File: sym.cpp

package info (click to toggle)
gemmi 0.5.7%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,344 kB
  • sloc: cpp: 48,972; python: 4,352; ansic: 3,428; sh: 302; makefile: 69; f90: 42; javascript: 12
file content (246 lines) | stat: -rw-r--r-- 11,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2017 Global Phasing Ltd.

#include "gemmi/symmetry.hpp"

#include "common.h"
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
#include <pybind11/numpy.h>
#include "miller_a.h"

namespace py = pybind11;
using namespace gemmi;

void add_symmetry(py::module& m) {
  py::enum_<CrystalSystem>(m, "CrystalSystem")
    .value("Triclinic", CrystalSystem::Triclinic)
    .value("Monoclinic", CrystalSystem::Monoclinic)
    .value("Orthorhombic", CrystalSystem::Orthorhombic)
    .value("Tetragonal", CrystalSystem::Tetragonal)
    .value("Trigonal", CrystalSystem::Trigonal)
    .value("Hexagonal", CrystalSystem::Hexagonal)
    .value("Cubic", CrystalSystem::Cubic)
    ;
  py::class_<Op>(m, "Op")
    .def(py::init<>(&Op::identity))
    .def(py::init(&parse_triplet))
    .def_property_readonly_static("DEN", [](py::object) { return Op::DEN; },
                           "Denominator (integer) for the translation vector.")
    .def_readwrite("rot", &Op::rot, "3x3 integer matrix.")
    .def_readwrite("tran", &Op::tran,
       "Numerators (integers) of the translation vector. Denominator DEN=24.")
    .def("triplet", &Op::triplet, py::arg("style")='x')
    .def("inverse", &Op::inverse, "Returns inverted operator.")
    .def("wrap", &Op::wrap, "Wrap the translation part to [0,1)")
    .def("translated", &Op::translated, py::arg("a"), "Adds a to tran")
    .def("transposed_rot", &Op::transposed_rot)
    .def("det_rot", &Op::det_rot, "Determinant of the 3x3 matrix.")
    .def("rot_type", &Op::rot_type)
    .def("combine", &Op::combine, py::arg("b"),
         "Combine two symmetry operations.")
    .def("seitz", [](const Op& self) {
            auto arr = self.int_seitz();
            auto mat = py::list();
            py::object fr = py::module::import("fractions").attr("Fraction");
            for (int i = 0; i < 4; ++i) {
              auto row = py::list();
              for (int j = 0; j < 4; ++j) {
                auto v = arr[i][j];
                if (i == 3 || v == 0)
                  row.append(v);
                else if (std::abs(v) == Op::DEN)
                  row.append(v / Op::DEN);
                else
                  row.append(fr(v, Op::DEN + 0));  // +0 to avoid linker error
              }
              mat.append(row);
            }
            return mat;
         }, "Returns Seitz matrix (fractions)")
    .def("float_seitz", &Op::float_seitz, "Returns Seitz matrix (floats)")
    .def("apply_to_xyz", &Op::apply_to_xyz, py::arg("xyz"))
    .def("apply_to_hkl", &Op::apply_to_hkl, py::arg("hkl"))
    .def("phase_shift", &Op::phase_shift, py::arg("hkl"))
    .def("__mul__", [](const Op& a, const Op& b) { return a * b; },
         py::is_operator())
    .def("__mul__", [](const Op &a, const std::string& b) {
            return a * parse_triplet(b);
         }, py::is_operator())
    .def("__rmul__", [](const Op& a, const std::string& b) {
            return parse_triplet(b) * a;
         }, py::is_operator())
    .def("__eq__", [](const Op& a, const Op& b) { return a == b; },
         py::is_operator())
    .def("__eq__", [](const Op& a, const std::string& b) {
            return a == parse_triplet(b);
         }, py::is_operator())
#if PY_MAJOR_VERSION < 3  // in Py3 != is inferred from ==
    .def("__ne__", [](const Op& a, const Op& b) { return a != b; },
         py::is_operator())
    .def("__ne__", [](const Op& a, const std::string& b) {
            return a != parse_triplet(b);
         }, py::is_operator())
#endif
    .def("__copy__", [](const Op& self) { return Op(self); })
    .def("__deepcopy__", [](const Op& self, py::dict) { return Op(self); }, py::arg("memo"))
    .def("__hash__", [](const Op& self) { return std::hash<Op>()(self); })
    .def("__repr__", [](const Op& self) {
        return "<gemmi.Op(\"" + self.triplet() + "\")>";
    });

