1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
// Copyright 2020 Global Phasing Ltd.
#include "gemmi/recgrid.hpp"
#include "gemmi/fourier.hpp" // for get_size_for_hkl, get_f_phi_on_grid
#include "tostr.hpp"
#include "common.h"
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
namespace py = pybind11;
using namespace gemmi;
namespace gemmi {
std::ostream& operator<< (std::ostream& os, const ValueSigma<float>& vs) {
os << vs.value << " +/- " << vs.sigma;
return os;
}
}
template<typename T, typename F>
py::array_t<float> make_new_column(const AsuData<T>& asu_data, F f) {
if (!asu_data.unit_cell().is_crystal())
throw std::runtime_error("AsuData: unknown unit cell parameters");
py::array_t<float> arr(asu_data.size());
py::buffer_info buf = arr.request();
float* ptr = (float*) buf.ptr;
for (size_t i = 0; i < asu_data.size(); ++i)
ptr[i] = static_cast<float>(f(asu_data.unit_cell(), asu_data.get_hkl(i)));
return arr;
}
template<typename T> void add_to_asu_data(T&) {}
template<> void add_to_asu_data(py::class_<AsuData<std::complex<float>>>& cl) {
using AsuData = AsuData<std::complex<float>>;
cl.def("get_size_for_hkl", &get_size_for_hkl<AsuData>,
py::arg("min_size")=std::array<int,3>{{0,0,0}}, py::arg("sample_rate")=0.);
cl.def("data_fits_into", &data_fits_into<AsuData>, py::arg("size"));
cl.def("get_f_phi_on_grid", get_f_phi_on_grid<float, AsuData>,
py::arg("size"), py::arg("half_l")=false, py::arg("order")=AxisOrder::XYZ);
cl.def("transform_f_phi_to_map", &transform_f_phi_to_map2<float, AsuData>,
py::arg("min_size")=std::array<int,3>{{0,0,0}},
py::arg("sample_rate")=0.,
py::arg("exact_size")=std::array<int,3>{{0,0,0}},
py::arg("order")=AxisOrder::XYZ);
cl.def("calculate_correlation", [](const AsuData& self, const AsuData& other) {
return calculate_hkl_complex_correlation(self.v, other.v);
});
}
template<> void add_to_asu_data(py::class_<AsuData<float>>& cl) {
using AsuData = AsuData<float>;
cl.def("calculate_correlation", [](const AsuData& self, const AsuData& other) {
return calculate_hkl_value_correlation(self.v, other.v);
});
}
template<typename T>
void add_asudata(py::module& m, const std::string& prefix) {
py::class_<HklValue<T>>(m, (prefix + "HklValue").c_str())
.def_readonly("hkl", &HklValue<T>::hkl)
.def_readwrite("value", &HklValue<T>::value)
.def("__repr__", [prefix](const HklValue<T>& self) {
return tostr("<gemmi.", prefix, "HklValue (",
self.hkl[0], ',', self.hkl[1], ',', self.hkl[2], ") ",
self.value, '>');
});
using AsuData = AsuData<T>;
py::class_<AsuData> asu_data(m, (prefix + "AsuData").c_str());
asu_data
.def(py::init([](const UnitCell& unit_cell, const SpaceGroup* sg,
py::array_t<int> hkl, py::array_t<T> values) {
auto h = hkl.unchecked<2>();
if (h.shape(1) != 3)
throw std::domain_error("error: the size of the second dimension != 3");
auto v = values.template unchecked<1>();
if (h.shape(0) != v.shape(0))
throw std::domain_error("error: arrays have different lengths");
AsuData* ret = new AsuData;
ret->spacegroup_ = sg;
ret->unit_cell_ = unit_cell;
ret->unit_cell_.set_cell_images_from_spacegroup(ret->spacegroup_);
ret->v.reserve(h.shape(0));
for (py::ssize_t i = 0; i < h.shape(0); ++i)
ret->v.push_back({{{h(i, 0), h(i, 1), h(i, 2)}}, v(i)});
return ret;
}), py::arg("cell"), py::arg("sg").none(false),
py::arg("miller_array"), py::arg("value_array"))
.def("__iter__", [](AsuData& self) { return py::make_iterator(self.v); },
py::keep_alive<0, 1>())
.def("__len__", [](const AsuData& self) { return self.v.size(); })
.def("__getitem__", [](AsuData& self, int index) -> HklValue<T>& {
return self.v.at(normalize_index(index, self.v));
}, py::arg("index"), py::return_value_policy::reference_internal)
.def_readwrite("spacegroup", &AsuData::spacegroup_)
.def_readwrite("unit_cell", &AsuData::unit_cell_)
.def_property_readonly("miller_array", [](const AsuData& self) {
const HklValue<T>* data = self.v.data();
py::array::ShapeContainer shape({(py::ssize_t)self.v.size(), 3});
py::array::StridesContainer strides({(const char*)(data+1) - (const char*)data,
sizeof(int)});
return py::array_t<int>(shape, strides, &data->hkl[0], py::cast(self));
}, py::return_value_policy::reference_internal)
