File: recgrid.cpp

package info (click to toggle)
gemmi 0.5.7%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,344 kB
  • sloc: cpp: 48,972; python: 4,352; ansic: 3,428; sh: 302; makefile: 69; f90: 42; javascript: 12
file content (216 lines) | stat: -rw-r--r-- 9,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Copyright 2020 Global Phasing Ltd.

#include "gemmi/recgrid.hpp"
#include "gemmi/fourier.hpp"  // for get_size_for_hkl, get_f_phi_on_grid
#include "tostr.hpp"

#include "common.h"
#include <pybind11/numpy.h>
#include <pybind11/stl.h>

namespace py = pybind11;
using namespace gemmi;

namespace gemmi {
  std::ostream& operator<< (std::ostream& os, const ValueSigma<float>& vs) {
    os << vs.value << " +/- " << vs.sigma;
    return os;
  }
}

template<typename T, typename F>
py::array_t<float> make_new_column(const AsuData<T>& asu_data, F f) {
  if (!asu_data.unit_cell().is_crystal())
    throw std::runtime_error("AsuData: unknown unit cell parameters");
  py::array_t<float> arr(asu_data.size());
  py::buffer_info buf = arr.request();
  float* ptr = (float*) buf.ptr;
  for (size_t i = 0; i < asu_data.size(); ++i)
    ptr[i] = static_cast<float>(f(asu_data.unit_cell(), asu_data.get_hkl(i)));
  return arr;
}

template<typename T> void add_to_asu_data(T&) {}
template<> void add_to_asu_data(py::class_<AsuData<std::complex<float>>>& cl) {
  using AsuData = AsuData<std::complex<float>>;
  cl.def("get_size_for_hkl", &get_size_for_hkl<AsuData>,
         py::arg("min_size")=std::array<int,3>{{0,0,0}}, py::arg("sample_rate")=0.);
  cl.def("data_fits_into", &data_fits_into<AsuData>, py::arg("size"));
  cl.def("get_f_phi_on_grid", get_f_phi_on_grid<float, AsuData>,
         py::arg("size"), py::arg("half_l")=false, py::arg("order")=AxisOrder::XYZ);
  cl.def("transform_f_phi_to_map", &transform_f_phi_to_map2<float, AsuData>,
         py::arg("min_size")=std::array<int,3>{{0,0,0}},
         py::arg("sample_rate")=0.,
         py::arg("exact_size")=std::array<int,3>{{0,0,0}},
         py::arg("order")=AxisOrder::XYZ);
  cl.def("calculate_correlation", [](const AsuData& self, const AsuData& other) {
      return calculate_hkl_complex_correlation(self.v, other.v);
  });
}
template<> void add_to_asu_data(py::class_<AsuData<float>>& cl) {
  using AsuData = AsuData<float>;
  cl.def("calculate_correlation", [](const AsuData& self, const AsuData& other) {
      return calculate_hkl_value_correlation(self.v, other.v);
  });
}

template<typename T>
void add_asudata(py::module& m, const std::string& prefix) {
  py::class_<HklValue<T>>(m, (prefix + "HklValue").c_str())
    .def_readonly("hkl", &HklValue<T>::hkl)
    .def_readwrite("value", &HklValue<T>::value)
    .def("__repr__", [prefix](const HklValue<T>& self) {
        return tostr("<gemmi.", prefix, "HklValue (",
                     self.hkl[0], ',', self.hkl[1], ',', self.hkl[2], ") ",
                     self.value, '>');
    });

  using AsuData = AsuData<T>;
  py::class_<AsuData> asu_data(m, (prefix + "AsuData").c_str());
  asu_data
    .def(py::init([](const UnitCell& unit_cell, const SpaceGroup* sg,
                     py::array_t<int> hkl, py::array_t<T> values) {
      auto h = hkl.unchecked<2>();
      if (h.shape(1) != 3)
        throw std::domain_error("error: the size of the second dimension != 3");
      auto v = values.template unchecked<1>();
      if (h.shape(0) != v.shape(0))
        throw std::domain_error("error: arrays have different lengths");
      AsuData* ret = new AsuData;
      ret->spacegroup_ = sg;
      ret->unit_cell_ = unit_cell;
      ret->unit_cell_.set_cell_images_from_spacegroup(ret->spacegroup_);
      ret->v.reserve(h.shape(0));
      for (py::ssize_t i = 0; i < h.shape(0); ++i)
        ret->v.push_back({{{h(i, 0), h(i, 1), h(i, 2)}}, v(i)});
      return ret;
    }), py::arg("cell"), py::arg("sg").none(false),
        py::arg("miller_array"), py::arg("value_array"))
    .def("__iter__", [](AsuData& self) { return py::make_iterator(self.v); },
         py::keep_alive<0, 1>())
    .def("__len__", [](const AsuData& self) { return self.v.size(); })
    .def("__getitem__", [](AsuData& self, int index) -> HklValue<T>& {
        return self.v.at(normalize_index(index, self.v));
    }, py::arg("index"), py::return_value_policy::reference_internal)
    .def_readwrite("spacegroup", &AsuData::spacegroup_)
    .def_readwrite("unit_cell", &AsuData::unit_cell_)
    .def_property_readonly("miller_array", [](const AsuData& self) {
      const HklValue<T>* data = self.v.data();
      py::array::ShapeContainer shape({(py::ssize_t)self.v.size(), 3});
      py::array::StridesContainer strides({(const char*)(data+1) - (const char*)data,
                                           sizeof(int)});
      return py::array_t<int>(shape, strides, &data->hkl[0], py::cast(self));
    }, py::return_value_policy::reference_internal)
    .def_property_readonly("value_array", [](const AsuData& self) {
      const HklValue<T>* data = self.v.data();
      py::ssize_t stride = (const char*)(data+1) - (const char*)data;
      return py::array_t<T>({(py::ssize_t)self.v.size()}, {stride},
                            &data->value, py::cast(self));
    }, py::return_value_policy::reference_internal)
    .def("make_1_d2_array", [](const AsuData& asu_data) {
      return make_new_column(asu_data, [](const UnitCell& cell, Miller hkl) {
        return cell.calculate_1_d2(hkl);
      });
    })
    .def("make_d_array", [](const AsuData& asu_data) {
      return make_new_column(asu_data, [](const UnitCell& cell, Miller hkl) {
        return cell.calculate_d(hkl);
      });
    })
    .def("count_equal_values", [](const AsuData& self, const AsuData& other) {
      return count_equal_values(self.v, other.v);
    })
    .def("ensure_sorted", &AsuData::ensure_sorted)
    .def("ensure_asu", &AsuData::ensure_asu, py::arg("tnt_asu")=false)
    .def("copy", [](const AsuData& self) {
      return new AsuData(self);
    })
    .def("__repr__", [prefix](const AsuData& self) {
        return tostr("<gemmi.", prefix, "AsuData with ", self.v.size(), " values>");
    });
    add_to_asu_data(asu_data);
}