  m.def("parse_triplet", &parse_triplet, py::arg("triplet"),
        "Parse coordinate triplet into gemmi.Op.");
  m.def("parse_triplet_part", &parse_triplet_part, py::arg("s"),
        "Parse one of the three parts of a triplet.");
  m.def("make_triplet_part", &make_triplet_part,
        py::arg("xyz"), py::arg("w"), py::arg("style")='x',
        "Make one of the three parts of a triplet.");

  py::class_<GroupOps>(m, "GroupOps")
    .def(py::init(&split_centering_vectors))
    .def("__iter__", [](const GroupOps& self) {
        return py::make_iterator(self);
    }, py::keep_alive<0, 1>())
    .def("__eq__", [](const GroupOps &a, const GroupOps &b) {
            return a.is_same_as(b);
    }, py::is_operator())
#if PY_MAJOR_VERSION < 3  // in Py3 != is inferred from ==
    .def("__ne__", [](const GroupOps &a, const GroupOps &b) {
            return !a.is_same_as(b);
    }, py::is_operator())
#endif
    .def("__len__", [](const GroupOps& g) { return g.order(); })
    .def("__deepcopy__", [](const GroupOps& g, py::dict) { return GroupOps(g); },
         py::arg("memo"))
    .def_readwrite("sym_ops", &GroupOps::sym_ops,
               "Symmetry operations (to be combined with centering vectors).")
    .def_readwrite("cen_ops", &GroupOps::cen_ops, "Centering vectors.")
    .def("add_missing_elements", &GroupOps::add_missing_elements)
    .def("find_centering", &GroupOps::find_centering)
    .def("has_same_centring", &GroupOps::has_same_centring)
    .def("has_same_rotations", &GroupOps::has_same_rotations)
    .def("is_centrosymmetric", &GroupOps::is_centrosymmetric)
    .def("is_reflection_centric", &GroupOps::is_reflection_centric)
    .def("centric_flag_array", [](const GroupOps& g, py::array_t<int> hkl) {
        return miller_function<bool>(g, &GroupOps::is_reflection_centric, hkl);
    })
    .def("epsilon_factor_without_centering", &GroupOps::epsilon_factor_without_centering)
    .def("epsilon_factor", &GroupOps::epsilon_factor)
    .def("epsilon_factor_array", [](const GroupOps& g, py::array_t<int> hkl) {
        return miller_function<int>(g, &GroupOps::epsilon_factor, hkl);
    })
    .def("epsilon_factor_without_centering_array", [](const GroupOps& g,
                                                      py::array_t<int> hkl) {
        return miller_function<int>(g, &GroupOps::epsilon_factor_without_centering, hkl);
    })
    .def("is_systematically_absent", &GroupOps::is_systematically_absent)
    .def("systematic_absences", [](const GroupOps& g, py::array_t<int> hkl) {
        return miller_function<bool>(g, &GroupOps::is_systematically_absent, hkl);
    })
    .def("find_grid_factors", &GroupOps::find_grid_factors,
         "Minimal multiplicity for real-space grid (e.g. 1,1,6 for P61).")
    .def("change_basis_forward", &GroupOps::change_basis_forward, py::arg("cob"),
         "Applies the change-of-basis operator (in place).")
    .def("change_basis_backward", &GroupOps::change_basis_backward, py::arg("cob"),
         "Applies inverse of the change-of-basis operator (in place).")
    .def("derive_symmorphic", &GroupOps::derive_symmorphic)
    .def("add_inversion", &GroupOps::add_inversion)
    ;

