::u)
    .def_readonly("v", &GrPoint::v)
    .def_readonly("w", &GrPoint::w)
    .def_property("value",
                  [](const GrPoint& self) { return *self.value; },
                  [](GrPoint& self, T x) { *self.value = x; })
    .def("__repr__", [=](const GrPoint& self) {
        return tostr("<gemmi.", name, ".Point (", self.u, ", ", self.v, ", ",
                     self.w, ") -> ", +*self.value, '>');
    });

  grid_base
    .def_buffer([](GrBase& g) {
      return py::buffer_info(g.data.data(),
                             {g.nu, g.nv, g.nw},       // dimensions
                             {sizeof(T),               // strides
                              sizeof(T) * g.nu,
                              sizeof(T) * g.nu * g.nv});
    })
    .def_property_readonly("array", [](const GrBase& g) {
      return py::array_t<T>({g.nu, g.nv, g.nw},
                            {sizeof(T), sizeof(T) * g.nu, sizeof(T) * g.nu * g.nv},
                            g.data.data(), py::cast(g));
    }, py::return_value_policy::reference_internal)
    .def("point_to_index", &GrBase::point_to_index)
    .def("index_to_point", &GrBase::index_to_point)
    .def("fill", &GrBase::fill, py::arg("value"))
    .def("sum", &GrBase::sum)
    .def("__iter__", [](GrBase& self) { return py::make_iterator(self); },
         py::keep_alive<0, 1>())
    ;
  return grid_base;
}

template<typename T>
py::class_<Grid<T>, GridBase<T>> add_grid_common(py::module& m, const std::string& name) {
  using Gr = Grid<T>;
  using GrPoint = typename GridBase<T>::Point;
  using Masked = MaskedGrid<T>;
  py::class_<Gr, GridBase<T>> grid(m, name.c_str());
  py::class_<Masked> masked_grid (m, ("Masked" + name).c_str());

  grid
    .def(py::init<>())
    .def(py::init([](int nx, int ny, int nz) {
      Gr* grid = new Gr();
      grid->set_size(nx, ny, nz);
      return grid;
    }), py::arg("nx"), py::arg("ny"), py::arg("nz"))
    .def(py::init([](py::array_t<T> arr, const UnitCell *cell, const SpaceGroup* sg) {
      auto r = arr.template unchecked<3>();
      Gr* grid = new Gr();
      grid->set_size((int)r.shape(0), (int)r.shape(1), (int)r.shape(2));
      for (int k = 0; k < r.shape(2); ++k)
        for (int j = 0; j < r.shape(1); ++j)
          for (int i = 0; i < r.shape(0); ++i)
            grid->data[grid->index_q(i, j, k)] = r(i, j, k);
      if (cell)
        grid->set_unit_cell(*cell);
      if (sg)
        grid->spacegroup = sg;
      return grid;
    }), py::arg().noconvert(), py::arg("cell")=nullptr, py::arg("spacegroup")=nullptr)
    .def_property_readonly("spacing", [](const Gr& self) {
        return py::make_tuple(self.spacing[0], self.spacing[1], self.spacing[2]);
    })
    .def("set_size", &Gr::set_size)
    .def("get_value", &Gr::get_value)
    .def("set_value", &Gr::set_value)
    .def("get_point", &Gr::get_point)
    .def("get_nearest_point", (GrPoint (Gr::*)(const Position&)) &Gr::get_nearest_point)
    .def("point_to_fractional", &Gr::point_to_fractional)
    .def("point_to_position", &Gr::point_to_position)
    .def("change_values", &Gr::change_values, py::arg("old_value"), py::arg("new_value"))
    .def("copy_metadata_from", &Gr::copy_metadata_from)
    .def("setup_from", &Gr::template setup_from<Structure>,
         py::arg("st"), py::arg("spacing"))
    .def("set_unit_cell", (void (Gr::*)(const UnitCell&)) &Gr::set_unit_cell)
    .def("set_points_around", &Gr::set_points_around,
         py::arg("position"), py::arg("radius"), py::arg("value"), py::arg("use_pbc")=true)
    .def("symmetrize_min", &Gr::symmetrize_min)
    .def("symmetrize_max", &Gr::symmetrize_max)
    .def("symmetrize_abs_max", &Gr::symmetrize_abs_max)
    .def("symmetrize_sum", &Gr::symmetrize_sum)
    .def("resample_to", &Gr::resample_to, py::arg("dest"), py::arg("order"))
    .def("masked_asu", &masked_asu<T>, py::keep_alive<0, 1>())
    .def("mask_points_in_constant_radius", &mask_points_in_constant_radius<T>,
         py::arg("model"), py::arg("radius"), py::arg("value"))
    .def("get_subarray",
         [](const Gr& self, std::array<int,3> start, std::array<int,3> shape) {
        py::array_t<T> arr({shape[0], shape[1], shape[2]},
                           {sizeof(T), sizeof(T)*shape[0], sizeof(T)*shape[0]*shape[1]});
        self.get_subarray((T*) arr.request().ptr, start, shape);
        return arr;
    }, py::arg("start"), py::arg("shape"))
    .def("set_subarray",
         [](Gr& self, py::array_t<T, py::array::f_style | py::array::forcecast> arr,
            std::array<int,3> start) {
        self.set_subarray((T*) arr.request().ptr, start,
                          {(int)arr.shape(0), (int)arr.shape(1), (int)arr.shape(2)});
    }, py::arg("arr"), py::arg("start"))
    .def("clone", [](const Gr& self) { return new Gr(self); })
    .def("__repr__", [=](const Gr& self) {
        return tostr("<gemmi.", name, '(', self.nu, ", ", self.nv, ", ", self.nw, ")>");
    });