template<typename TA, typename TG=TA>
void add_asudata_and_recgrid(py::module& m,
                             const std::string& prefix_asu,
                             const std::string& rgrid_name) {
  using RecGr = ReciprocalGrid<TG>;
  py::class_<RecGr, GridBase<TG>> recgrid(m, rgrid_name.c_str());

  add_asudata<TA>(m, prefix_asu);

  recgrid
    .def_readonly("half_l", &RecGr::half_l)
    .def(py::init<>())
    .def(py::init([](int nx, int ny, int nz) {
      RecGr* grid = new RecGr();
      grid->set_size_without_checking(nx, ny, nz);
      grid->axis_order = AxisOrder::XYZ;
      return grid;
    }), py::arg("nx"), py::arg("ny"), py::arg("nz"))
    .def(py::init([](py::array_t<TG> arr, const UnitCell *cell, const SpaceGroup* sg) {
      auto r = arr.template unchecked<3>();
      RecGr* grid = new RecGr();
      grid->set_size_without_checking((int)r.shape(0), (int)r.shape(1), (int)r.shape(2));
      grid->axis_order = AxisOrder::XYZ;
      for (int k = 0; k < r.shape(2); ++k)
        for (int j = 0; j < r.shape(1); ++j)
          for (int i = 0; i < r.shape(0); ++i)
            grid->data[grid->index_q(i, j, k)] = r(i, j, k);
      if (cell)
        grid->unit_cell = *cell;
      if (sg)
        grid->spacegroup = sg;
      return grid;
    }), py::arg().noconvert(), py::arg("cell")=nullptr, py::arg("spacegroup")=nullptr)
    .def("get_value", &RecGr::get_value)
    .def("get_value_or_zero", &RecGr::get_value_or_zero)
    .def("set_value", &RecGr::set_value)
    .def("to_hkl", &RecGr::to_hkl)
    .def("calculate_1_d2", &RecGr::calculate_1_d2)
    .def("calculate_d", &RecGr::calculate_d)
    .def("get_value_by_hkl", [](RecGr &self, py::array_t<int> hkl, double unblur, bool mott_bethe) {
      auto h = hkl.unchecked<2>();
      if (h.shape(1) != 3)
        throw std::domain_error("error: the size of the second dimension != 3");
      py::array_t<TA> vals(h.shape(0));
      TA* ptr = (TA*) vals.request().ptr;
      for (py::ssize_t i = 0; i < h.shape(0); ++i) {
        ptr[i] = self.get_value_by_hkl({{h(i, 0), h(i, 1), h(i, 2)}}, unblur, mott_bethe);
      }
      return vals;
    }, py::arg("hkl"), py::arg("unblur")=0, py::arg("mott_bethe")=false)

    .def("prepare_asu_data", &RecGr::template prepare_asu_data<TA>,
         py::arg("dmin")=0., py::arg("unblur")=0.,
         py::arg("with_000")=false, py::arg("with_sys_abs")=false,
         py::arg("mott_bethe")=false)
    .def("__repr__", [=](const RecGr& self) {
        return tostr("<gemmi.", rgrid_name, '(', self.nu, ", ", self.nv, ", ", self.nw, ")>");
    });
}

void add_recgrid(py::module& m) {
  using VS = ValueSigma<float>;
  try {
    PYBIND11_NUMPY_DTYPE(VS, value, sigma);
  } catch (py::error_already_set &) {
    // numpy can't be imported, that's ok
  }
  py::class_<VS>(m, "ValueSigma")
    .def_readwrite("value", &VS::value)
    .def_readwrite("sigma", &VS::sigma)
    .def("__repr__", [](const VS& self) {
        return tostr("<gemmi.ValueSigma(", self.value, ", ", self.sigma, ")>");
    });
  py::class_<ComplexCorrelation>(m, "ComplexCorrelation")
    .def_readonly("n", &ComplexCorrelation::n)
    .def("coefficient", &ComplexCorrelation::coefficient)
    .def("mean_ratio", &ComplexCorrelation::mean_ratio)
    ;
  add_asudata_and_recgrid<int, int8_t>(m, "Int", "ReciprocalInt8Grid");
  add_asudata_and_recgrid<float>(m, "Float", "ReciprocalFloatGrid");
  add_asudata_and_recgrid<std::complex<float>>(m, "Complex", "ReciprocalComplexGrid");
  add_asudata<VS>(m, "ValueSigma");
}