  py::class_<SpaceGroup, std::unique_ptr<SpaceGroup, py::nodelete>>(m, "SpaceGroup")
    .def(py::init([](int n) {
           return const_cast<SpaceGroup*>(&get_spacegroup_by_number(n));
         }), py::arg("ccp4"), py::return_value_policy::reference)
    .def(py::init([](const std::string& s) {
           return const_cast<SpaceGroup*>(&get_spacegroup_by_name(s));
         }), py::arg("hm"), py::return_value_policy::reference)
    .def_readonly("number", &SpaceGroup::number, "number 1-230.")
    .def_readonly("ccp4", &SpaceGroup::ccp4, "ccp4 number")
    // Intel Compiler would not compile .def_readonly("hm", ...),
    // the difference with hm, qualifier and hall is that they are char[N]
    .def_property_readonly("hm", [](const SpaceGroup &self) -> const char* {
        return self.hm;
    }, "Hermann-Mauguin name")
    .def_readonly("ext", &SpaceGroup::ext, "Extension (1, 2, H, R or none)")
    .def_property_readonly("qualifier", [](const SpaceGroup &s) -> const char* {
        return s.qualifier;
    }, "e.g. 'cab'")
    .def_property_readonly("hall", [](const SpaceGroup &self) -> const char* {
        return self.hall;
    }, "Hall symbol")
    .def_property_readonly("basisop", &SpaceGroup::basisop)
    .def("xhm", &SpaceGroup::xhm, "extended Hermann-Mauguin name")
    .def("centring_type", &SpaceGroup::centring_type)
    .def("short_name", &SpaceGroup::short_name,
         "H-M name w/o spaces and with 1's removed in '1 ... 1'.")
    .def("is_enantiomorphic", &SpaceGroup::is_enantiomorphic)
    .def("is_sohncke", &SpaceGroup::is_sohncke)
    .def("is_symmorphic", &SpaceGroup::is_symmorphic)
    .def("point_group_hm", &SpaceGroup::point_group_hm,
         "Returns H-M name of the point group.")
    .def("laue_str", &SpaceGroup::laue_str,
         "Returns name of the Laue class (for centrosymmetric groups "
         "the same as point_group_hm).")
    .def("crystal_system", &SpaceGroup::crystal_system)
    .def("crystal_system_str", &SpaceGroup::crystal_system_str,
         "Returns lower-case name of the crystal system.")
    .def("is_centrosymmetric", &SpaceGroup::is_centrosymmetric)
    .def("is_reference_setting", &SpaceGroup::is_reference_setting)
    .def("centred_to_primitive", &SpaceGroup::centred_to_primitive)
    .def("operations", &SpaceGroup::operations, "Group of operations")
    .def("switch_to_asu", [](const SpaceGroup& sg, py::array_t<int> hkl) {
        auto h = hkl.mutable_unchecked<2>();
        if (h.shape(1) < 3)
          throw std::domain_error("error: the size of the second dimension < 3");
        GroupOps gops = sg.operations();
        ReciprocalAsu asu(&sg);
        for (py::ssize_t i = 0; i < h.shape(0); ++i) {
          Op::Miller hkl = asu.to_asu({{h(i, 0), h(i, 1), h(i, 2)}}, gops).first;
          for (int j = 0; j != 3; ++j)
            h(i, j) = hkl[j];
        }
    }, py::arg("miller_array").noconvert())
    .def("__repr__", [](const SpaceGroup &self) {
        return "<gemmi.SpaceGroup(\"" + self.xhm() + "\")>";
    })
    .def(py::pickle(
        [](const SpaceGroup &self) {
          return self.xhm();
        },
        [](const std::string &s) {
          return const_cast<SpaceGroup*>(&get_spacegroup_by_name(s));
        }
    ));

  py::class_<ReciprocalAsu>(m, "ReciprocalAsu")
    .def(py::init<const SpaceGroup*, bool>(), py::arg(), py::arg("tnt")=false)
    .def("is_in", &ReciprocalAsu::is_in, py::arg("hkl"))
    .def("condition_str", &ReciprocalAsu::condition_str)
    .def("to_asu", &ReciprocalAsu::to_asu, py::arg("hkl"), py::arg("group_ops"))
    ;

  m.def("spacegroup_table", []() {
            return py::make_iterator(spacegroup_tables::main);
        }, py::return_value_policy::reference);
  m.def("spacegroup_table_itb", []() {
            return py::make_iterator(spacegroup_tables::main + 0,
                                     spacegroup_tables::main + 530);
        }, py::return_value_policy::reference);
  m.def("generators_from_hall", &generators_from_hall, py::arg("hall"),
        "Parse Hall notation.");
  m.def("symops_from_hall", &symops_from_hall, py::arg("hall"),
        "Parse Hall notation.");
  m.def("find_spacegroup_by_number", &find_spacegroup_by_number,
        py::arg("ccp4"), py::return_value_policy::reference,
        "Returns space-group of given number.");
  m.def("find_spacegroup_by_name", &find_spacegroup_by_name,
        py::arg("hm"), py::arg("alpha")=0., py::arg("gamma")=0.,
        py::return_value_policy::reference,
        "Returns space-group with given name.");
  m.def("get_spacegroup_reference_setting", &get_spacegroup_reference_setting,
        py::arg("number"), py::return_value_policy::reference);
  m.def("find_spacegroup_by_ops", &find_spacegroup_by_ops,
        py::arg("group_ops"), py::return_value_policy::reference,
        "Returns space-group with identical operations.");
  m.def("seitz_to_op", &seitz_to_op);
}