.def_property_readonly("value_array", [](const AsuData& self) {
const HklValue<T>* data = self.v.data();
py::ssize_t stride = (const char*)(data+1) - (const char*)data;
return py::array_t<T>({(py::ssize_t)self.v.size()}, {stride},
&data->value, py::cast(self));
}, py::return_value_policy::reference_internal)
.def("make_1_d2_array", [](const AsuData& asu_data) {
return make_new_column(asu_data, [](const UnitCell& cell, Miller hkl) {
return cell.calculate_1_d2(hkl);
});
})
.def("make_d_array", [](const AsuData& asu_data) {
return make_new_column(asu_data, [](const UnitCell& cell, Miller hkl) {
return cell.calculate_d(hkl);
});
})
.def("count_equal_values", [](const AsuData& self, const AsuData& other) {
return count_equal_values(self.v, other.v);
})
.def("ensure_sorted", &AsuData::ensure_sorted)
.def("ensure_asu", &AsuData::ensure_asu, py::arg("tnt_asu")=false)
.def("copy", [](const AsuData& self) {
return new AsuData(self);
})
.def("__repr__", [prefix](const AsuData& self) {
return tostr("<gemmi.", prefix, "AsuData with ", self.v.size(), " values>");
});
add_to_asu_data(asu_data);
}
template<typename TA, typename TG=TA>
void add_asudata_and_recgrid(py::module& m,
const std::string& prefix_asu,
const std::string& rgrid_name) {
using RecGr = ReciprocalGrid<TG>;
py::class_<RecGr, GridBase<TG>> recgrid(m, rgrid_name.c_str());
add_asudata<TA>(m, prefix_asu);
recgrid
.def_readonly("half_l", &RecGr::half_l)
.def(py::init<>())
.def(py::init([](int nx, int ny, int nz) {
RecGr* grid = new RecGr();
grid->set_size_without_checking(nx, ny, nz);
grid->axis_order = AxisOrder::XYZ;
return grid;
}), py::arg("nx"), py::arg("ny"), py::arg("nz"))
.def(py::init([](py::array_t<TG> arr, const UnitCell *cell, const SpaceGroup* sg) {
auto r = arr.template unchecked<3>();
RecGr* grid = new RecGr();
grid->set_size_without_checking((int)r.shape(0), (int)r.shape(1), (int)r.shape(2));
grid->axis_order = AxisOrder::XYZ;
for (int k = 0; k < r.shape(2); ++k)
for (int j = 0; j < r.shape(1); ++j)
for (int i = 0; i < r.shape(0); ++i)
grid->data[grid->index_q(i, j, k)] = r(i, j, k);
if (cell)
grid->unit_cell = *cell;
if (sg)
grid->spacegroup = sg;
return grid;
}), py::arg().noconvert(), py::arg("cell")=nullptr, py::arg("spacegroup")=nullptr)
.def("get_value", &RecGr::get_value)
.def("get_value_or_zero", &RecGr::get_value_or_zero)
.def("set_value", &RecGr::set_value)
.def("to_hkl", &RecGr::to_hkl)
.def("calculate_1_d2", &RecGr::calculate_1_d2)
.def("calculate_d", &RecGr::calculate_d)
.def("get_value_by_hkl", [](RecGr &self, py::array_t<int> hkl, double unblur, bool mott_bethe) {
auto h = hkl.unchecked<2>();
if (h.shape(1) != 3)
throw std::domain_error("error: the size of the second dimension != 3");
py::array_t<TA> vals(h.shape(0));
TA* ptr = (TA*) vals.request().ptr;
for (py::ssize_t i = 0; i < h.shape(0); ++i) {
ptr[i] = self.get_value_by_hkl({{h(i, 0), h(i, 1), h(i, 2)}}, unblur, mott_bethe);
}
return vals;
}, py::arg("hkl"), py::arg("unblur")=0, py::arg("mott_bethe")=false)
.def("prepare_asu_data", &RecGr::template prepare_asu_data<TA>,
py::arg("dmin")=0., py::arg("unblur")=0.,
py::arg("with_000")=false, py::arg("with_sys_abs")=false,
py::arg("mott_bethe")=false)
.def("__repr__", [=](const RecGr& self) {
return tostr("<gemmi.", rgrid_name, '(', self.nu, ", ", self.nv, ", ", self.nw, ")>");
});
}
void add_recgrid(py::module& m) {
using VS = ValueSigma<float>;
try {
PYBIND11_NUMPY_DTYPE(VS, value, sigma);
} catch (py::error_already_set &) {
// numpy can't be imported, that's ok
}
py::class_<VS>(m, "ValueSigma")
.def_readwrite("value", &VS::value)
.def_readwrite("sigma", &VS::sigma)
.def("__repr__", [](const VS& self) {
return tostr("<gemmi.ValueSigma(", self.value, ", ", self.sigma, ")>");
});
py::class_<ComplexCorrelation>(m, "ComplexCorrelation")
.def_readonly("n", &ComplexCorrelation::n)
.def("coefficient", &ComplexCorrelation::coefficient)
.def("mean_ratio", &ComplexCorrelation::mean_ratio)
;
add_asudata_and_recgrid<int, int8_t>(m, "Int", "ReciprocalInt8Grid");
add_asudata_and_recgrid<float>(m, "Float", "ReciprocalFloatGrid");
add_asudata_and_recgrid<std::complex<float>>(m, "Complex", "ReciprocalComplexGrid");
add_asudata<VS>(m, "ValueSigma");
}
|