  masked_grid
    .def_readonly("grid", &Masked::grid, py::return_value_policy::reference)
    .def_property_readonly("mask_array", [](const Masked& self) {
      const Gr& gr = *self.grid;
      py::array::ShapeContainer shape({gr.nu, gr.nv, gr.nw});
      py::array::StridesContainer strides({gr.nv * gr.nw, gr.nw, 1});
      return py::array_t<std::int8_t>(shape, strides, self.mask.data(), py::cast(self));
    }, py::return_value_policy::reference_internal)
    .def("__iter__", [](Masked& self) { return py::make_iterator(self); },
         py::keep_alive<0, 1>())
    ;
    return grid;
}

template<typename T>
void add_grid_interpolation(py::class_<Grid<T>, GridBase<T>>& grid) {
  using Gr = Grid<T>;
  grid
    .def("interpolate_value",
         (T (Gr::*)(const Fractional&) const) &Gr::interpolate_value)
    .def("interpolate_value",
         (T (Gr::*)(const Position&) const) &Gr::interpolate_value)
    // TODO: find a better name for this func, perhaps interpolate_array?
    .def("interpolate_values",
         [](const Gr& self, py::array_t<T> arr, const Transform& tr, int order) {
        auto r = arr.template mutable_unchecked<3>();
        for (int i = 0; i < r.shape(0); ++i)
          for (int j = 0; j < r.shape(1); ++j)
            for (int k = 0; k < r.shape(2); ++k) {
              Position pos(tr.apply(Vec3(i, j, k)));
              Fractional fpos = self.unit_cell.fractionalize(pos);
              r(i, j, k) = self.interpolate(fpos, order);
            }
    }, py::arg().noconvert(), py::arg(), py::arg("order")=2)
    .def("tricubic_interpolation",
         (double (Gr::*)(const Fractional&) const) &Gr::tricubic_interpolation)
    .def("tricubic_interpolation",
         (double (Gr::*)(const Position&) const) &Gr::tricubic_interpolation)
    .def("tricubic_interpolation_der",
         (std::array<double,4> (Gr::*)(const Fractional&) const)
         &Gr::tricubic_interpolation_der)
    ;
}

void add_grid(py::module& m) {
  py::enum_<AxisOrder>(m, "AxisOrder")
    .value("Unknown", AxisOrder::Unknown)
    .value("XYZ", AxisOrder::XYZ)
    .value("ZYX", AxisOrder::ZYX);

  py::class_<GridMeta>(m, "GridMeta")
    .def_readwrite("spacegroup", &GridMeta::spacegroup)
    .def_readwrite("unit_cell", &GridMeta::unit_cell)
    .def_readonly("nu", &GridMeta::nu, "size in the first (fastest-changing) dim")
    .def_readonly("nv", &GridMeta::nv, "size in the second dimension")
    .def_readonly("nw", &GridMeta::nw, "size in the third (slowest-changing) dim")
    .def_readonly("axis_order", &GridMeta::axis_order)
    .def_property_readonly("point_count", &GridMeta::point_count)
    .def("get_position", &GridMeta::get_position)
    .def("get_fractional", &GridMeta::get_fractional)
    .def_property_readonly("shape", [](const GridMeta& self) {
      return py::make_tuple(self.nu, self.nv, self.nw);
    });

  add_grid_base<int8_t>(m, "Int8GridBase")
    .def("get_nonzero_extent", &get_nonzero_extent<int8_t>);
  add_grid_common<int8_t>(m, "Int8Grid");

  add_grid_base<float>(m, "FloatGridBase")
    .def("calculate_correlation", &calculate_correlation<float>)
    .def("get_nonzero_extent", &get_nonzero_extent<float>)
    ;
  auto grid_float = add_grid_common<float>(m, "FloatGrid");
  add_grid_interpolation<float>(grid_float);
  grid_float.def("normalize", &Grid<float>::normalize);
  grid_float.def("add_soft_edge_to_mask", &add_soft_edge_to_mask<float>);

  add_grid_base<std::complex<float>>(m, "ComplexGridBase");

  // from solmask.hpp
  py::enum_<AtomicRadiiSet>(m, "AtomicRadiiSet")
    .value("VanDerWaals", AtomicRadiiSet::VanDerWaals)
    .value("Cctbx", AtomicRadiiSet::Cctbx)
    .value("Refmac", AtomicRadiiSet::Refmac)
    .value("Constant", AtomicRadiiSet::Constant);
  py::class_<SolventMasker>(m, "SolventMasker")
    .def(py::init<AtomicRadiiSet, double>(),
         py::arg("choice"), py::arg("constant_r")=0.)
    .def_readwrite("atomic_radii_set", &SolventMasker::atomic_radii_set)
    .def_readwrite("rprobe", &SolventMasker::rprobe)
    .def_readwrite("rshrink", &SolventMasker::rshrink)
    .def_readwrite("island_min_volume", &SolventMasker::island_min_volume)
    .def_readwrite("constant_r", &SolventMasker::constant_r)
    .def("set_radii", &SolventMasker::set_radii,
         py::arg("choice"), py::arg("constant_r")=0.)
    .def("put_mask_on_int8_grid", &SolventMasker::put_mask_on_grid<int8_t>)
    .def("put_mask_on_float_grid", &SolventMasker::put_mask_on_grid<float>)
    .def("set_to_zero", &SolventMasker::set_to_zero)
    ;
  m.def("interpolate_grid", &interpolate_grid<float>,
        py::arg("dest"), py::arg("src"), py::arg("tr"), py::arg("order")=2);
  m.def("interpolate_grid_of_aligned_model2", &interpolate_grid_of_aligned_model2<float>,
        py::arg("dest"), py::arg("src"), py::arg("tr"),
        py::arg("dest_model"), py::arg("radius"), py::arg("order")=2);


  // from blob.hpp
  py::class_<Blob>(m, "Blob")
    .def_readonly("volume", &Blob::volume)
    .def_readonly("score", &Blob::score)
    .def_readonly("peak_value", &Blob::peak_value)
    .def_readonly("centroid", &Blob::centroid)
    .def_readonly("peak_pos", &Blob::peak_pos)
    ;
  m.def("find_blobs_by_flood_fill",
        [](const Grid<float>& grid, double cutoff, double min_volume,
           double min_score, double min_peak, bool negate) {
       BlobCriteria crit;
       crit.cutoff = cutoff;
       crit.min_volume = min_volume;
       crit.min_score = min_score;
       crit.min_peak = min_peak;
       return find_blobs_by_flood_fill(grid, crit, negate);
    }, py::arg("grid"), py::arg("cutoff"), py::arg("min_volume")=10.,
       py::arg("min_score")=15., py::arg("min_peak")=0., py::arg("negate")=false);

  // from floodfill.hpp
  m.def("flood_fill_above", &flood_fill_above,
        py::arg("grid"), py::arg("seeds"), py::arg("threshold"), py::arg("negate")=false);

  // from asumask.hpp
  py::class_<AsuBrick>(m, "AsuBrick")
    .def_readonly("size", &AsuBrick::size)
    .def_readonly("incl", &AsuBrick::incl)
    .def("get_extent", &AsuBrick::get_extent)
    .def("str", &AsuBrick::str)
    ;
  m.def("find_asu_brick", &find_asu_brick);
}